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Preface 

Apart from its own intrinsic interest, a knowledge of differentiable 
manifolds has become useful-ven mandatory-in an ever-increasing 
number of areas of mathematics and of its applications. This is not too 
surprising, since differentiable manifolds are the underlying, if unacknow- 
ledged, objects of study in much of advanced calculus and analysis. Indeed, 
such topics as line and surface integrals, divergence and curl of vector 
fields, and Stokes's and Green's theorems find their most natural setting in 
manifold theory. But however natural the leap from calculus on domains of 
Euclidean space to calculus on manifolds may be to those who have made 
it, it is not at all easy for most students. It usually involves many weeks 
of concentrated work with very general concepts (whose importance is not 
clear until later) during which the relation to the already familiar ideas in 
calculus and linear algebra become lost-not irretrievably, but for all too 
long. Simple but nontrivial examples that illustrate the necessity for the 
high level of abstraction are not easy to present at this stage, and a 
realization of the power and utility of the methods must often be postponed 
for a dismayingly long time. 

This book was planned and written as a text for a two-semester course 
designed, it is hoped, to overcome, or at least to minimize, some of these 
difficulties. It has, in fact, been used successfully several times in preliminary 
form as class notes for a two-semester course intended to lead the student 
from a reasonable mastery of advanced (multivariable) calculus and a 
rudimentary knowledge of general topology and linear algebra to a solid 
fundamental knowledge of differentiable manifolds, including some facility 
in working with the basic tools of manifold theory: tensors, differential 
forms, Lie and covariant derivatives, multiple integrals, and so on. Although 
in overall content this book necessarily overlaps the several available 
excellent books on manifold theory, there are differences in presentation and 
emphasis which, it is hoped, will make it particularly suitable as an introduc- 
tory text. 

x i  



xi i P R E F A C E  

To begin with, it is more elementary and less encyclopedic than 
most books on this subject. Special care has been taken to review, and 
then to develop, the connections with advanced calculus. In particular, all 
of Chapter I1 is devoted to functions and mappings on open subsets of 
Euclidean space, including a careful exposition and proof of the inverse 
function theorem. Efforts are made throughout to introduce new ideas 
gradually and with as much attention to intuition as possible. This has led 
to a longer but more readable presentation of inherently difficult material. 
When manifolds are first defined, an effort is made to have as many non- 
trivial examples as possible; for this reason, Lie groups, especially matrix 
groups, and certain quotient manifolds are introduced early and used 
throughout as examples. A fairly large number of problems (almost 400) 
is included to develop intuition and computational skills. 

Further, it may be said that there has been a conscious effort to avoid 
or at least to economize generality insofar as that is possible. Concepts are 
often introduced in a rather ad hoc way with only the generality needed 
and, ifpossible, only when they are actually needed for some specific purpose. 
This is particularly noticeable in the treatment of tensors-which is far from 
general-and in the brief introduction to vector bundles (more specifically 
to the tangent bundle). Thus it is not claimed that this is a compre- 
hensive book; the student will emerge with gaps in his knowledge of various 
subjects treated (for example, Lie groups or Riemannian geometry). On the 
other hand it is hoped that he will acquire strong motivation, computa- 
tional skills, and a feeling for the subject that will make it easy for him to 
proceed to more advanced work in any of a number of areas using manifold 
theory: differential topology, Lie groups, symmetric and homogeneous 
spaces, harmonic analysis, dynamical systems, Morse theory, Riemann 
surfaces, and so on. 

Finally, it should be said that the author has tried to include at every 
stage results that illustrate the power of these ideas. Chapter VI is especially 
noteworthy in this respect in that it includes complete proofs of Brouwer’s 
fixed point theorem and of the nonexistence of nowhere-vanishing continuous 
vector fields on evendimensional spheres. In a similar vein, the existence 
of a bi-invariant measure on compact Lie groups is demonstrated and 
applied to prove the complete reducibility of their linear representations. 
Then, in a later chapter, compact groups are used as simple examples of 
symmetric spaces, and their corresponding geometry is used to prove that 
every element lies on a one-parameter subgroup. In the last two chapters, 
which deal with Riemannian geometry of abstract n-dimensional manifolds, 
the relation to the more easily visualized geometry of curves and surfaces 
in Euclidean space is carefully spelled out and is used to develop the general 
ideas for which such applications as the Hopf-Rinow theorem are given. 
Thus, by a selection of accessible but important applications, some truly 
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nontrivial, unexpected (to the student) results are obtained from the abstract 
machinery so patiently constructed. 

Briefly, the organization of the book is as follows. Chapter I is a very 
intuitive introduction and fixes some of the conventions and notation that 
are used. Chapter I1 is largely advanced calculus and may very well be 
omitted or skimmed by better prepared readers. In Chapter 111, the basic 
concept of differentiable manifold is introduced along with mappings of 
manifolds and their properties ; a fairly extensive discussion of examples is 
included. Chapter IV is particularly concerned with vectors and vector 
fields and with a careful exposition of the existence theorem for solutions 
of systems of ordinary differential equations and the related one-parameter 
group action. In Chapter V covariant tensors and differential forms are 
treated in some detail and then used to develop a theory of integration 
on manifolds in Chapter VI. Numerous applications are given. It would 
be possible to use Chapters 11-VI as the basis of a one-semester course 
for students who wish to learn the fundamentals of differentiable manifolds 
without any Riemannian geometry. On the other hand, for students who 
already have some experience with manifolds, Chapters VII and VIII could 
serve as a brief introduction to Riemannian geometry. In these last two 
chapters, beginning from curves and surfaces in Euclidean space, the concept 
of Riemannian connection and covariant differentiation is carefully 
developed and used to give a fairly extensive discussion of geodesics- 
including the Hopf-Rinow theorem-and a shorter treatment of curvature. 
The natural (bi-invariant) geometry on compact Lie groups and Riemannian 
manifolds of constant curvature are both discussed in some detail as examples 
of the general theory. This discussion is based on a fairly complete treatment 
of covering spaces, discontinuous group action, and the fundamental 
group given earlier in the book. 

This book, as do many of the books in this subject, owes much to the 
influence of S. S. Chern. For many years his University of Chicago notes- 
-still an important reference (Chern [ 11)-were virtually the only systematic 
account of most of the topics in this text. Even more importantly his 
courses, lectures, published works, and above all his personal encourage- 
ment have had an impressive influence on a whole generation of differential 
geometers, among whom this author had the good fortune to be included. 
Another source of inspiration to the author was the work of John Milnor. 
The manner in which he has made exciting fundamental research in 
differential topology and geometry available to specialist and nonspecialist 
alike through many careful expository works (written in a style that this 
author particularly admires) certainly deserves gratitude. No better material 
for further or supplemental reading to this text could be suggested than 
Milnor’s two books [ 13 and [2]. 

For part of the time during which this book was being written, the 
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author benefitted from a visiting professorship at the University of 
Strasbourg, France, and he is particularly grateful for the opportunity to 
work there, in an atmosphere so conducive to advancing in the task he 
had undertaken. 

The author would also like to acknowledge with gratitude the help given 
to him by his son, Thomas Boothby, by students and colleagues at  
Washington University, especially Humberto Alagia and Eduardo Cattani, 
and by Mrs. Virginia Hundley for her careful work preparing the manuscript. 
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1 INTRODUCTION TO MANIFOLDS 

In this chapter, we establish some preliminary notations and give an intuitive, geometric 
discussion of a number of examples of manifolds-the primary objects of study throughout the 
book. Most of these examples are surfaces in Euclidean space; for these-together with curves 
on the plane and in space-were the original objects of study in classical dilTerential geometry 
and are the source of much of the current theory. 

The first two sections deal primarily with notational matters and the relation between 
Euclidean space, its model R". and real vector spaces. In Section 3 a precise definition of 
topological manifolds is given, and in the remaining sections this concept is illustrated. 

1 Preliminary Comments on R" 

Let R denote the real numbers and R" their n-fold Cartesian product 

R i ,  

the set of all ordered n-tuples (XI, ..., x") of real numbers. Individual n- 
tuples may be denoted at times by a single letter. Thus x = (XI, ..., x"), 
a = (u', ..., a"), and so on. We agree once and for all to use on R" its 
topology as a metric space with the metric defined by 

1 
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The neighborhoods are then open balls &(x), or B,(x) or, equivalently, open 
cubes C;(x) ,  or C , ( x )  defined for any E > 0 as 

B,(x) = { Y E  R" 1 d(x ,  Y )  < E},  

and 

C , ( X ) = { ~ E R " I  I x i - y i I  < ~ , i = l ,  ..., n}, 

a cube of side 26 and center x .  Note that R' = R and we define Ra to be a 
single point. 

We shall invariably consider R" with the topology defined by the metric. 
This space R" is used in several senses, however, and we must usually decide 
from the context which one is intended. Sometimes R" means merely R" as 
topological space, sometimes R" denotes an n-dimensional vector space, and 
sometimes it is identified with Euclidean space. We will comment on this last 
identification in Section 2 and examine here the other meanings of R". 

We assume that the definition and basic theorems of vector spaces over 
R are known to the reader. Among these is the theorem which states that any 
two vector spaces over R which have the same dimension n are isomorphic. 
It is important to note that this isomorphism depends on choices of bases in 
the two spaces; there is in general no natural or canonical isomorphism 
independent of these choices. However, there does exist one important 
example of an ndimensional vector space over R which has a distinguished 
or canonical basis-a basis which is somehow given by the nature of the 
space itself. We refer to the vector space of n-tuples of real numbers with 
componentwise addition and scalar multiplication. This is, as a set at least, 
just R"; should we wish on occasion to avoid confusion, then we will denote 
it by Y" (and use boldface for its elements (x instead of x, and so forth). For 
this space the n-tuples el = (1,0, . . . , 0), . . . , en = (0, 0, . . . , 0, 1) are a basis, 
known as the natural or canonical basis. We may at times suppose that the 
n-tuples are written as rows, that is, 1 x n matrices, and at other times as 
columns, that is, n x 1 matrices. This only becomes important should we 
wish to use matrix notation to simplify things a bit, for example, to describe 
linear mappings, equations, and so on. 

Thus R" may denote a vector space of dimension n over R. We sometimes 
mean even more by R". An abstract n-dimensional vector space over R is 
called Euclidean if it has defined on it a positive definite inner product. In 
general there is no natural way to choose such an inner product, but in the 
case of R" or Y", again we have the natural inner product 

n 

(x, y) = 1 xiy'. 
i =  1 

It is characterized by the fact that relative to this inner product the natural 
basis is orthonormal, (e i ,  ej) = 6 , .  
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Thus at times R" is a Euclidean vector space, but one which has a built-in 
orthonormal basis and inner product. An abstract vector space, even if 
Euclidean, does not have any such preferred basis. The metric in R" dis- 
cussed at the beginning can be defined using the inner product on R". We 
define IIxII, the norm of the vector x, by llxll = ((x, x))''~. Then we have 

4x9 Y )  = Ilx - YII. 

This notation is frequently useful even when we are dealing with R" as a 
metric space and not using its vector space structure. Note, in particular, 
that I( x I( = d(x ,  0). the distance from the point x to the origin. In this equal- 
ity x is a vector on the left-hand side, and x is the corresponding point on 
the right-hand side; an illustration of the way various interpretations of R" 
can be mixed together. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Exercises 

Show that if A is an rn x n matrix, then the mapping from Y" to Y" (with 
elements written as n x 1 and rn x 1 matrices), which is defined by 
y = A x ,  is continuous. Identify the images of the canonical basis of Y" as 
linear combinations of the canonical basis of Y". 
Find conditions for the mapping of Exercise 1 to be onto; to be 
one-to-one. 
Show that if W is an n-dimensional Euclidean vector space, then there 
exists an isometry, that is, an isomorphism preserving the inner product, 
of W onto R" interpreted as Euclidean vector space. 
Show that C", the space of n-tuples of complex numbers, may be placed 
in one-to-one correspondence with R2". Can this correspondence be a 
vector space isomorphism? 
Exhibit an isomorphism between the vector space of rn x n matrices 
over R and the vector space R"". Show that the map X --* AX, where A 
is a fixed rn x rn matrix and X is an arbitrary rn x n matrix (over R), is 
continuous in the topology derived from R"". 
Show that (IxJ( has the following properties: 

(a) IIX * YII 5 IIXII + llYll ; 
(b) llxll - IIYII 5 llx - YIL 
(c) IIuxJI = I I llxll, R ;  and 
(d) explain how (a) is related to the triangle inequality of d(x ,  y). 

Show that an isometry of a Euclidean vector space onto itself has an 
orthogonal matrix relative to any orthonormal basis. 
Prove that every Euclidean vector space Y has an orthonormal basis. 
Construct your proof in such a way that if W is a given subspace of V, 
dim W = r, then the first r vectors of the basis of Y are a basis of W. 
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2 R" and Euclidean Space 

Another role which R" plays is that of a model for n-dimensional 
Euclidean space E", in the sense of Euclidean geometry. In fact many texts 
simply refer to R" with the metric d(x, y) as Euclidean space. This 
identification is misleading in the same sense that it would be misleading to 
identify all n-dimensional vector spaces with R"; moreover unless clearly 
understood, it is an identification that can hamper clarification of the con- 
cept of manifold and the role of coordinates. Certainly Euclid and the 
geometers before the seventeenth century did not think of the Euclidean 
plane or three-dimensional space-which we denote by E2 and E3-as pairs 
or triples of real numbers. In fact they were defined axiomatically beginning 
with undefined objects such as points and lines together with a list of their 
properties-the axioms-from which the theorems of geometry were then 
deduced. This is the path which we all follow in learning the basic ideas of 
Euclidean plane and solid geometry, about which most of us know quite a 
bit before studying analytic or coordinate geometry at all. The identification 
of R" and E" came about after the invention of analytic geometry by Fermat 
and Descartes and was eagerly seized upon since it is very tricky and 
difficult to give a suitable definition of Euclidean space, of any dimension, in 
the spirit of Euclid, that is, by giving axioms for (abstract) Euclidean space 
as one does for abstract vector spaces. This difficulty was certainly 
recognized for a very long time, and has interested many great mathemati- 
cians. It led in part to the discovery of non-Euclidean geometries and thus to 
manifolds. A careful axiomatic definition of Euclidean space is given by 
Hilbert [l]. Since our use of Euclidean geometry is mainly to aid our 
intuition, we shall be content with assuming that the reader "knows" this 
geometry from high school. 

Consider the Euclidean plane E2 as studied in high school geometry; 
definitions are made, theorems proved, and so on, without coordinates. One 
later introduces coordinates using the notions of length and perpendicular- 
ity in choosing two mutually perpendicular "number axes" which are used 
to define a one-to-one mapping of E2 onto R2 by p -, ( x ( p ) ,  y(p)). the coor- 
dinates of p E EZ. This mapping is (by design) an isometry, preserving dis- 
tances of points of Ez and their images in R2. Finally one obtains further 
correspondences of essential geometric elements, for example, lines of E2 
with subsets of RZ consisting of the solutions of linear equations. Thus we 
carry each geometric object to a corresponding one in R2. It is the existence 
of such coordinate mappings which make the identification of E2 and RZ 
possible. But caution! An arbitrary choice of coordinates is involved, there is 
no natural, geometrically determined way to identify the two spaces. Thus, at 
best, we can say that R2 may be identified with E2 plus a coordinate system. 
Even then we need to define in R2 the notions of line, angle of lines, and 
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other attributes of the Euclidean plane before thinking of it as Euclidean 
space. Thus, with qualifications, we may identify EZ and RZ or E and R", 
especially remembering that they carry a choice of rectangular coordinates. 

We conclude with a brief indication of why we might not always wish to 
make the identification, that is, to use the analytic geometry approach to the 
study of a geometry. Whenever E" and R" are identified it involves the choice 
of a coordinate system, as we have seen. It then becomes difficult at times to 
distinguish underlying geometric properties from those which depend on the 
choice of coordinates. An example: Having identified E2 and R2 and lines 
with the graphs of linear equations, for instance, 

L = {(x, Y )  I y = mx + b}, 

we define the slope m and the y-intercept b. Neither has geometric meaning; 
they depend on the choice of coordinates. However, given two such lines of 
slope m,, m 2 ,  the expression (m2 - ml)/( 1 + m, m 2 )  does have geometric 
meaning. This can be demonstrated by directly checking independence of 
the choice of coordinates-a tedious process-or determining that its value 
is the tangent of the angle between the lines, a concept which is independent 
of coordinates! It should be clear that it can be difficult to do geometry, even 
in the simplest case of Euclidean geometry, working with coordinates alone, 
that is, with the model R". We need to develop both the coordinate method 
and the coordinate-free method of approach. Thus we shall often seek ways 
of looking at manifolds and their geometry which do not involve coordin- 
ates, but will use coordinates as a useful computational device (and more) 
when necessary. 

However, being aware now of what is involved, we shall usually refer to 
R" as Euclidean space and make the identification. This is especially true 
when we are interested only in questions involving topology-as in the next 
section-r differentiability. 

Exercises 

1. Using standard equations for change of Cartesian coordinates, verify 
that Onz - ml)/(  1 + m l  m 2 )  is independent of the choice of coordinates. 

2. Similarly, show that ((x2 - + ( y z  - Y , ) ~ ) " ~  is a function ofpoints 
P , ( x l ,  y , )  and P 2 ( x 2 ,  y 2 )  which does not depend on the choice of 
coordinates. 

3. How do we describe the subset of R" which corresponds to a segment & 
in I?'? to a line? to a 2-plane not through the origin? 

I f  we wish to prove the theorems of Euclidean geometry by analytical geometry methods, 
we need to define the notion of congruence. We say that two figures are congruent if there is a 
rigid motion of the space, that is, an isometry or distance-preserving transformation, which 
carries one figure to the other. 
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4. Identifying E2 with R2, describe analytically the rigid motions of R2. 
Show that they form a group. 

5 .  Using Exercise 4 prove that two triangles are congruent if and only if 
corresponding sides are of equal length. 

3 Topological Manifolds 

Of all the spaces which one studies in topology the Euclidean spaces and 
their subspaces are the most important. As we have just seen, the metric 
spaces R" serve as a topological model for Euclidean space E', for finite- 
dimensidnal vector spaces over R or C, and for other basic mathematical 
systems which we shall encounter later. It is natural enough that we are led 
to study those spaces which are locally like R", more precisely those spaces 
for which each point p has a neighborhood U which is homeomorphic to an 
open subset U' of R", n fixed. We say that a space with this property is locally 
Euclidean of dimension n, and in order to stay as close as possible to 
Euclidean spaces, we will consider spaces called manifolds, defined as 
follows. 

(3.1) Definition A manifold M of dimension n, or n-manifold, is a topologi- 
cal space with the following properties: 

(i) M is Hausdorff, 
(ii) M is locally Euclidean of dimension n, and 

(iii) M has a countable basis of open sets. 

As a matter of notation dim M is used for the dimension of M ;  when 
dim M = 0, then M is a countable space with the discrete topology. It 
follows from the homeomorphism of U and U' that locally Euclidean is 
equivalent to the requirement that each point p have a neighborhood U 
homeomorphic to an n-ball in R". Thus a manifold of dimension 1 is locally 
homeomorphic to an open interval, a manifold of dimension 2 is locally 
homeomorphic to an open disk, and so on. Our first examples will remove 
any lingering suspicion that an n-manifold is necessarily globally equivalent, 
that is, homeomorphic, to E". 

(3.2) Example Let M be an open subset of R" with the subspace topo- 
logy; then M is an n-manifold. 

Indeed properties (i) and (iii) of Definition 3.1 are hereditary, holding for 
any subspace of a space which possesses them; and we see that (ii) holds with 

U = U' = M and with the homeomorphism of U to U' being the identity 
map. A bit of imagination, assisted perhaps by Fig. 1.1, will show that even 
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t 
(0) (b) 

Figure 1.1 

(a) The manifold is the open set M of R2 between the curves C and C'. (b) The manifold is 
the open subset of R3 obtained by removing the knots. 

when I I  = 2 or 3 these examples can be rather complicated and certainly not 
equivalent to Euclidean space in general, although they may be in special 
cases: a trivial such case is M = En. 

(3.3) Example The simplest examples of manifolds not homeomorphic to 
open subsets of Euclidean space are the circle S' and the 2-sphere S2, which 
may be defined to be all points of E2,  or of E3, respectively, which are at unit 
distance from a fixed point 0. 

These are to be taken with the subspace topology so that (i) and (iii) are 
immediate. To see that they are locally Euclidean we introduce coordinate 
axes with 0 as origin in the corresponding ambient Euclidean space. Thus in 
the case of Sz we identify R3 and E3, and S2 becomes the unit sphere 
centered at the origin. At each point p of Sz we have a tangent plane and a 
unit normal vector N,. There will be a coordinate axis which is not perpen- 
dicular to N, and some neighborhood U of p on S2 will then project in a 
continuous and one-to-one fashion onto an open set U' of the coordinate 
plane perpendicular to that axis. In Fig. I.2a, N ,  is not perpendicular to the 
x,-axis so for 4~ U .  the projection is given quite explicitly by q ( q )  = 

( x ' ( 4 ) ,  0, x3(q ) ) ,  where (x'(q), xz(q), x 3 ( q ) )  are the coordinates of q in E3. 
Similar considerations show that S' is locally Euclidean. Note that Sz and 
RZ cannot be homeomorphic since one is compact while the other is not. 

(3.4) Example Our final example is that of the surface of revolution ob- 
tained by revolving a circle around an axis which does not intersect it. The 
figure we obtain is the torus or "inner tube" (denoted 7'') as shown in 
Fig. I.2b. This figure can be studied analytically; it is easy to write down an 
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(b) 

I 
( a )  

Figure 1.2 

(a) The spherical surface Sz as a manifold. (b) The torus as a manifold. 

equation whose locus it is if we introduce coordinates in E3 as shown in the 
figure. In order to convince ourselves that it is indeed locally Euclidean we 
consider once more the normal vector N ,  at p E T2. There will be at least one 
coordinate axis to which it is not perpendicular, say x3. Then some neigh- 
borhood U of p projects homeomorphically onto a neighborhood U’ in the 
x’.u2-plane as illustrated. Since we use the relative topology derived from E3, 
the space TZ is necessarily Hausdorff and has a countable basis of open sets. 
Thus conditions (i)-(iii) of Definition 3.1 are satisfied. 

(3.5) Remark It should be clear from the last two examples that certain 
subspaces M of E3 are easily seen to be 2-manifolds; they are surfaces which 
are “smooth,” that is, without corners or edges, so that they have at each 
P E  M a (unit) normal vector N, and tangent plane T,(M)-to introduce 
notation we use later-which varies continuously as we move from point to 
point. (By this last requirement we mean that the components of the unit 
normal vector depend continuously on the point p.) This smoothness allows 
us to prove the locally Euclidean property by projection of a neighborhood 
of p onto a plane as in Examples 3.3 and 3.4. The other properties are 
immediate since we use the subspace topology. Figure 1.3 shows some fur- 
ther examples of manifolds which can be obtained in this way. Obviously 
this method will not always work: The surface of a cube is a 2-manifold, in 
fact it is homeomorphic to S2; but it has no tangent plane or normal vector 
at the corners and edges. 

Example 3.2 gives an inkling at least, of how nasty a space can be and 
still be a manifold, even when it is connected-which we do not suppose in 
general. The following theorem will offer some reassurance. 
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Figure 13 

(3.6) Theorem A topological mangold M is locally connected, locally 
compact, and a union of a countable collection of compact subsets: furthermore, 
it is normal and metrizable. 

Proof These are all immediate consequences of the definition and stan- 
dard theorems of general topology. Let p be a point of M and I! a neighbor- 
hood of p homeomorphic to an open ball B, (x )  of radius E in R". We denote 
this homeomorphism by cp, and we suppose cp(p) = x. Then it is clear that 
interior to any neighborhood V of p there is a neighborhood W whose 
closure is in U and for which cp( W) = Bd(x)  with E > 6 > 0. It follows 
that M is locally connected at p since B&x) and hence W, to which it is 
homeomorphic by cp-', is connected. Similarly W is compact since &(x) is 
compact; thus M is locally compact. Because M has a countable base of 
open sets, we may now suppose that it has a countable base of relatively 
compact open sets (v}; obviously M = u V,. Normality follows from 
Lindelof's theorem and metrizability is then a consequence of the Urysohn 
metrization theorem (see Kelley [ 11). 

There is one difficulty in our concept of manifold about which we can do 
nothing at present. In fact it concerns Euclidean spaces and their topology 
and arises even before consideration of manifolds: it is the question of 
dimension. Could it be that E" and E"' are homeomorphic, or locally 
homeomorphic-so that an open set U of E" is homeomorphic to some open 
set U' of E"' with m # n? The answer is no, but the proof is difficult and 
requires algebraic topology. It was proved in 191 1 by L. E. J. Brouwer and is 
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known as Brouwer's theorem on invariance of domain. For a proof see 
Hurewicz and Wallman [l]. Later we shall be able to give a differentiable 
version of this theorem which will be sufficient for our needs; in this chapter 
we assume the theorem. 

We make one final remark which connects this section with the preced- 
ing one. The notion of coordinates plays an important role in manifold 
theory, just as it does in the study of the geometry of E". In E", however, it is 
possible to find a single system of coordinates for the entire space, that is, to 
establish a correspondence between all of E" and R". Built into the definition 
of n-manifold M is a correspondence of a neighborhood U of each p E M and 
an open subset CJ' of R". Letting q : U --+ U' be this correspondence, we call 
the pair U ,  cp a coordinate neighborhood and the numbers x'(q),  . . . , x"(q), 
given by cp(q) = (x ' (q ) ,  . .., x"(q)), the coordinates of q E  M. We have 
assumed that this cp is a homeomorphism: it is one-to-one and cp and cp-l 

are continuous. Thus each q E U has n uniquely determined coordinates, real 
numbers, which vary continuously with q. Of course the function q --+ x'(q), 
which gives the ith coordinate, 1 I i I n, is continuous; it is called the ith 
coordinate function. There is obviously nothing unique about our choice of 
coordinates; in Examples 3.3 and 3.4, we could equally well project the 
neighborhood of p discussed there to other coordinate planes. Finally note 
that even in the case of Euclidean space it is often useful to use local coordin- 
ates; the domain of a polar coordinate system on E2, for example, must omit 
a ray if it is to be one-to-one. 

Exercises 

1. Consider the following subset of R2 : X = A +  u A -  u B with 
A +  = { ( x , y ) I x  2 0 , y  = +I}, 
A- = {(s, y )  I x 2 0, y = - l}, 

B = { ( x ,  y )  I x < 0, y = O}. 

I Y  
A +  

(0, I )  

'( (O,-Il 

Define a topology as follows: We use the subspace topology (open 
intervals as a basis) on A ,  - ((0, l)}, A -  - {(0, -1)) and B ;  then for 
E > Owelet Nf = { ( x ,  +1)10 I x < E } V  {(x,O)I --E I x < 0)anduse 
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N: and Nc- as a basis of neighborhoods of (0, 1 )  and (0, - I ) ,  respec- 
tively. Show that the space X is locally Euclidean but is not a manifold. 

A Hausdorff space M is said to be prrrtrcompcrcr if every covering U,}  of M by open sets has 
a locally brrirc, rrfrnemmr; more precisely. there is a covering which ( i )  refines (Urn;  in the 
sense that each (, c U ,  for some a, and which ( i i )  is locally finite, that is, each p E M has a 
neighborhood W which intersects only a finite number of sets V B .  

2. Show that a manifold is paracompact. Show that a locally Euclidean, 
paracompact, Hausdorff space need not have a countable basis. 

3. Show that a connected manifold M is pathwise connected, that is, 
p.  q E M implies that there exists a continuous curve f ( s ) ,  0 5 s 5 1, 
withf(0) = p , f ( l )  = q. 
Show that the (connected) components of a manifold M are open sets 
and are countable in number. 

4. 

4 Further Examples of Manifolds. Cutting and Pasting 

A hemispherical cap (including the equator) or a right circular cylinder 
(including the circles at the ends) are typical examples of manifolds with 
boundary. Except for the equator, or the end-circles, they are 2-manifolds 
and these boundary sets are themselves manifolds of dimension one less. In 
fact, they are homeomorphic to S' or to S' u S' in these two cases. An even 
simpler example is the upper half-plane H2, or more generally H", where we 
shall mean by H" the subspace of R" defined by 

H" = {(.Y', . . . , x") E R" I X" 2 0). 

Every point p~ H" has a neighborhood U which is homeomorphic to an 
open subset U' of R" except the set of points ( X I ,  . . . , x"- ', 0), which ob- 
viously forms a subspace homeomorphic to R"- called the boundary of H" 
and denoted by dH". 

We shall define a nianifold with boundary to be a Hausdorff space M with 
a countable basis of open sets which has the property that each p~ M is 
contained in an open set U with a homeomorphism cp to either (a) an open 
set U' of H" - dH" or (b) to an open set U' of H" with q ( p )  E dH",  that is, a 
boundary point of H". It can be shown (as a consequence of invariance of 
domain) that p E M is in one class or the other but not both; those p of the 
first type are called interior points of M and those p mapped onto the 
boundary of H" by one, and hence by all, homeomorphisms of their neigh- 
borhoods into H" are called boundary points. The collection of boundary 
points is then denoted by dM and is called the boundary of M .  It is a 
manifold of dimension n - 1.  We make no attempt to prove these facts here, 
but they will be discussed briefly in Chapter VI. 
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Figure 1.4 

Some examples or pasting. 

Our interest is in pointing out that new surfaces, that is, 2-manifolds, can 
be formed by fastening together manifolds with boundary along their boun- 
daries, that is, by identifying points of various boundary components by a 
homeomorphism, assuming of course the necessary condition that such 
components are homeomorphic. The simplest examples are S2, which is 
obtained by pasting two disks (or hemispheres) together so as to form the 
equator, and T2,  formed by pasting the two end-circles of a cylinder 
together. However, one can go much further and paste any number of cylin- 
ders onto a sphere S2 with holes,” that is, with circular disks removed. This 
gives various pretzellike surfaces as illustrated in Fig. 1.4. We leave as an 
exercise the proof that these are manifolds. Thus to generate new 2- 
manifolds from old ones we may (1) cut out two disks, leaving a manifold M 
whose boundary dM is the disjoint union of two circles, and (2) paste on a 
cylinder or “handle” so that each end-circle is identified with one of the 
boundary circles of M. 

The pasting on of handles is not the only way in which we can generate 
examples of 2-manifolds. It is also possible to do so by identifying or pasting 
together the edges of certain polygons. For example, the sides of a square 
may be identified in various ways in order to obtain surfaces. Figure 1.5 
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illustrates this: we obtain a cylinder, Mobius band, torus, and Klein bottle. 
The latter cannot be pictured as a surface in E3 unless we allow it to cut itself 
as shown. Thus as a subspace of E3 it is not a manifold: it is possible to 
identify the sides of the square, as shown, and obtain a manifold-but it is 
not possible to put it inside E3. 

For connected 2-manifolds M which lie smoothly inside E3 so that there 
is a tangent plane and normal line L, at each point p ,  we may ask whether it 
is possible to choose a unit normal vector N ,  (on L,) for every p E M which 
varies continuously with M. It is easy to see that this is possible for S2 and 
T 2  but not for the Mobius band (which is actually a manifold with boun- 
dary) or the Klein bottle. We say that a manifold or manifold with boundary 
is orientable if such a choice of N ,  is possible. The following is a fundamental 
theorem of 2-manifolds. 

Cy I inder 

Torus 

( C )  

Figure 1.5 

Four ways to identify sides of a rectangle: (a) cylinder; (b) twisted (Mobius) band; (c) torus; (d) 
Klein bottle. 
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(4.1) Theorem Every compact, connected, orientable 2-manifold is homeo- 
morphic to a sphere with handles added. Two such munifoltls with the sante 
number of handles (ire homeomorphic and conversely, so that the number of 
handles is the only topological invariant. 

This is a very satisfying theorem in that it shows that 2-manifolds of a 
certain large class can be enumerated and completely described to within 
homeomorphism (for a proof see Massey [ 11). This can actually be carried 
further. Nonorientable as well as noncompact 2-manifolds can be described 
equally completely-although the noncompact case is more involved as 
might be expected. One can show also that every connected, one- 
dimensional manifold is homeomorphic to S' or to R depending on whether 
it is compact or not. However, beginning with n = 3 everything is far more 
complicated and no such classification is known, even in the compact case. 

Curves and surfaces, that is, one- and two-dimensional manifolds in E3, 
formed the objects of study in classical differential geometry. We shall 
frequently refer to them as sources of examples and new ideas. 

Exercises 

I .  Assuming invariance of domain, show that 8H" is a manifold of dimen- 
sion n - 1 and that no neighborhood in H" of a point of dH" can be 
homeomorphic to an open subset of R". 

2. Prove that adding a handle to a 2-manifold in the fashion described 
above for S 2  and T 2  actually does give a 2-manifold. 

3. Prove in detail that it is possible to obtain a 2-manifold by identifying 
sides of the square as shown in Fig. I.5d (Klein bottle). 

4. Prove that identification of points at opposite ends of diameters on the 
boundary of the circular disk D2 defines a 2-manifold. 

According to a theorem of topology, if a compact orientable 2-manifold is obtained by 
pasting together triangles along their edges, then the number x =f- e + v (faces - edges + 
vertices) is the same for two surfaces M ,  and M ,  which are homeomorphic: is independent of 
the way the surface is cut up into triangles. ( x  is called the Euler characteristic of the surface.) 

5 .  Let M o  = S 2  and M ,  be the surface obtained from M, by adding g 
handles. Compute the relation between g and ( g  is called the genus of 
4.) 

5 Abstract Manifolds. Some Examples 

The manifolds of dimensions 1 and 2 considered above are pictured as 
subspaces of E3 except in the case of the Klein bottle. This is the way in 
which manifolds are first and most easily visualized. However, the definition 
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makes no such requirement. Such visualization makes equivalent (homeo- 
morphic) manifolds look different just because they are differently placed in 
Euclidean space; and we might easily be led to think that they are different. 
Several examples of equivalent manifolds are shown in Fig. 1.6. In spite of 
appearances, they are homeomorphic. 

Figure 1.6 

Three equivalent manifolds. 

As we might expect from the definition, it is possible to give examples of 
manifolds which we do not think of as lying in Euclidean space. Indeed, it is 
not clear that they can be realized at all as a subspace of Euclidean space. 
This can already be guessed from the construction of manifolds by pasting, 
which does not really use E3 at all. The simplest, as well as one of the most 
important examples of manifolds defined "abstractly "-not as a subspace of 
Euclidean space-is real projectiae space P"(R), the space of (real) projective 
geometry. It may be defined as follows. Let an equivalence relation - be 
defined on R"+' - (0) by 

(XI,  ..., X " + 1 )  - (y1,  ..., y n + y  

if there is a real number t such that y' = tx' ,  i = 1, . . . , n + 1; briefly y = tx. 
Then we denote by [x] the equivalence class of x and by P"(R) the set of 
equivalence classes. There is a natural map II : R"" - (0) + P"(R) given by 
n(x) = [XI and we shall topologize P"(R), as is usual in the case of such 
quotient spaces, by saying that U c P ( R )  is open if and only if n - ' ( U )  is 
open in R"' I .  This gives P"(R) the structure of an n-manifold (as shown in 
the exercises). We note that there is an alternative description of P"(R) as the 
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space of all lines through the origin 0 of R”’ ; a takes each x # 0 to the line 
through 0 which contains it. Then we define the topology as follows: a 
collection t! of lines is open if it is the set of all lines through 0 which meet a 
given open set U .  

This example may be generalized as follows: Let M be the set of all 
r-planes through the origin in R”, where n and r are fixed; for example, the 
set of all planes through the origin in R3 or the set of all three-dimensional 
planes through the origin of R5, and so on. This set has a natural topology 
which makes it a manifold. Intuitively it consists of defining a neighborhood 
of a given plane p to be all planes 4 which are “close” to it in a more or less 
obvious sense: there exist corresponding basis of both planes p and q (con- 
sidered as r-dimensional subspaces of R”, as a vector space) such that corre- 
sponding basis vectors are close, say, for example, that their differences have 
norm less than some E > 0. 

Further important and useful examples of manifolds force themselves 
upon our attention when we begin to study the geometry of some of the 
manifolds we already have discussed. For example, consider S2, the unit 
sphere in R3. We denote by T ( S 2 )  the collection of all tangent vectors to 
points of S2, including the zero vector at each point. Thus T(S2)  = upssl T,(S2). This set has a natural topology: two tangent vectors X,and 

are “close” if their initial points p and 4 and their terminal points are 
close. Similarly, if M is any of the 2-manifolds we have considered which lie 
“smoothly” in E3, so as to have a tangent plane at each point which turns 
continuously as we move about on M, then T ( M )  = U p E M  T,(M) is a mani- 
fold, called the tangent bundle of M. The dimension of T ( M )  is 4 since, 
roughly speaking, X, depends locally on four parameters: two being the 

N 

Figure 1.7 

The 2-sphere S2 and some of its tangent vectors--elements of T(SZ) .  
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local coordinates of p relative to some coordinate neighborhood U and two 
more being the components which determine X ,  relative to some basis 
{ E , , ,  E,,] of T,(M), a basis which varies continuously over the neighbor- 
hood U .  We later make these statements quite precise and in so doing 
exhibit the locally Euclidean character of T ( M ) .  For the moment we note 
that El and E, can be visualized as vectors tangent to the coordinate curves 
x'  = constant and x2 = constant in U .  This is illustrated in Fig. 1.7. 

We should note that these manifolds are not subspaces of E3, even 
though M is and although the geometry of E3 is used here to describe them. 
I n  fact, one of our major tasks is to describe T,(M) and T ( M )  independently 
of any way of placing M in Euclidean space, that is, to give a description 
valid for an abstract manifold. 

The manifolds mentioned above arose quite naturally from studies of the 
geometry of curves and surfaces in E3. In  fact, Gauss used, in a very essential 

Figure 1.8 
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way, a mapping which he introduced for orientable surfaces in E3. Let M be 
such a surface and let N ,  be a unit normal vector at each p E M, so defined 
that N, varies continuously with p on M. Translate N, to fi, from a fixed 
origin 0 and let G(p)  be the endpoint of fi, on S2, the unit sphere at 0. The 
mapping taking p to G ( p )  is known as the Gauss mapping, and the Gaussian 
curvature is a measure of the distortion of areas under this mapping: If M is 
sharply curved near p ,  then the area of a small region around p would be 
greatly magnified in mapping to S2.  Even if M is not orientable, we still 
have a tangent plane T,(M) at each point p and it is parallel to a uniquely 
determined plane c ( p )  through the point 0. Thus a slight variant of the 
previous definition defines a mapping (as shown in Fig. 1.8) of M to the 
manifold of 2-planes through 0 introduced above. Or again, using normal 
lines instead of tangent planes, we can obtain a mapping from M to the 
manifold of lines through 0, which as we have remarked, is equivalent to 
P2(R).  

1. 
2. 

3. 

4. 

5 .  

6. 

Exercises 

Show that P 2 ( R )  and the manifold of Exercise 4.4 are homeomorphic. 
Show that P2(R)  and the set of all planes through the origin of R3 are in 
natural one-to-one correspondence. 
Show that the set of all pairs (x, y) of mutually orthogonal unit vectors x 
and y of V’, with its natural inner product, is a manifold. What is its 
dimension? Generalize if possible. 
Prove that the manifold of orthonormal pairs of vectors in V3 
(Exercise 3) is homeomorphic to To(Sz), the tangent sphere bundle of S2. 
which consists of all unit vectors tangent to S2.  
Let C be a one-dimensional manifold (curve) in R3. Show that the 
collection of all vectors normal to C form a three-dimensional manifold. 
What sort of manifold would the unit vectors normal to C give us‘? 
Manifolds may be obtained as the locus of one or more algebraic equa- 
tions, for example, S 2  = {(x, y, z )  I x2 + y 2  + z2 = l}. Show that the 
torus T 2  may be given as the locus of an equation in x, y,  z. 

Notes 

Curves and surfaces in Euclidean space were studied since the earliest days of geometry 
and, after they were invented, both analytic geometry and calculus were systematically used in 
these studies. However, the discoveries of Gauss, announced in 1827, profoundly altered the 
course of differential geometry and pointed the way to the concept of abstract difierentiable 
manifolds-the underlying spaces of every geometry and of other important mathematical 
theories as well. In his celebrated “Theorema Egregium” Gauss showed that there is a measure 
of curvature of a surface (now called the Gaussian curvature) which depends only on one‘s 
ability to measure the lengths of curves on the surface. This means that this curvature is 
unchanged by alterations of shape of the surface which leave arclength unchanged. (It  is easily 
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seen that there are such alterations. For example, we may roll a plane surface into a cylinder or 
cone, or we may gently squeeze a hemisphere in along its edge, the equator.) This discovery of 
an "inner" geometry, independent of the shape of the surface in E', led very naturally toward 
the invention of abstract surfaces (2-manifolds) on which a measure of arclength is (somehow) 
provided. The discovery by Bolyai and Lobachevskii (independently) about 1830 of non- 
Euclidean geometry fitted nicely into this approach. (Non-Euclidean geometry satisfies all of 
Euclid's postulates except the one which affirms that through any point p not on a line L there is 
exactly one line parallel to L. As in Euclidean geometry, lengths ofcurves and distances between 
points have meaning.) Indeed, the existence of such geometries was (apparently) already known 
to Gauss. 

A second great impetus to these new ideas was given by Riemann in his inaugural address 
at Gottingen in 1854. He explicitly introduced the idea of a manifold having its existence 
outside of Euclidean space; he made quite clear what arclength would mean in this case (see 
Section V.3): and he extended these ideas to arbitrary dimension. Later he made extensive use 
of the notion of abstract two-dimensional manifolds in analytic function theory by his system- 
atic use of Riemann surfaces. 

All of these discoveries resulted in feverish activity in geometry and in its applicatim to 
many other areas of mathematics. To mention but two examples: Poincare and others found a 
natural application of differentiable manifolds and differential geometry in mechanics, and 
Lie, Killing, and E. Cartan in group theory and differential equations. All of these applications 
gradually clarified the concepts themselves, as did the emergence of topology, so that the ideas 
of manifold theory and dinerentiat geometry are now highly developed and used across the 
entire mathematical spectrum, in relativity theory, analysis, Lie groups, algebraic topology, 
algebraic geometry, and elsewhere. The reader will find historical sketches in many of the 
references. In particular, Gauss's famous paper [ I ]  is available in an annotated English transla- 
tion and Riemann's Inaugural Address is translated in the notes of Spivak [2]. T.he reader will 
also find an elegant intuitive discussion of surfaces given by Hilbert and Cohn-Vossen [l]. 



II FUNCTIONS OF SEVERAL VARIABLES AND MAPPINGS 

In this chapter we review in some detail the differential calculus which we will need later. 
The purpose is to build a bridge between the reader's previous knowledge of multivariable 
calculus and the somewhat specialized facts we need here, especially the inverse function 
theorem and the theorem on rank. (Many readers can skim over or skip this chapter entirely.) 

Briefly, the topics treated are the following: In Section 1 we define differentiability of 
real-valued functions of many variables and its immediate consequences, in particular the mean 
value theorem. In Section 2 this is extended to the case that concerns us most, a mapping F 
from an open subset U of R" into R". Here the Jacobian is defined and the mean value theorem 
restated for mappings. Sections 3 and 4 deal with the concept of the space of tangent vectors 
T',(R") at a point a E R"; this will be most important in studying manifolds, especially Section 4 
in which T,(R") is defined in a way that admits generalization. Section 5 reviews the notion of 
vector field in R". Section 6 gives a detailed proof of the inverse function theorem. This theorem 
with its corollaries, especially the theorem on rank (Section 7), is one of the basic theorems on 
which most of our theory is built. 

1 Differentiability for Functions of Several Variables 

In this section we review briefly some facts about partial derivatives from 
advanced calculus. Few proofs are given; they may be worked out as prob- 
lems or found in advanced calculus texts, for example, Apostol [l], 

20 
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DieudonnC[ 11, or Fleming [ 11. We will consider real-valued functions of 
several variables, more precisely functions whose domain is a subset A c R" 
and whose range is R. I f f :  A + R is such a function, then f(x) = 
f ( x ' ,  . . . , x") denotes its value at x = (x', . . . , x") E A. We assume through- 
out this section thatfis a function on an open set U c R". At each a E U ,  the 
partial derivative (dfld~')~ offwith respect to xJ is, of course, the following 
limit, if it exists: 

. f ( a ' ,  ..., aJ + h, . .., a") - f ( a ' ,  ..., aj, ..., a") (i;) = Ilm ~ ~~ 

a h - 0  h 

If af/ax' is defined, that is, the limit above exists at each point of U for 
1 I j I n, this defines n functions on U .  Should these functions be contin- 
uous on U for 1 I j 5 n, f is said to be continuously differentiable on U ,  
denoted byfE C'(U) .  

Mere existence of partial derivatives is too weak a property for most 
purposes. For example, the function defined on R2 by 

and 

is not continuous at (0, 0), yet both derivatives are defined there. The natural 
generalization ofexistence of the derivative for functions of one variable is as 
follows. We shall say that f is differentiable at a E U if there is a (homogen- 
eous) linear expression '$1 bi(x' - a') such that the (inhomogeneous) 
linear function defined byf(a) + c;= b,(x' - a') approximatesf(x) near a 
in the following sense: 

or equivalently, if there exist constants b,, ..., b, and a function r(x, a )  
defined on a neighborhood V of a €  U which satisfy the following two 
conditions : 

f (x)  = f ( u )  + C bi(x' - a') + (Ix - allr(x, a )  

on V ,  and 
lim r(x, a)  = 0. 

Iffis differentiable for every a E U ,  we say it is differentiable on U .  [Warning: 
this is a technical definition from advanced calculus. Beginning with Chap- 
ter 111 djffrrentiable will be used rather loosely to mean differentiable of 
some order, usually infinitely differentiable (C"').] Note that differentiability 
on U is a local concept, that is, iffis differentiable on a neighborhood of 
each point of U ,  thenfis differentiable on U .  By the mean value theorem, for 

x-a 
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a function of one variable the existence of the derivative at a E U is equiva- 
lent to differentiability; but for functions of several variables, as we have 
seen, this is not the case. The exercises at the end of this section and the 
following statements (1.1)-(1.3), whose proofs we leave as exercises, will 
clarify these concepts. 

(1.1) I f f  is differentiable at a, then it is continuous at a and all the partial 
derivatives (aflax'),, exist. Moreover the bi are uniquely determined for each a 
at which f is differentiable; in fact bi = (afax'),, . 

By virtue of (1.1) when f is differentiable at a we have 

We denote by (df la ,  or simply df; the homogeneous linear expression on the 
right: 

It is called the differential off at a. 

(1.3) If afldx', . . . , af/aX. are defned in a neighborhood of a and continuous 
at a, then f is digerentiable at a. 

Thus existence and continuity of the partial derivatives off on an open 
set U c R" implies differentiability off at every point of U. We define 
inductively the notion of an r-fold continuously differentiable function on an 
open set U c R" (function of class C'): f is of class C' on U if its first 
derivatives are of class C-'. Equivalently we may say that f has continuous 
derivatives of order 1,2, . . . , r on U. Iff is of class C for all r, then we say that 
f i s  smooth, or of class C". As in the case of C', we denote these classes of 
functions on U by Cr(U) and Cm(U). 

We now state the first version of the chain rule; a more general version 
will be given in the next section. Define a digerentiable (C) curve in R" to be 
a mapping of an open interval (a, b )  = { x  E R I a < x < b} of the real num- 
bers into Rn,8 (a, b) + R", with f ( t )  = {x'(t) ,  . . . , x"(t)}, where the n coordin- 
ate functions x'(t), . . . , Y ( t )  are differentiable (resp. C') on the interval. 
(Recall: For functions of one variable "differentiable" and "derivative exists" 
are equivalent.) Now suppose that f is a differentiable curve and maps (a. b) 
into U, an open subset of R". Let a < to < b and suppose that g is a function 
on U which is differentiable atflt,) E U. Then the composite function g 0 f is a 
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real-valued function on (a, b). We assert that g ofis differentiable at to and 
that its derivative a t  to is given by the chain rule 

The proof is left as an exercise. Using it we may establish the mean value 
theorem for functions of several variables. We shall say that a domain U is 
starlike with respect to a E U provided that whenever x E U ,  then the seg- 
ment X lies entirely in U (see Fig. 11.1). This is a somewhat weaker property 
than convexity of U ,  a convex set being starlike with respect to every one of 
its points. 

X '  

Figure 11.1 

(1.5) Theorem (Mean Value Theorem) Let g be a differentiablefunction 
on an open set U c R"; let a E U and suppose that U is starlike with respect to 
a. Then given x E U there exists 0 E R, 0 < 0 < 1, such that 

the deriiwrives dgldx', . . . , 8gl8x" all being evaluated at the same point 
a + ~ ( x  - a )  on the segment Z .  

Proof Set j ( t )  = a + t ( x  - a) ,  that is x ' ( t )  = a' + t ( x i  - ai). Then the 
corresponding curve is a line segment withf(0) = a andf(1) = x .  This curve 
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is differentiable, in fact C", so that g 0 f maps [0, 13 into U and is differen- 
tiable on (0, 1). Applying the standard mean value theorem for functions of 
one variable (as in elementary differential calculus) and using (1.4) to com- 
pute the derivatives gives the formula. I 

(1.6) Corollary Let U and g be as in Theorem 1.5.  Zf I ag/dxi I < K on U ,  
i = 1,2, . .. , n, then for any X E  U, we have 

I g(x) - s(a) I < KJJl IIX - all. 

Proof Taking absolute values in the formula of Theorem 1.5 and using 
the Schwarz inequality gives 

The following corollary is an important consequence and should bt 
proved as an exercise. 

(1.7) Corollary Iff is of class C' on U ,  then at any point of U the value q 
the derivatives of order k ,  1 < k I r is independent of the order of differentia 
tion, that is, i f ( j l ,  ..., j,) is a permutation of ( i l , .  .., i,), then 

a x j k  ' axji .. . 
a!f ~ - - a!f 

dxii . . . a x i k  

Taylor's theorem on polynomial approximation with its formula for the 
remainder RN+l, or error, of the approximation of degree N ,  as well as the 
corollary theorem on power series expansions are easily extended to func- 
tions of several variables using the technique of Theorem 1.5 (see Apostol [ 13 
and Dieudonne [l]). As in the single variable case, a necessary but not a 
sufficient condition that a function be (real) analytic, that is, can be ex- 
panded in a power series, at  each a €  U ,  an open set of R", is that it be in 
C"( V). [We writefc C'( V) iff is real analytic on V.] Although knowledge of 
analytic functions is not needed in this text, it is helpful-since C" implies 
C"-to know that any linear function f (x) = 1 aixi, or any polynomial 
P(x', . . . , x") of n variables, is an analytic function on U = R"; the same is 
true for any quotient of polynomials (rational function) if we exclude from 
the domain the points at which the denominator is zero. Thus, for example, a 
determinant is an analytic function of its entries and, if we exclude n x n 
matrices ofdeterminant zero (which have no inverses), then each entry in the 
inverse A -  ' of a matrix a is an analytic (and hence C"") function of the 
entries in the matrix A.  
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1. 
2. 
3. 

4. 

5.  
6. 

7. 

8. 

Exercises 

Prove (1.1). 
Prove (1.3) using the mean value theorem for functions of one variable. 
Prove that all first partial derivatives of a differentiable function vanish 
at an extremum. 
Let U be an open subset of R" and let Co(U)  and C'(V) denote the 
continuous and continuously differentiable functions on U .  Let D( V )  
denote the functions which are differentiable on U .  Show that Co(U)  3 

D( U )  2 C1( V) and construct examples to show that in general the inclu- 
sions are proper. 
Show that the inclusions C1(U) 2 C'(U) 3 ... 3 C""(V) are proper. 
Prove that C" 2 C", and that the inclusion is proper. [Hint:  Let 
j ( 0 )  = O , f ( f )  = exp( - l /t2) for t # 0;fis C"' on R. Is it C" on R?] 
Prove (1.4), that is, prove that g ofis differentiable at t = to and that its 
derivative is given by (1.4). 
Prove Corollary 1.7. 

Sometimes i t  is important to extend the definitions of differentiability, C ' ,  and so on, to 
functions defined on a subset A c R", which is not assumed to be an open set, for example, a 
function/(r) of one variable on the closed interval 0 I r I 1. We say thatj is  dwerentiable, of 
class C'. of class C'.  and so on. on A if.fcan be extended to a differentiable, C', C" function, 
respectively, on an open subset U of R" which contains A. 

9. Show that if A = {x E R" I ai I xi  I b', ai < hi, i = 1, . . . , n} andfis dif- 
ferentiable on A, then the value of gflaxi at any point of A is independent 
of the extension chosen. Can you find any example to show that for 
some sets A this is not the case? If so, does assuming C' help? 

2 Differentiability of Mappings and Jacobians 

In this section we generalize the ideas of the previous section to the case 
of functions defined on subsets of R" but whose range is in R" rather than 
R. We will refer to them as mappings (or maps) and, insofar as possible, re- 
serve the term ,function for real-valued functions as in Section 1. If d: 
R" -+ R denotes the projection to the ith coordinate, namely, 
~ ' (x ' ,  . . . , x i ,  ..., x'") = xi,  and if F :  A + R" is a mapping defined on 
A c R", then F is determined by its coordiriatrfunctionsf' = xi  2 F ;  in fact 
for x E A, 

F ( x )  = ( f ' ( x ) ,  . * .  ,"Pyx)). 

Conversely, any set of m functionsf', . . . , , f m  on A with values in R deter- 
mines a mapping F :  A -+ Rm with the coordinates of F ( x )  given by 
fl(x), . . . , f m ( x )  as above. 
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We are interested in the case where U is an open set of R", possibly all of 
R". Since many authors identify R" and V" (see Section Ll), these are 
sometimes referred to as vector-valued functions on R", although we will not 
use that terminology. From general topology we know that F is continuous 
if and only if its coordinate functions are. We shall say that F is differentiable, 
of class c', C", C", and so on, at a €  U or on U if each of its coordinate 
functions has the corresponding property. We may sometimes call a C" 
mapping F a smooth mapping; if F is smooth, then each coordinate function 
f possesses continuous partial derivatives of all orders and each such deriva- 
tive is independent of the order of differentiation. 

If F is differentiable on U ,  we know that the m x n Jacobian matrix 

* * *  J") 
. . . , x") 

is defined at each point of U ,  its mn entries being functions on U .  These 
functions need not be continuous on U ;  they are so if and only if F is of class 
C'. Since differentiability is needed in Section 11.6, it is useful to give another 
formulation of this concept for mappings. We leave the proof to the exer- 
cises. [Note: differentiable will be used to mean C" later; see Section 111.3.1 

(2.1) A mapping F :  U + R", U an open subset of R", is differentiable at 
a E U (or on U )  if and only if there exists an m x n matrix A of constants 
(respectively,functions on U )  and an m-tuple R(x,  a )  = ( r l ( x ,  a), . . . , rm(x, a ) )  
offunctions defined on U (on U x U )  such that IIR(x, a)II + 0 as x + a and for 
each X E  U we have 

(* 1 F ( x )  = F ( u )  + A ( x  - a )  + I I x  - u ~ ~ R ( x ,  a). 

If such R(x,  a )  and A exist, then A is unique and is the Jacobian matrix. 

[In the expression (*), A(x  - a)  denotes a matrix product, so we must 
write ( x  - a)  as an n x 1 (column) matrix and read this as an equation in 
m x 1 matrices. The last term means that each component of the m-tuple 
R(x,  a)  is multiplied by IIx - all.] 

Corollary 1.6 extends immediately to mappings in the following form. 
The proof is left as an exercise. 

(2.2) Theorem Let a €  U be an open subset of R" which is starlike with 
respect to a, and let F: U + R" be diflerentiable on U with I af '/axJ 1 I K ,  
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1 I i, j I k, at every point of U .  Then the following inequality holds for all 
X €  u: 
(**I IIF(x) - F(a)ll I (nm)"2KJlx - all. 

We will use DF to denote the Jacobian matrix of a differentiable map- 
ping F and DF(x) to denote its value at x. If F is differentiable on U ,  then for 
a E U expression (*) becomes 

F(x )  = F(a)  + DF(a)(x - a )  + IIx - allR(x, a). 

We remark that F E C ' ( U )  if and only if DF(x)  varies continuously with 
x ,  that is, x + D F ( x )  is a continuous map of U into the space M(m,  n )  of 
m x n matrices, identified with R"" and given the corresponding topology. 

Just as in the case of functions we wish to prove a chain rule for composi- 
tion of mappings. We suppose U c R" and V c R" are open sets and 
F :  U + V c R" and G :  V + RP so that H = G 0 F is defined on U, which it 
maps into RP. We may write the coordinate functions of H using those of F 
and G :  

hi(x)  = gi 0 F(x) = g ' ( f ' ( x ) ,  . . . , f "(x)), i = 1,. . . , p. 

(2.3) Theorem (Chain rule) Let F, G, H be as above and suppose that F is 
dgeerentiable at a €  U and G is differentiable at b = F(a). Then H = G 0 F is 
differentiable at x = a and we have 

DH(a) = DG(F(a)) * DF(a) 

(where. indicates matrix multiplication). I f  F is differentiable on U and G on V ,  
then this holds for every a €  U .  

Proof According to the characterization above it is enough to show 
that the p-tuple R,(x, a )  defined by 

H ( x )  - H(a)  - DG(F(a)) * DF(a) * ( x  - a )  = IJx - allR,(x, a )  

approaches 0 as x approaches a. Using y = F(x),  b = F(a), and the differen- 
tiability of F and G at a and b, we may write 

H ( x )  - H(a)  = G ( y )  - G(b) = DG(b).  ( y  - b )  + IlY - bllR~(Y,  b),  

and 
y - b = F(x )  - F(a) = DF(a) * ( x  - a )  + (lx - allR,(x, a). 

Then, replacing y by F(x )  and b by F(a), 

H ( x )  - H(a)  = DG(a) * DF(a) .  ( x  - a )  
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Using the continuity of F, which is an immediate consequence of differen- 
tiability, and the properties of R,(x, a )  and R,(y, b), we see that as x + a the 
expression in curly braces, which we may denote by R,(x, a),  goes to zero. 
This completes the proof. I 

(2.4) Corollary I f  F and G are of class C' (or smooth) on U an4 V ,  respec- 
tively, then H = G 0 F is of class C' (or smooth) on U.  

Proof We prove only the statement for C', although we will use the 
general case, whose proof is a problem in mathematical induction (see 
Dieudonne [l], where it is also proved for analytic mappings). If F and G are 
C', then they are certainly differentiable, and DF and DG are continuous 
functions on U and V .  Since F is C', it is continuous and so DG(F(x) )  is 
continuous on U. Finally the product of two matrices is a continuous, in fact 
C", mapping of R"" x RnP since the entries in the rn x p product matrix are 
polynomials in the entries of the factors. Thus the chain rule formula gives 
D H ( x )  as a composite of functions which are at least continuous so that it 
must be continuous. This is equivalent to its entries being continuous which 
means that the coordinate functions of H, and thus H itself, are of class C'. 

I 

Exercises 

1. Prove (2.1). 
2. Prove Theorem 2.2. 
3. Prove Corollary 2.4 for the case r = 2 and try to construct a procedure 

which would give the result for all r. 

Just as in the case of functions, we can extend the notion ofdifferentiability, C', C", and so 
on, to mappings into R" whose domain of definition is an arbitrary subset A c R". We say that 
F :  A -P R" is diferentiable. C', C". or C if and only if it has an extension to an open set U 3 A 
which is, respectively, differentiable, C', C", or C". As we have mentioned in Section 1, there 
exist examples to show that under these circumstances D F ( x )  may not be uniquely defined at 
each x E A .  that is, it may depend on the extension of F, the simplest example being that A is a 
single point. Thus one must use some care in dealing with this case. The following three 
problems involve this generalization. 

4. Let U be an open subset of R" and F :  U -, R", rn I n, be a C' mapping. 
Suppose that F is injective (one-to-one into) and that F - ' :  A + U ,  
where A = F ( U )  is also of class C'. Then show that rn cannot be less 
than n. (This is a weak version of the theorem of Brouwer: There exists 
no homeomorphism of an open set U of R" into R", rn -= n.)  

5. Let H" c R" be defined by H" = {x I x" 2 0} and let aH" = { x  I x" = 0}, 
x" being the last coordinate of x = ( x l ,  . . . , x"). We see that dH" = R"- '. 
Suppose that U ,  V are (relatively) open sets of H" and F :  U + V ,  
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G :  V + U are c' maps and are inverses of one another. Show that if 
U' = U n dH", V = V n dH", we must have that F 1 U and G I V' are 
one-to-one onto, inverses of each other, and C' maps. 

6 .  Let A be a closed cube in R3 and suppose F :  A + R" is a mapping of 
class C ' .  Prove that the value of DF on A is independent of any exten- 
sion. Generalize this to other domains A and to class C". 

3 The Space of Tangent Vectors at a Point of R" 

Although we shall presently restrict our attention to R", let us first con- 
sider E, or E3 at least, for the sake of intuition. Our purpose is to attach to  
each point a of R" an n-dimensional vector space T,(R"). We know how to do  
this in Euclidean space: If a E E3, we let T,(E3) be the vector space whose 
elements are directed line segments X, with a as initial point. These are 
added by the parallelogram law: -X, is the oppositely directed segment 
and 0 is the segment consisting of the point a alone. We have supposed that a 
unit of length was chosen in E3 and we may denote by llX,ll the length of the 
segment. Multiplication by positive (negative) real numbers leaves the direc- 
tion unchanged (reversed) and multiplies the length by the absolute value of 
the number. To show that this does indeed give a vector space of dimension 
3 over R is an exercise in solid geometry. Thus we attach to each point of E3 
a three-dimensional vector space called the tangent space at that point. 

We shall ultimately attach vector spaces at  each point of more com- 
plicated spaces, namely manifolds ; this was briefly indicated in Section 1.4. 
There is, however, a unique feature of the tangent spaces of Euclidean space 
which is not shared by the tangent spaces at points of manifolds; the tangent 
spaces at any two points of Euclidean space are naturally isomorphic, that is, 
there is an isomorphism determined in some unique fashion by the geometry 
of the space-not chosen by us. (Without the restriction of naturality, the 
statement would be trivial since any two vector spaces of the same dimen- 
sion over the real numbers are isomorphic, but in general there is no unique 
isomorphism singled out, rather we must choose one arbitrarily from a very 
large collection.) 

Indeed, if a, b are points ofE3, then there is exactly one translation of the 
space taking a to b ;  this translation moves each line segment issuing from a 
to a line segment from b and thus carries T,(E3) to T,(E3).  Since parallelo- 
grams go to congruent parallelograms and lengths are preserved, this corre- 
spondence is an isomorphism; and it is uniquely determined by the geometry 
(Fig.II.2). If we choose a fixed point a as origin and choose at  a three linearly 
independent vectors El,, E l o ,  E 3 , ,  for example, three mutually perpendicu- 
lar unit vectors, then this will automatically determine a basis not only of 
T, (E3)  but also (by parallel translation) of T,(E3) for every b E E3. All of this 
is intuitive geometry and we have not really proved the statements we have 
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Figure 11.2 

made. Therefore we turn to R" where we are able to be more precise and 
rigorous, but we keep in mind our geometric model. 

Let a = (a', . . . , a") be any point of R". We define T,(R"), the tangent 
(vector) space attached to a, as follows. First, as a set it consists of all pairs of 
points (a, x), or 2, a = (a', ..., a") and x = (x', ..., x"), corresponding, of 
course, to initial and terminal points of a segment. We also denote such a 
pair by X,, using upper case letters for vectors. We next establish a one-to- 
one correspondence cp,: T,(R") + Y" between the set just described and the 
vector space of n-tuples of real numbers by the following simple device: If 
X, = &, then cp,(X,) = (XI - a', . . . , x" - a"). Finally the vector space 
operations (addition and multiplication by scalars) are defined in the one 
way possible so that cpo is an isomorphism. This requires that 

Xa + Ya = CP, '(cpa(Xa) + CPa(Ya))l 

ax, = c p i  '(acp,(X,)), a E R, 

the right-hand side being used to define the operations on the left. Clearly we 
are being guided by the fact that R" and E' may be identified if we choose 
rectangular Cartesian coordinates in L". This is equivalent to choosing an 
origin 0 and n mutually orthogonal unit vectors there, (El)o, . . . , ( E J o ,  lying 
on each (positive) coordinate axis-as do i, j, and k in the usual model for 
E3. Then vectors at any point a are uniquely determined by their compon- 
ents relative to the basis El,, . . . , En,, which in turn are given by subtracting 
from the coordinates of the terminal point of each vector, the coordinates of 
its initial point a. The geometry of E' has guided us to a proper method for 
defining the tangent space at each point of R". Please note that Y" has a 
canonical basis e1 = (1, 0, . . . , 0), . . . , e" = (0, . . . , 1) and this gives at each 
a E R" a natural or canonical basis El, = cp; '(el), . . . , En, = cp, '(en) of 
T,(R"). The canonical isomorphism given by translation in the case of F is 
now qb-' 0 cp,: T,(R") T,(R"), and we have X, = id corresponding to 
& = 6 if and only if x i  - a' = y i  - b', i = 1,2,. .. , n. However, we neuer 
identify the tangent spaces into a single vector space as is often done in 
discussions of vectors on Euclidean space, that is, we never equate vectors 
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with different initial points; in particular, we cannot add a vector in T,(R") 
and one in &(R") where a # b. The reason for our insistence on this point 
will appear when we learn how to attach a tangent space T,(M) to each point 
p of a manifold in general, for then we have nothing corresponding to the 
natural isomorphisms of T,(E3) and T,(E3) given by the translations of E3. 
For example, there is no natural isomorphism of the tangent vectors to S2 at 
two distinct points p and q of S2. It follows that our method of defining 
T,(R") at each a-which depended on such an isomorphism-is not suitable 
for generalization in its present form. Therefore we shall give two further 
methods for defining T,(R"), one in this section with details left as exercises 
and a second, which we use in the remainder of the text, in the section 
following this one. 

Figure 11.3 
Equivalent Curves: x ( t )  and y ( r ) .  

We begin by a formal description of the first definition. Let x( t ) ,  
--I: < t < E,  be a C' curve in R" passing through a €  R" when t = 0, that is, 
assume x ( r )  = s ' ( t ) ,  . . . , x"(r)), where x'(r) is C' and x'(0) = a', i = 1, . . . , n. 
Let I ,  = ( I  E R I I t I < E } .  Then each such curve is a C' map of I ,  + R", 
where E > 0 and may vary from curve to curve. Two curves are equivalent, 
x ( t )  - y(t),  if at t = 0, the derivatives with respect to t of their coordinate 
functions are equal: x'(0) = y'(O), i = 1, . . . , n. Let [ x ( t ) ]  denote the equiv- 
alence class of x ( t ) ;  to each [x(t)] corresponds an n-tuple of numbers 
x(0) = (X'(O), . . . , .Y(O)), that is. an element of P. Using this map we obtain 
a vector space structure on the collection of equivalence classes which we 
denote, predictably, by T,(R"). Details are left as exercises. Intuitively speak- 
ing, if we use the identification of R" with E plus a rectangular Cartesian 
coordinate system, we see that i'(0) is the ith component of the velocity 
vector of the particle whose motion is given by x(t) = ( x ' ( t ) ,  . . . , x" ( t ) )  at the 
instant it passes through a (see Fig. 11.3). Two curves are equivalent if they 
represent two motions with the same velocity at this instant. 
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1. 

2. 

3. 

4. 

4 

Exercises 

Show that the map [ x ( t ) ]  --t (xl(0), . . ., x"(0)) is one-to-one and onto I"', 
so that it can be used to define the structure of a vector space on the 
collection T,(R") of equivalence classes. 
Prove that this definition of T,(R") is equivalent to the earlier one of the 
present section. 
Using a standard method of definition of the tangent plane to S 2 ,  the 
unit sphere in R3, show that the vectors of T,(R3), a E S2 ,  which belong 
to equivalence classes [x ( t ) ]  determined by curves lying on S2, determine 
a subspace of T,(R3) and that this subspace may be naturally identified 
with the tangent plane to S2 at a. 
For each of the vectors E, ,  a E R" and i = 1, . . . , n, identify the equiv- 
alence class of curves corresponding to it by defining a particularly 
simple curve in the class. This gives an interpretation of the canonical 
basis of T,(R"). 

Another Definition of T,(R") 

In this section we give a characterization of the space of tangent vectors 
attached to a point a of R" which we shall later use in extending this concept 
to manifolds. In spite of its formal and abstract nature it is relatively easy to 
work with; it is hoped that some intuitive clarification has resulted from the 
earlier definitions. 

Let us denote by P ( a )  the collection of all C" functions whose domain 
includes a, identifying those functions which agree on an open set containing 
a-since we are only interested in their derivatives at a. Let X ,  = aiEi, 
be the expression for a vector of T,(R") in the canonical basis; we define the 
directional derivative Af of f at a in the "direction of X," by 
Af = ai dfdx' ,  dfldx' evaluated at a = (a', . . . , a"). This is a slight ex- 
tension of the usual definition in that we do not require X ,  to be a unit 
vector. Since Af depends onfi a, and X ,  we shall write it as X:$ Thus 

We may take the directional derivative in the "direction of X," of any 
C" function defined in a neighborhood of a. Hencef-r X,*fdefines a map- 
ping assigning to each f E C"(a) a real number 

X,*:  P ( a )  4 R. 

It is reasonable to denote this mapping by X,* = c;=l ai(ld/dxi), where we 
must remember that the derivatives are to be evaluated at a. We remark that 
X:xi  = ai, i = 1, . . . , n, so that the vector X ,  is completely determined if its 
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value on every C" function at a is known-or even on the functions 

We have agreed not to distinguish between C" functions1; g in C"(a) if 
they agree on some open set containing a. Two functions of C"(a) may be 
added or multiplied to give another element of C"(a), whose domain is the 
intersection of their domains. If a E R, then ctfis a C" function with the same 
domain as 1; so f~ C"'(a) implies c t f ~  P ( a ) ;  the same result would be ob- 
tained by multiplyingfby a C" function whose value is a on some open set 
about a. Thus C' (a)  is an algebra over R containing R as a subalgebra. 
Remembering the fundamental properties of derivatives we see at once that 
if a, P are real numbers and 1; g are C" functions defined in open sets 
containing a, then we have 

f ' ( x )  = 2. 

(i) X,*(ctf+ P9) = .(X,*f) + P(X,*g) (linearity) 

(ii) X , * ( f g )  = (X,*f)y(a) + . f (a ) (X ,*y)  (Leibniz rule). 
Let U(u)  denote all mappings of C"(a) to R with these properties; we 

may call the elements of 9 ( a )  "derivations" on Cm(u) into R. We see that 
9 ( u )  is a vector space over R for if D , ,  D , :  P ( a )  -, R and a, P E R ,  then we 
dejne  ( a D ,  + P D 2 ) f =  a ( D , f )  + P(D2f) ,  where the operations on the right 
are in R. This defines in 9 ( a )  both addition and multiplication by real 
numbers a, p. This is the standard procedure for defining a vector space 
structure on maps of a set into a field. One must check that the vector space 
axioms are indeed satisfied by these operations. In particular, it must be 
verified that if D E g ( a ) ,  then aD E 9 ( a ) ,  and if D,, D ,  E 9(a ) ,  then so also are 
D ,  + D , .  This means checking the linearity of aD:  Cm(a) + R and 
D ,  + D,: P ( a )  + R and checking that the Leibniz rule is satisfied. We do  
this for yD only. Suppose then y ,  a, f i  E R, D E g ( u ) ,  and f, g E C"(a). Then 

and 

(YD)(ocf + PY) = r[D(af + P d l  (by definition of yD) 

= r [ a ( D f )  + P(D9)l (by property ( i )) 

= ya(Df )  + yp(Dy) 
= a(yD), f  + /3(lpD)g 

(by the distributive law of R )  

(by our definition of yD). 

It follows that the map ;ID: Ca'(a)  + R is linear. That yD satisfies the Leibniz 
rule for differentiation of products is equally easy: 

W ) ( f S )  = Y " m l  (by definition of yD) 

(by property (ii)) 
(these being real numbers) 

(by definition of yD). 

= Y [ ( Q f ) Y ( 4  + . f (u)(R?)l  
= r (Qf )q (a )  + f ( a h ( D s )  

= ((yD)f)g(a) +f(a)((yD)g) 
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As was remarked, a similar verification shows that D1 + D2 is a derivation 
into R ;  it is left as an exercise. 

The correspondence X, + Xt associates to each element X, of T,(R") an 
element of 9 ( a ) ,  namely the mapping Xt: P ( a )  + R defined by taking the 
directional derivative of f E  P ( a )  at a in the direction X,. This mapping 
from T,(R") + 9 ( a )  is one-to-one since X: = Y t  means that X: f = Y: f for 
every f g  P ( a )  which implies X, = 5.  Indeed we have noted the ith com- 
ponent of X, relative to the natural basis is just Xtx' so that 
X, = cy=l (X,*x')E, = x. Finally, it is easy to see that this mapping is 
linear. If Z, = ax, + P Y , E  T,(R"), then for the directional derivatives we 
have for any f E Cm(a),  

If interpreted in terms of the operations in 9 ( a ) ,  this means exactly that the 
mapping T,(R") + 9 ( a )  is linear. In summary then, X, -, X: defines an 
isomorphism of the vector space T,(R") into the vector space 9 ( a ) ,  which 
allows us to identify T,(R") with a subspace of 9 ( a ) .  However, more can be 
said; in fact this isomorphism is onto, and we have the following theorem. 

(4.1) Theorem The vector space T,(R") is isomorphic to the vector space 
9 ( a )  of all derivations of P ( a )  into R. This isomorphism is given by making 
each X ,  correspond to the directional derivative X: in the direction of X, . 

To prove the theorem it only remains to show that every derivation of 
P ( a )  into R is a directional derivative, that is, that X, + X,* is a map onto 
9(a) .  This will result from two lemmas. 

(4.2) Lemma Let D be an arbitrary element of 9 ( a ) .  Then D is zero on any 
function fE C m ( a )  which is constant in a neighborhood of a. 

Proof Because the map D is linear, it is enough to show that if 1 denotes 
the constant function of value 1, then D1 = 0. However, D1 = D(l . 1) = 
(D1)l + l(D1) = D1 + D1 = 201, so D1 = 0. We must remember in inter- 
preting these equalities that multiplying f E P ( a )  by a real number a gives 
exactly the same result as multiplying by the C" function whose value is 
constant and equal to ct in some open set (possibly R") containing a, at least 
as far as the algebra Cm(a)  is concerned: we have identified R with the 
subalgebra of such functions. I 

(4.3) Lemma Let f (x', . . . , x") be dejned and C" on some open set U .  r f  
a E U ,  then there is a spherical neighborhood B of a, B c U ,  and C"-functions 
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g l ,  . . . , g" defined on B such that: 

and 

(ii) f (x l ,  . . . , x") = f(a) + Cy= (xi - ui)gi(x). 

Proof Let B c U be a spherical neighborhood of a and note that for 
X E  B,f(x) =f(a) + JA (d/at)f(a + t(x - a)) dt. Hence, 

1 

f(x) = f(a) + ( x i  - d )  jo [ $1 dt. 
i =  1 a + r(x - a) 

Let 

a !  g'(x) = dt, i = 1, ..., n; 
0 a + f(X - a) 

these are C"-functions and satisfy the two conditions. I 
Proof of Theorem 4.1 Using these lemmas we may complete the proof 

of Theorem 4.1. Suppose D is any derivation on Cm(u). We wish to show 
that, given D E 9(a ) ,  there is a vector X, E T,(R") such that for anyfE Cm(a), 
we have X,*f= Of: If this be so, then X,* = D and we see that every deriva- 
tion of Cm(a) into R is a directional derivative; thus the map Xu -P X,* of 
T,(R") to 9 ( a )  is an isomorphism onto. 

Let h'(xl, ..., x") = xi. Then denote by ai the value of Dh', that is, 
a' = Dh'. Consider Xu = a, E,; as an operator on Cm(a), it gives 

On the other hand, by Lemma 4.3,f(x) =f(a) + ( x i  - a' )g ' (x)  on 
some B,(a) in the domain off: Restricting to B,(a) and using the properties of 
D, we may write 

n 

Df = D(f(a)) + {(D(x' - d ) ) g ' ( a )  + 0 . Dg'}. 
i =  1 

By Lemma 4.2, D ( f ( a ) )  = 0 and D ( x i  - a') = Dx' = a'; and by 
Lemma 4.3, gi(a) = (dfldx'). . Therefore Df = a'(dfldx'), = X,*f: Since 
f is an arbitrary element of Cm(a), we have D = X,*. This completes the 
proof. I 

Theorem 4.1 allows us to identify the vector space T,(R") with the space 
9 ( a )  of linear operators on functions of Cm(u) into R which satisfy the 
product rule of Leibniz, that is, the "derivations into R." 
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Note that under this identification the canonical basis vectors 
El,, . . . , E ,  of T,(R") are identified with d /ax ' ,  . . . , d/dx", the directional 
derivatives (evaluated at x = a )  in the directions of the coordinate axes: 

E i , + E z f =  ($) . 
a 

We will make this identification from now on for vectors in T,(R") and 
for this reason we will drop the asterisk * which distinguishes the vector Xa 
as a segment or point pair from the directional derivative: Xff will be 
written Xaf: In R" we may use either E ,  or a / a x i  to denote the unit vector 
parallel to the ith coordinate axis. This characterization of T,(R") requires 
C" functions; although C'(a) is an algebra, it is known to have other deriva- 
tions than directional derivatives. Our situation is then that we shall rely on 
Euclidean space for our geometric intuition of the space of tangent vectors at 
a point, but in formal definitions and proofs we will use the ideas above: a 
vector at a point is a linear operator of a certain kind-satisfying the pro- 
duct rule for derivatives-on the C" functions at the point. 

1. 

2. 

3. 

4. 
5. 

Exercises 

Let a E R" andJ g be two C" functions whose domains of definition both 
contain a. We shall sayfis equivalent to g at a,f-  g, if and only if they 
agree on some open set containing a. Show that this is an equivalence 
relation and that the collection of equivalence classes, which we call 
germs of C" functions at a, is an algebra over R. [It is precisely this 
algebra which is Cm(a).]  
Do the statements of Exercise 1 remain true if we replace C" by c', 
I' 2 O? Suppose that we merely require equality offand g and all of their 
derivatives at a, does this give an equivalence relation and an algebra 
over R, or is equality on an open set needed? 
Prove that the collection of all maps of a set X into a field F has a 
natural vector space structure. Follow the definitions indicated for 9(u ) .  
Show that if D1 and D2 are in 9 ( a ) ,  then D ,  + D2 is also in 9(a ) .  
Using the definition (Section 3)  of equivalence of C' curves through 
a E R", prove that the mapping of T,(R"), defined as "velocity vectors," 
to .9(a), taking the class [ x ( t ) ]  to the operator D defined by 

Df= (:$) 2(0) , 
i =  1 a 

is independent of the choice of the curve x ( t )  in [ x ( t ) ]  and determines an 
isomorphism of T,(R") onto 93(a). 
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5 Vector Fields on Open Subsets of R" 

A vectorjeld on an open subset U c R" is a function which assigns to 
each point p~ U a vector X,E T,(R"). A similar definition applies to 
Euclidean space E". There are many examples in physics for n = 2 and 
n = 3. The best known is the gravitational field: If an object of mass p is 
located at a point 0, then to each point p in U = E" - {0}, there is assigned a 
vector which denotes the force of attraction on a particle of unit mass placed 
at the point. This vector is represented by a line segment or arrow from p (as 
initial point) directed toward 0 and having length kp/rz,  r denoting the 
distance d(0, p )  and k a fixed constant determined by the units chosen (see 

Figure 11.4 
First quadrant portion of gravitational field of point mass at origin. 

Fig.II.4). If we introduce Cartesian coordinates with 0 as origin, then for the 
point p with coordinates (XI, xz, x3) the components of X, in the canonical 
basis are 

that is, 

- 1  
r3  

X = ~~- ( x ' E i P  + x Z E 2 ,  + x ~ E ~ ~ )  = 

We note that the components of X, are C" functions of the coordinates. 
We shall say that a vector field on R" is C" or smooth if its components 
relative to the canonical basis are C" functions on U .  Unless otherwise 
stated, all vector fields considered will be assumed to have this property, 
although it is quite possible to define continuous, C',  and so on, vector fields 
also. When dealing with vector fields, as with functions, the independent 
variable will be omitted from the notation. Thus we write X rather than X, 
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just as we customarily use frather thanf(p) for a function. Then X, is the 
value at p of X, that is, the vector of the field which is attached to p-it lies in 

Further examples of vector fields are given for each i = 1, . . . , n by the 
fields Ei = 8/dxi  which assign to every p E Rn the naturally defined basis 
vector Ei at that point. The vector fields El, . . . , En being independent, even 
orthogonal unit vectors, at each point p form a basis there of T,(R"); such a 
set of fields is called a field of frames. The vector fields XI, X, on 
U = R2 - (0) defined by X, = x l E l  + x 2 E 2  and X, = x 2 E 1  - x 1 E 2  also 
define a field of frames; geometrically XI, is a vector along a ray from 0 to p 
and X,, is a vector perpendicular to it, that is, tangent to the circle through p 
with center at 0 (see Fig. 11.5). It is often convenient, as we know from 
elementary mechanics to use other frames (even in Euclidean space) than El 
and E , .  

T,(R"). 

Figure 11.5 

If X is a Cm-vector field on U and f a  C" function on U ,  then Xfis the 
C"-function on U defined by (Xf)(p) = X,$ Indeed, if the components of X 
are the functions a'(p), . . . , an(p) so that X = c!= I a'&, then 

We see from the right-hand side that Xfis a C" function of p on U since 
a'(p)E C"(U) and d f / d x ' ~  C"(U). Thusfw Xfmaps P ( U )  + Cm(U). 
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We note also that C"(U) is an algebra over R with unit, where R is 
identified with the constant functions and, in particular, the constant 
function 1 with the unit. It is natural to ask whether X is a linear map of 
C""(U) to C"(U)  and more generally whether it is a deriuation, that is, 
satisfies the Leibniz product rule. In fact, this is so, for we may write 

[Waf+ Pdl(P) = Xp(d + PSI = 4Xp.f) + B(Xpg) 

= 4 X f ) ( P )  + P(XY)(P)? 
and 

[X(fg)l(p) = ( X p f  M P )  + f (P)(Xp9) 

= "Xf )(P)lS(P) + f(P)"XS)(P)l. 
Since the functions on the right and left agree for each P E  U ,  they are equal 
as functions. Thus X: C"(U)  + C""(U) is a derivation which maps C"(U)  
into itself, a slight variation from the previous case. (This, in fact, is the 
customary use of the term "derivation" of an algebra. If A is an algebra over 
R, then a derivation is a map D: A - ,A  which is linear and satisfies the 
product rule of Leibniz. For example, a/ax is a derivation on the algebra of 
all polynomials in two variables x and y.) 

We conclude this section by proving an important property of 
C"-functions which, with the corollary given here, is used very often in 
discussions of vector fields (see the exercises). It is a "separation theorem " 
and contrasts strongly the behavior of C" and C" functions on R". (There 
exist stronger versions of this theorem as we shall see later.) 

(5.1) Theorem Let F c R" be a closed set and K c R" compact, 
F n K = @. Then there is a C" function a(.) whose domain is all of R" and 
whose range of values is the closed interval [0, 13 such that a ( x )  = 1 on K and 
o(.Y) = 0 on F.  

Proof We prove the theorem in two steps. 

(a) Let &(a) be an open ball of center a and radius E.  We show that 
there is a C" function g(x) on R" which is positive on &(a), identically 1 on 
Be/2 ,  and 0 outside &(a). The function h(r) defined by h(0) = 0 for t s 0 and 
h( t )  = e -  'I' for t > 0 is C" since we can prove by direct computation that all 
of its derivatives exist and are zero at t = 0, and since it is analytic for other 
values o f t .  We let 

Since the denominator is never zero [at either E - llxll or llxll - +E or at both 
h is positive], this is a C" function. When llxll 2 E, the numerator is zero, 
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otherwise it is positive; and when 0 I llxll 5 46, the value of g ( x )  is iden- 
tically 1. Thus g ( x )  is C", vanishes outside B,(O), and is positive on its 
interior; in fact g ( x )  = 1 for X E  &,,(0). Hence g ( x )  = ij(x - a )  has the 
desired properties. 

(b) For step two let B,(ai), i = 1, . . . , k ,  be a finite collection of n-balls in 
R" - F such that u:=, &,,(ai) 3 K .  It is possible to find such a collection 
because of the compactness of K and since K n F = 0. For B,(ai) let g i (x )  
have the properties above and define u(x) by 

k 

.(X) = 1 - n (1 - gi). 
i =  1 

On each x E K at least one gi has the value 1, u ( x )  = 1, so u = 1 on K .  
Outside U := &(ai) each gi vanishes so u(x)  = 0 and, since F lies outside 
this union, u = 0 on F. This completes the proof. I 

(5.2) Corollary Let f ( x ' ,  . . . , x") be C" on an open set U c R" and let 
a E  U .  Then there is an open set V c U ,  which is a neighborhood of a, and a 
C"functionf*(x',  ..., x") dejned on all of R" such t h a t f * ( x )  = f ( x ) f o r  all 
X E  V a n d f * ( x )  = Ofor x outside U .  

Proof Choose any neighborhoods V,, V' of a such that V, t V2,  
l7, c U and Vl is compact. Let v, = K and F = R" - V, in Theorem 5.1. 
Then take ~ ( x ) ,  a C" function whose value is 1 on Vl and 0 outside V , ,  that 
is, on F .  Definef*(x) = u(x)f(x) for x E U and f * ( x )  = 0 for x E R" - V, . 
Since f* thus defined is C"' on U ,  where it is equal to af, and is C" on 
R" - V2 where it is identically zero, and since on the (open) intersection 
U - V2 of these two sets, both definitions agree, we see thatf* is C" on R" 
and has the properties needed. I 

Exercises 

Prove that the function h ( t )  defined above does in fact have derivatives 
of all orders at t = 0 and that they all have the value zero there. Why 
does this imply that h( t )  is not analytic at t = O? 
Suppose a vector X ,  E T,(R") is given at each p E U ,  an open subset of R". 
Show that this defines a C" vector field if and only if for each f E Cm( U ) ,  
X f  is C" on U.  
Let D be a derivation on the algebra Cm(U). 1f.L g are in C"'(U) and 
f ( x )  = g(x) for all x E V,  an open subset of U ,  then prove ( D f ) ( x )  
= (Dg) (x )  at each point x E 1/: 
Using the preceding problem show that the derivations 9( U )  on C""( U )  
define a vector space over R and that this space is isomorphic with the 
space of C" vector fields on U, which we denote W(U). Show that these 
are infinite-dimensional vector spaces. 
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5. I f  D ,  and D ,  are derivations on an algebra A ,  show by example that 
D ,  D ,  need not be a derivation but that D l  D ,  - D 2  D ,  is a derivation. If 
we consider A = C'(U),  U open c R", X = c cti(x) d / d x i  and 
Y = 1 p'(x) (7/c1yi E X(U), then this means that XY - YX = c y i ( x )  
(?/?xi. Verify this and compute y i (x) .  

6 .  Give examples of linear operators on C" ( U ) ,  U an open subset of R", 
which are tior derivations of C a ( U ) .  

7. Let P E  U ,  an open subset of R". and let X,E T,(R") be a vector at p. 
Show that X, may be extended to a C" vector field X on U.  

8. In Theorem 5.1, assume only that K is closed (not necessarily compact). 
Does the theorem still hold? 

6 The Inverse Function Theorem 

I n  order to simplify the terminology of this and later sections we intro- 
duce the notion of diffeomorphism, or differentiable homeomorphism, 
between two spaces. Of course this concept can have no meaning unless the 
spaces are such that differentiability is defined, which at the present moment 
means that they must be subsets of Euclidean spaces. Therefore without 
prejudice to a more general later treatment, let us suppose that U c R" and 
V c R" are open sets. We then shall say that a mapping F :  LI + V is a 
C'-cilfrornorphism if: (i) F is a homeomorphism and (ii) both F and F -  are 
of class C', r 2 1 (when r = GO we simply say diffeornorphisrn). It is perhaps 
not obvious why we need to require both F and F -  ' to be of class C'-it is 
because we wish the relation to be symmetric. As the following example 
shows, the differentiability of F -  ' is not a consequence of that of F ,  even 
when F is a homeomorphism. Let U = Rand V = Rand F :  t H s = t 3 ;  this 
is a homeomorphism and F is analytic but F -  : SH f = s1I3 is not C' on V 
since it has no derivative at s = 0. 

One might suspect that our definition contains some redundant require- 
ments as in fact it does-in two ways. First, as shown in Exercise 6, it would 
not be possible to have a diffeomorphism between open subspaces of 
Euclidean spaces of different dimensions; indeed a famous theorem of alge- 
braic topology (Brouwer's invariance of domain) asserts that even a homeo- 
morphism between open subsets of R" and R", m # n, is impossible. 
Secondly, in the example given above the derivative of F vanishes at f = 0, 
thus behaving atypically: If it vanished everywhere, then F could not be a 
homeomorphism of R to R and if it vanished at no point, then F - '  would 
indeed be a differentiable map (please argue this through!). We can certainly 
see at once that if F :  U + V is a homeomorphism and both F and F -  ' are of 
class C' at least, then D F ( x )  is nonsingular, that is, has nonvanishing deter- 
minant at each x E U ;  for F -  ' 0 F = I ,  the identity map of U to U and by the 
chain rule D I ( x )  = D F - ' ( F ( x ) ) .  D F ( x ) .  Since D I ( x )  is just the identity 
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matrix for every X E  U ,  D F ( x )  is nonsingular and its determinant is never 
zero. This includes the assertion that, if F :  R -P R is a diffeomorphism, then 
its derivative can never be zero. The main theorem of this section will have 
as a consequence Corollary 6.7, which is the converse of this statement. 
Before proving it, however, we consider two examples of diffeomorphisms of 
R" to R". 

(6.1) Example Let F :  R" --f R" be the translation taking a = (a' ,  . . . , a") 
to b = (b', . . . , b"). Then F is given by 

F(x' ,  ..., x") = (x' + (b' - a'),  ..., x" + (b" - a")), 

or F ( x )  = x + (b  - a) .  The coordinate functions f ' ( x )  = x i  + (b' - ai)  are 
analytic, and hence C". The translation G(x) = x + (a  - b )  is F-'  which is 
then also C" and since F ,  F -  ' are defined and continuous, F is a homeo- 
morphism. Thus F is a diffeomorphism. 

(6.2) Example Let F :  R" + R" be a linear transformation 

or, using matrix notation with x as an n x 1 (column matrix) and A = (a:), 
F ( x )  = A x .  Computation shows that D F ( x )  is the constant matrix A ,  
D F ( x )  = A. If det A # 0, then A has an inverse B and the homogeneous 
linear transformation G(x) = B x  is F - ' .  On the other hand if det A = 0, 
then F is not one-to-one, in fact it maps at least a line through the origin 
onto the single point 0 = (0, 0, . . . , 0). Obviously F is analytic and C" in 
either case, so that F is a diffeomorphism if and only if D F ( x )  = A is 
nonsingular. 

Diffeomorphism is an equivalence relation among the open subsets of R". 
We have the following lemma, whose proof we leave as an exercise, which 
gives the transitivity property; symmetry and reflexivity are part of the 
definition. 

(6.3) Lemma Let U ,  V ,  W be open subsets of R", F :  U + V ,  F :  V + W 
mappings onto, and H = G 0 F :  U -+ W their composition. I f  any two of these 
maps is a diffeomorphism, then the third is also. 

We now state the main theorem of the section. 

(6.4) Theorem (Inverse Function Theorem) Let W be an open subset of 
R" and F :  W -P R" a C' mapping, r = 1,2, ..., or 00. l f u ~  W and DF(a)  is 
nonsingular, then there exists an open neighborhood U of a in W such that 



6 THE INVERSE F U N C T I O N  THEOREM 43 

V = F(,U) is open and F :  U -+ V is a C' diffeomorphism. If X E  U and 
y = F(x) ,  then we have the following formula for the derivatives of F -  ' at y :  

DF- ' ( y )  = (OF(.))- ', 
the term on the right denoting the inverse matrix to DF(x). 

This is one of the two basic theorems of analysis on which all of the 
theory in this book depends; the other is the existence theorem for ordinary 
differential equations (Chapter IV). The proof used here depends on the 
following fixed point theorem; a variety of proofs may be found in advanced 
calculus books. 

(6.5) Theorem (Contracting Mapping Theorem) Let M be a complete 
metric space with metric d(x, y )  and let T :  M + M be a mapping of M into 
itselj: Assume that there is a constant 1,O 5 1 < 1, such that for all x ,  Y E  M ,  

d(T(x ) ,  T ( y ) )  I 1 d(x, y). 

Then T has a uniquefixed point a in M .  

Proof Applying T repeatedly we see that d(T"(x), T"(y))  5 1" d(x,  y). 
In particular, if we choose arbitrarily xo E M and let x ,  = T"(xo),  then we 
assert that d(x,, x,+,) I 1"K, K 2 0, a constant independent ofn, m. Using 
T"+"'(xo) = T"(Tm(xo)) ,  we write d(x,, x,+,) I I" d(xo ,  T"(xo)). By the 
triangle inequality 

d(x0 3 T"(x0)) 5 d(x0 9 T(x0) )  + d(T(xo),  T 2 ( X o ) )  

+ * .  * + d( T"- ' ( x O ) ,  T"(x0)) 

This shows that we may take 

and proves the assertion. Thus {x,} is a Cauchy sequence and has a limit 
point a. Since T(x,)  = x,+' obviously has the same limit we see that 

d(T(u),  a )  = lim d(T(x,), x,)  = lim d(x,+ I ,  x,) = 0 

so T ( u )  = a and a is a fixed point of T. There could not be two fixed points 
a, b for then d(a, b )  = d(T(a),  T ( b ) )  = 1 d(a, b )  contradicting the fact that 

Proof of Theorem 6.4 We shall organize the proof of the inverse func- 
tion theorem in several steps in order to make it somewhat easier to follow. 

A < 1.  I 
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(i) 
This may be done without loss of generality by virtue of Lemma 6.3 

combined with the use of Examples 6.1 and 6.2. Next we define the mapping 
G on the same domain by 

W e  assume F(0) = 0 and DF(0) = I ,  the identity matrix. 

G(x) = x - F(x). 
Then, obviously, G(0)  = 0 and DG(0) = 0. (Note:  In the last equation the 
right-hand side is the 0 matrix.) 

There exists a real number r > 0 such that DF is nonsingular on the 
closed ball B2,(0) c W andfor xl, x2 E B,(O) we haoe 

(ii) 

(* 1 

(**I 

llG(x1) - G(x2)Il I 311x1 - x2II 
and 

11x1 - XZII I 211F(Xl) - F(x2)lI- 
To verify these statements we choose r so that &(O) c W;  further so 

that det(DF(x)), which is a continuous function of x and not zero at 0, does 
not vanish on B2,(0); and finally so that the derivatives of the coordinate 
functions of G, all of which are zero at 0, are bounded in absolute value by 
1/2n on B2,(0). With these assumptions, xl, x2  E B,(O) implies 
llxl - x2JI I 2r and Theorem 2.2 with m = n gives (*). Inequality (**) re- 
sults from replacing G(xi) by xi - F(xi), i = 1,2, in (*) and using a standard 
property of norms: 

11x1 - F(x1) + x2 - F(x2)Il I i I I X 1  - x2ll 

11x1 - x20 - llF(X1) - F(x2)Il 5 ll(x1 - x2) + F(xJ - F(X2)II. 

by (*I, but 

Combining these gives (w). As a consequence of (*) we obtain the following: 

(iii) Ifllxll I r, then IIG(x)ll I r/2, that is, G(B,(O)) c Br,2(0). Moreover 
for each y E B,,,(O) there exists a unique x E B,(O) such that F(x) = y. 

The first statement is immediately obtained from (*) by setting x1 = x 
and x2 = 0; the second uses Lemma 6.3. If y~ B,,2(0) and x E B,(O), then 

Ily + G(x)ll I llyll + IIG(x)ll I f r  + 3r = r. 

Let a mapping T,: B,(O) --t B,(O) be defined for Y E  Brj2(0) by T,(x) = y + 
G(x). Then T,(x) = x if and only if y = x - G(x) or, equivalently, F(x) = y. 
However, inequality (*) in the form 

IlT,(Xl) - T,(x2)11 = IIG(x1) - G(x2)ll I 411x1 - x2II* 
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valid for xl, x2 E B,(O), implies that T,(x)  is a contracting mapping of the 
compact set BJO) into itself. Therefore by Theorem 6.5 there is a unique x 
such that y = F ( x ) .  Since this is valid for any Y E  Br12(0), we see that F -  ' is 
defined on that set. In particular, F being continuous, U = F -  '(Br12(0)) is 
an open subset of Br(0). Let V = Br12(0); since B J O )  c W we see that: 

(iv) F is a homeomorphism of the open set U c W onto the open set V.  

It remains only to prove continuity of F -  ', which is a consequence of the 
inequality (**). Whenever xlr  x 2  E U ,  we have y, = F ( x , )  and y ,  = F(x2),  
and (**) becomes 

IIF-YYJ - F-'(Yz)Il 5 211Yl - Y2ll7 

which implies that F - ' :  V -P U is continuous. 

[DF(a)] -  ', the matrix inverse to DF(a) .  

particular, at a = F-'(b) .  Thus by definition 

(v) Let b = F(a) be in V .  Then F -  ' is dlfferentiable at b and D F -  ' ( b )  = 

Since F is of class C', r 2 1, on W it is differentiable on all of U ,  in 

F ( x )  - F(a) = D F ( a ) .  (x - a )  + IIx - allr(x, a), 

where r(x, a )  + 0 as x + a. By (ii), DF(a) is nonsingular and we let A be its 
inverse matrix. Multiplying the above expression by A and using y = F(x),  
x = F-'(y), and a = F-'(b) ,  and so on, we obtain 

A .  (y - b )  = F - ' ( y )  - F - ' ( b )  

+ llF-'(y) - F-' (b) l lA * r ( F - ' ( y ) ,  F-'(b)). 

This, in turn, gives 

F-'(y) = F - ' ( b )  + A .  (y - b) + JJy - blJi(y, b) 

if we suppose y # h and define 

Inequality (**) shows that the initial.fraction is bounded by 2, A is a matrix 
of constants, and F- '(y) is continuous so it is clear that limy+b?(y, b )  = 0 
which proves the differentiability of F -  ' at any b E V and shows that 

D F - ' ( b )  = A = [DF(a)] - '  

as claimed. The following statement completes the proof. 

(vi) If F is of class C' on U ,  then F -  ' is of class Cr on V. 
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For Y E  V we have just seen that 
D F - ' ( y )  = [DF(F- ' (y ) ) ] - ' .  

Since F- ' (y )  is continuous as a function of y on V and its range is U ,  since 
DF is of class c' and nonsingular on U ,  and since, finally, the entries in the 
inverse of a nonsingular matrix are C" functions of the entries of the matrix, 
it follows that DF- ' is continuous on V, thus F-  ' is of class C' at least. In 
fact if F- ' is of class k < r, the entries of DF-' are of class k - 1 at least on 
V, but the formula above for them shows these entries to be given by 
composition of functions of class Ck or greater and hence to be of class Ck at 
least. This implies F-' is of class Ck+' ; so by induction F-' is of class C'. 
This completes the proof. I 

The following two corollaries are immediate consequences of 
Theorem6.4. We use the notation of the theorem, that is, W is an open 
subset of R" and F :  W + R". 

(6.6) Corollary I f  DF is nonsingular at every point of W ,  then F is an open 
mapping of W ,  that is, it carries W and open subsets of R" contained in W to 
open subsets of R". 

(6.7) Corollary A necessary and suficient condition for the C" map F to be 
a diffeomorphism from W to F( W )  is that it be one-to-one and DF be nonsingu- 
lar at every point of W .  

1. 

2. 
3. 
4. 

5. 
6. 
7. 

7 

Exercises 

Carry the proof of Theorem 6.4 through in detail for the case r = 1, 
making any simplifications you can. 
Prove Lemma 6.3. 
Compute the Jacobian matrix for Examples 6.1 and 6.2. 
Show that for transformations on a compact subset K of R" which 
satisfy the conditions of the contracting mapping theorem except that 
0 5 I _< 1 (we allow I = l), there still exists a fixed point. [Hint: Con- 
sider mappings T, = ( (n  - 1)ln)T.I 
Prove Corollary 6.6. 
Prove Corollary 6.7. 
Prove that there does not exist a C' diffeomorphism from an open 
subset of R" to an open subset of R" if m < n. 

The Rank of a Mapping 

In linear algebra the rank of an rn x n matrix A is defined in three 
equivalent ways: (i) the dimension of the subspace of Y" spanned by the 
rows, (ii) the dimension of the subspace of Y" spanned by the columns, and 
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(iii) the maximum order of any nonvanishing minor determinant. We see at 
once from (i) and (ii) that the rank A 5 m, n. The rank of a linear transfor- 
mation is defined to be the dimension of the image, and one proves that 
this is the rank of any matrix which represents the transformation. From 
this it follows that, if P and Q are nonsingular matrices, then 
rank(PAQ) = rank(A). 

When F :  U -+ R" is a C' mapping of an open set U c R", then 
rank D F ( x )  has a rank at each x E U .  Because the value of a determinant is a 
continuous function of its entries, we see from (iii) that if DF(a) = k,  then for 
some open neighborhood V of a, rank D F ( x )  2 k ;  and, if k = inf(m, n), then 
rank DF(x)  = k on this V .  In general, the inequality is possible: 

F(x' ,  x') = ((x')', ZX'X') 

has Jacobian 

whose rank is 2 on all of R' except the lines x2 = +x'. The rank is 1 on 
these lines except at (0 ,O)  where it is zero. 

We shall refer to the rank of DF(x) as the rank o f F  at x. If we compose F 
with diffeomorphisms, then the facts cited and the chain rule imply that the. 
rank of the composition is the rank of F ,  since diffeomorphisms have nonsin- 
gular Jacobians. We say F has rank k on a set A ,  if it has rank k for each 
x E A .  We use these definitions in stating the following basic theorem. 

(7.1) Theorem (Rank Theorem) Let A .  c R", Bo c R" be open sets, 
F :  A .  4 Bo be a c' mapping, and suppose the rank ofF on A .  t o  be equal to k. 
If a E A.  and b = F(a), then there exist open sets A c A. and B c Bo with 
a E A and b E B, and there exist C' d ~ e o m o r p ~ i s m s  G :  A -+ U (open) c R", 
H :  B 4 V (open) c R" such that H 0 F 0 G- '( U )  c V and such chat this map 
has the simple form 

H o F " G - ~ ( x ' ,  ..., x")=  (X ',..., xk ,0 ,  ..., 0). 

Before proceeding to the proof we make some general comments. This is 
clearly an important theorem for it tells us that a mapping of constant rank k 
behaves locally like projection of R" = Rk x R n - k  to Rk followed by injec- 
tion of Rk onto Rk x {O} c Rk x Rm-k = R". This is an important tool and 
we shall use it frequently; later it will be rephrased in terms of local coordin- 
ates. I t  implies Theorem 6.4 as a special case. 

Proof To begin with, we may suppose a = 0, the origin of R", and 
b = 0, the origin of R". If the theorem holds for this case, then it may be 
seen to hold in general since composition of F with two translations 
gives &) = Ffrt + u )  - b, which has the property that &O) = 0. By similar 
arguments, using linear maps which permute the coordinates, we may 
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suppose that a k x k minor of nonzero determinant in D F ( a )  is 

the upper left k x k minor. 
We define the C'-mapping G :  A,, + R" by 

G(u' ,  . . ., u") = ( . f l ( t l ' ,  . .., u"), ... . f k ( u ' .  ..., u"), u k + * ,  . .., u"). 

Then 

DG = 

0 

* 

I n - k  

where 1 n - k  is the ( n  - k )  x ( n  - k )  identity, the terms in the lower left block 
are zero, and those in the upper right do  not interest us. This matrix is 
nonsingular at u = a, hence there is in A. an open set A ,  containing a on 
which G is a diffeomorphism onto an open subset U 1  = G(A, ) .  From the 
expression for G and the definition of U ,  we have F 0 G-' (O)  = 0, 
F G - ' ( U , )  c B o .  and 

withfktJ(.u) = f k t J  G - ' ( s ) .  We may verify this by remembering that G-'  
isone-to-oneon U ,  and for/ = 1, ..., k thevalues ofx'aref'(u), u E G - ' ( U , ) ,  
sof" G -  '(x) = j " ( u )  = 2. So far we have used only the fact that the rank of 
DF at a (hence in a neighborhood of a) is at least k. We have not used the 
fact that it is identically k on A,,. but we need this in the next step which 
requires that the rank be at most k.  We compute D(F 0 G - I )  from the for- 
mula above for F 0 G - ' ,  giving 

F G-'(.v', ..., xk,xktL ,  ..., x") = (x' ,..., x k , f k + ' ( x ) ,  ...,, f m ( x ) )  

D ( F ,  G-')(x) = 

I k  

* 

0 
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This is valid on U , ,  where F 0 G-' is defined. On the other hand, DG-'  is 
nonsingular on U , and G -  ' ( U1 ) = A , c A .  . Therefore, 

rank D(F 0 G - ' )  = rank(DF 0 D G - ' )  = k 

on U1, which implies that all terms in the lower right-hand block of the 
matrix are zero on I/,, that is, the functions f"', .. .,f" depend on 
x l ,  . . . , xk only. 

Now we define a function T from a neighborhood V, of 0 in R" into 
Bo c R" by the formula 

T(y', ..., y k , y k + ' ,  ..., y") = (y', ..., $', $'+' + 3 k + ' ( y ' ,  . . . , y " ) ,  

... ) y" +f"(y', ..', y"). 

The domain V, is subject to two restrictions, first it must be small enough so 
that for y = (y', . . . , y"') E V ,  the functions f k + j ( y ' ,  . . . , y k )  are defined and 
second, small enough so that T ( V l )  c B o .  It is clear that T(0)  = 0. If we 
compute DT, we see that it is nonsingular everywhere on Vl since it takes the 
form 

Therefore T is a c' diffeomorphism of a neighborhood V of 0 in V, onto an 
open set B c R"; the origin of R" is in B and B c B1. Choose a neighbor- 
hood U c U ,  of the origin in R" such that F 0 G -  '( U )  c B ;  let A = G - ' ( U )  
and let H = T - ' .  Then 

G- I F H 

U - A - B - V  

are C' maps of these open sets and G -  ', H are C' diffeomorphisms onto A 
and V ,  respectively. Finally we see that 

H 0 F 0 G - ' ( x ' ,  ..., xk, x k + l ,  ..., x") = (x ' ,  ..., xk, 0, ..., O)E R" 

since 

F .  G - l ( x 1 ,  ..., X k ,  X k + l ,  ..., x") = ( X I ,  ... ) X k , f k + l ( X ' ,  ..., xk), 

.. . ,J"(x',  ...) x"). 

On the other hand, according to its definition above, T must take the value 
( x l ,  ..., x k , f k + ' ( x l ,  ..., xk),  ..., f" (x ' ,  ..., x k ) )  if we set y' = xi  for i = 1, 
..., k and y' = 0 for i = k + 1, ..., m. Because T is one-to-one, it follows 
that T - '  takes ( x ' ,  ..., xk, f k + ' ( x ' ,  ..., x"), ..., f" (x ' ,  ..., x")) to 
( x l ,  . . . , xk, 0, . . . , 0) as claimed. I 
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(7.2) Corollary We may choose the neighborhoods U and V in either ofthe 
following ways: ( i )  U = B:(O) and V = Br(0 )  or (ii) U = CY(0) tint1 

V = Cr(0) with the sanie E > 0 ,for both U and I/. Then i f  R clriiotes rhc 
projection of R" = R' x R"-' to R' and i :  R' + R' x R"-' is the injectioii to 
the sirbset R' x {0},  we h u e  R - H F G -  I i i s  thr identity on B,k(O) in cti.sc 

(i) or on C,k(O) in case (ii). 

Exercises 

1. Prove that the rank of the product of two matrices is less than or equal 
to the rank of either factor. Show that multiplying a matrix on the left or 
right by a nonsingular matrix does not change its rank. 

We say that nt functions/l(.x). . . . , j m ( x )  of class C1 defined on an open subset U c R" are 
tlrp~~rttlr~tt if there exists a C1 function F(yl, . . . , y") on R" which does not vanish on any open 
subset but such that F ( / ' ( . x ) ,  ...,. " ( x ) )  I 0 on U. 

2. Show that if .f'(x), ...,f"( x) are dependent, then the rank of 
?(f', . . . .f"')/c?(.~', . . . , .Y") is less than in .  Also as a partial converse show 
that if the rank is less than I P J  and constant on U ,  then the functions are 
dependen t. 

3. Prove Corollary 7.2. 
4. Prove the inverse function theorem from the theorem on rank. 

Notes 

The implicit function theorem. which is proved in many advanced calculus texts. is essen- 
tially equivalent to the inverse function theorem proved in the last section. For ii proof o f  this 
latter theorem, which is not based on the contracting mapping theorem. see Spivak [ I ] .  Wc haic 
used the form of proof above. since this same principle may be applied to give it proof of the 
existence of solutions of systems of ordinary differential equations. All of these theorems arc 
treated in a unified and very elegant way by Dieudonne [I] ,  although there is a disadvantage for 
many readers in the fact that Banach space. rather than R" is uscd throughout. S. Latig [ I ]  also 
presents a very good treatment along the same lines. A discussion of the contracting mapping 
theorem and a sketch of its use in proving the existence theorem for differential equations may 
he found in the work of Kaplansky [I]. 

Although many of the theorems found here are valid for C' functions and mappings and for 
c'" also. the latter is too restrictive for most of our  needs (theorems like those of Section 5 do 
not hold), and C' is not strong enough to make Lemma 4.5 hold, which means that the 
characteriuiion of T,(R") given in Section 4 would have to bc abandoned. For this re;tson. :rnd 
since i t  is very convenient to know that we do not lose differentiability as a result of tahrng 
derivatives. the derivatives of it C' function are also C ' .  C '  is thc preferred dillcrcntiithility 
class in much of differentiahlc manifold theory. We shall consider functions and mappings of 
class C' almost exclusively herrafier. 



111 DIFFERENTIABLE MANIFOLDS AND SUBMANIFOLDS 

I n  the first section we give a precise definition ofa C' manifold ofdimension n :  a topologi- 
cal manifold together with a covering by compatible coordinate neighborhoods. that is, a 
covering such that a change of local coordinates is given by C' mappings in R". Several 
examples are worked out in detail, the most complicated being the Grassmann manifold of 
k-planes through the origin of R". 

In  Sections 3 and 4 both C' functions and mappings of manifolds are defined in terms of 
local coordinates. as is the rank of a mapping, that is, the rank of the Jacobian (in local 
coordinates). This enables us to consider certain examples of mappings of maximum rank 
(immersions and imbeddings) and leads to the definition of submanifold and regular submani- 
fold (Section 5 ) .  We require the latter to be subspaces and to be defined locally by the vanishing 
of some of the coordinates of suitable local coordinates in the ambient space. 

In Section 6 the concept of Lie group is defined. These are groups which are C' manifolds 
such that the group operations are C' mappings. I t  is shown that some standard matrix groups 
are Lie groups, for example, the group of orthogonal n x n matrices. I n  the following section 
the action of a Lie group on a manifold is defined and discussed. The group of rigid motions of 
En is an example. 

The chapter concludes with a discussion of the special case of the properly discontinuous 
action of a discrete Lie group on a manifold and a brief introduction to covering manifolds. 

51 
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1 The Definition of a Differentiable Manifold 

As a preliminary to the definition of a differentiable manifold, we recall 
the definition of a topological manifold M of dimension n; it is a Hausdorff 
space with a countable basis of open sets and with the further property that 
each point has a neighborhood homeomorphic to an open subset of R". Each 
pair U ,  cp, where U is an open set of M and cp is a homeomorphism of U to 
an open subset of R", is called a coordinate neighborhood: to q E U we assign 
the n coordinates x'(q), . . . , X"(4) of its image cp(q) in R"-each x'(q) is a 
real-valued function on U ,  the ith coordinate function. If q lies also in a 
second coordinate neighborhood V ,  $, then it has coordinates y ' (q) ,  . . . , 
y"(q) in this neighborhood. Since cp and II, are homeomorphisms, this defines 
a homeomorphism 

II/ 0 'p-' : 'p(v n V )  + II/(U n V ) ,  

the domain and range being the two open subsets of R" which correspond to 
the points of U n V by the two coordinate maps cp, $, respectively. In coor- 
dinates, I) 0 cp- ' is given by continuous functions 

y' = h'(x', . .., x"), 
giving the y-coordinates of each q E  U n V in terms of its x-coordinates. 
Similarly cp 0 +- * gives the inverse mapping which expresses the x- 
coordinates as functions of the y-coordinates 

xi  = gi(yl,. .., y"), 
The fact that cp 0 $-'  and I) 0 cp- '  are homeomorphisms and are inverse to 
each other is equivalent to the continuity of h'(x) and gj(y), i, j = 1,. . . , n 
together with the identities 

i = 1 , .  .., n, 

i = I ,  ..., n. 

h'(g'(y), ..., g"(y)) = y', 

gj(h'(x), ..., h"(x)) = xi, 

i = 1, ..., n, 

j = 1, ..., n. 
and 

Thus every point of a topological manifold A4 lies in a very large collec- 
tion of coordinate neighborhoods, but whenever two neighborhoods overlap 
we have the formulas just given for change of coordinates. The basic idea 
that leads to differentiable manifolds is to try to select a family or subcollec- 
tion of neighborhoods so that the change of coordinates is always given by 
differentiable functions. 

(1.1) Definition We shall say that U ,  cp and V ,  + are C"-compatible if 
U n V nonempty implies that the functions h'(x) and gj(y) giving the change 
of coordinates are C"; this is equivalent to requiring cp 0 $- ' and + 0 cp- to 
be difleomorphisms of the open subsets q ( U  n V )  and +(U n V )  of R". (See 
Fig. 111.1 .) 
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I Y' 

Figure 111.1 

(1.2) Definition A differentiable or C" (or  smooth) structure on a topologi- 
cal manifold M is a family 54 = { U , ,  cp,} of coordinate neighborhoods such 
that: 

( 1 )  the U ,  cover M ,  
(2) for any 01, the neighborhoods U,,cp, and U , ,  cp, are 

C" -compatible, 
(3) any coordinate neighborhood V ,  $ compatible with every 

U,, cpz E +? is itself in 4Y. 

A C" mcrnifbfbld is a topological manifold together with a C"-differentiable 
structure. 

I t  is, of course, conceivable that for some topological manifold no such 
family of compatible coordinate neighborhoods can be singled out. It is also 
conceivable that, on the contrary, families can be chosen in a multiplicity of 
inequivalent ways so that two inequivalent C" manifolds have the same 
underlying topological manifold. These are basic but very difficult questions, 
and in fact, are matters of recent research. What is important from our point 
of view is that we will be able to find an abundance of topological manifolds 
with at least one differentiable structure, thus an abundance of C" mani- 
folds; so we may ignore these more difficult questions in what we do here. 
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Since there is no danger of confusion, we will often say simply "mani- 
fold" for C" manifold; we may also sometimes say differentiable or smooth 
manifold. Moreover, "coordinate neighborhood " will hereafter refer exclu- 
sively to the coordinate ne~ghborhoods belonging to the d#erentiable struc- 
ture. Should we have occasion to consider a manifold without differentiable 
structure, we will say topologjcul manifold and ~opologjcul coordinate 
neighborhood. 

By requiring only that the change of coordinates be given by c' functions for r < a, we 
could define Cr-compatible coordinate neighborhoods and C' manifolds, Co denoting a topolo- 
gical manifold. One can also require that the change of coordinates be P, that is, real-analytic. 
We shall restrict ourselves almost exclusively to the C" case. 

Before proceeding we will prove the following proposition, which will 
make it easier to give examples of differentiable manifolds; it shows that (1) 
and (2) of Definition 1.2 are the essential properties defining a C" structure. 
Thus in examples we need only check the compatibility of a covering by 
neighborhoods. 

(1.3) Theorem Let M be a H u ~ s d o r ~ s p a ~ e  with a c o ~ n t a ~ l e  basis of open 
sets. If V = { V, , $,I is a covering of M by C"-comparible coordinate neigh- 
borhoods, then there is a un~que C" structure on M cont~in~ng these coordinate 
neighborhoods. 

Proof We shall define the differentiable structure to be the collection @! 
of all topological coordinate neighborhoods U ,  cp which are C"-compatible 
with each and every one of those of the given collection { V, , $,). This new 
collection naturally includes the V,, $@ and so property (1) of Definition 1.2 
is automatically satisfied. As to property (2), suppose U ,  cp and U', cp', U n 
U ' #  0, are in the collection we have defined. Then are they 
C"-compatible? Since they are (topological) coordinate neighborhoods, the 
functions cp' 0 cp-' and cp 0 q'-' giving the change of coordinates are well- 
defined homeomorphisms on open subsets of R", and we need only be sure 
that they are C". Let x = cp(p)  be an arbitrary point of q ( U  n U'). Then 
PE V, for one of the coordinate neighb~rhoods 5 ,  $,. Therefore 
W = V, n U n U' is an open set containing p ,  and cp(W) is an open set 
containing x. We have cp' 0 cp- = cp' 0 $a o $, o cp- ' on cp( W ) ,  but 
cp' 0 0 q-' are C" since U, cp and U', cp' are both C"-compatible 
with V,, $,. It follows that their composition cp' o cp-' is C" on cp(W); and 
since it is C" on a neighborhood of any point of its domain, it is C". This 
proves everything except property (3), which is automatic: Any U ,  cp that is 
compatible with all of the coordinate neighborhoods in our collection cer- 
tainly has this property with respect to the subcollection { i$, I)&, and is thus 
in the differentiable structure. 

and 
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(1.4) Remark It is important to note that a coordinate neighborhood 
U ,  cp depends on both the neighborhood U and the map cp of U to R". If we 
change either, then we have a different coordinate neighborhood. For exam- 
ple, if V c U is an open subset, then V ,  cp I V is a new coordinate 
neighborhood-technically at least-although the coordinates of p E V are 
the same as its coordinates in the original neighborhood. If p E U ,  we may 
always choose V so that cp( V )  is an open ball B:(a), or cube C:(a), in R" with 
cp(p) = a as center. Or we might alter cp by composing it with a map 
8 : R" -, R", say a translation so that some P E  U has coordinates 
(0, 0, . . . , 0). Of course, this gives a new coordinate system on U ,  and thus a 
new coordinate neighborhood U ,  8 0 cp. 

Using the theorem just proved, we give some preliminary examples of 
manifolds. 

(1.5) Example (The Euclideurt plane) (See comments in Section 1.2.) 
Once a unit of length is chosen, the Euclidean plane E2 becomes a metric 
space. It is Hausdorff and has a countable basis of open sets; the choice of an 
origin and mutually perpendicular coordinate axes establishes a homeomor- 
phism (even an isometry) $ : E2 -, R 2 .  Thus we cover E2 with a single 
coordinate neighborhood I/, $ with V = E2 and $ ( V )  = R2. It follows not 
only that E2 is a topological manifold, but by Theorem 1.3, I/, II/ determines 
a differentiable structure, so E2 is a C" manifold. 

There are many other coordinate neighborhoods on E2 which are 
C"-compatible with V ,  $, that is, which belong to the differentiable struc- 
ture determined by V ,  $. For example, we may choose another rectangular 
Cartesian coordinate system V ' ,  $'. Then it is shown in analytic geometry 
that the change of coordinates is given by linear, hence C" (even analytic!) 
fu nct ions 

y1 = x1 cos 0 - x2 sin 0 + / I ,  y 2  = x1 sin 0 + x2 cos 8 + k .  
Note that V = V',  but the coordinate neighborhoods are not the same 

since $' # $, that is, the coordinates of each point are different for the two 
mappings. 

It is also possible to choose as U the plane minus a ray extending from a 
point 0. Using the angle O(q) measured from this ray to @ and the distance 
r (q)  of 4 from 0 as coordinate functions on U we define a homeomorphism 
q ( q )  = ( r (q) ,  O ( q ) )  from U to the open set { ( r ,  0) I r > 0,O < 0 < 27r) in R 2 .  
The equations for change of coordinates to those above, assuming that 0 is 
the origin and that the ray is the positive x-axis, are 

x2 = r sin 8, x' = r cos 8, 
which again are analytic, thus C". If the origin and axes are not chosen in 
this special way, then we must compose this mapping on R2 with a rotation 
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and translation of the type above to obtain the functions giving the change 
of coordinates. The various coordinate neighborhoods just enumerated 
being C"-compatible with our original I/, $ are in the differentiable struc- 
ture on E2 determined by it. 

In the same manner Euclidean space of arbitrary dimension n gives an 
example of a C" manifold, covered by a single coordinate system. Again, this 
may be done in a variety of ways. As we have noted it is customary to 
identify E" and R" since the former is difficult to axiomatize; this is equiva- 
lent to choosing afixed rectangular Cartesian coordinate system covering all 
of E". Many examples will make it abundantly clear that manifolds in gen- 
eral can not be covered by a single coordinate system nor are there preferred 
coordinates. Thus it is often better in thinking of Euclidean space as a 
manifold to visualize the model E" of classical geometry-without 
coordinates-rather than R", Euclidean space with coordinates. (However, 
we will later follow common practice and identify E" and R".) 

A finitedimensional vector space Y over R can be identified with 
R", n = dim V, once a basis el,  ..., en is chosen: v = xlel + ... + x"e, is 
identified with (xl, . . . , x") in R"; similarly, the m x n matrices (a l j )  with R"" 
with the matrix A = (aij) corresponding to 

(al 1,  . . ., a 1"; . . . ; aml, . . , am"). 
Using these identification mappings we may define a natural topology and 
C" structure on V and on the set A m n ( R )  of m x n matrices over R. We 
suppose them to be homeomorphic to Cartesian or Euclidean space of 
dimension n in the case of V, and mn in the case of Am,,( R )  and covered by a 
single coordinate neighborhood, the identification map above being the 
coordinate map. 

(1.6) Example (Open subrnanifolds) An open subset U of a C" mani- 
fold M is itself a C" manifold with differentiable structure consisting of the 
coordinate neighborhoods I", $' obtained by restriction of $, on those coor- 
dinate neighbohoods V ,  $ which intersect U ,  to the open set V' = V n U ,  
that is, $' = $ I V n U .  This gives a covering of U by topological coordinate 
neighborhoods which are C"-compatible, and hence defines a C" structure 
on U ,  which is said then to be an open submanifold of M .  

A particular case of some interest is the following. We consider the subset 
U = Gl(n, R )  of M = .M,,(R),  n x n matrices over R,  which consists of all 
nonsingular n x n matrices. Since an n x n matrix A is nonsingular if and 
only if its determinant det A is not zero, we have 

U = { A  E A , , ( R )  I det A # 0}, 

which is the usual definition of the group Gl(n, R) .  Since det A is a polyno- 
mial function of its entries a i j ,  it is a continuous function of its entries and of 
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A in the topology of identification with R"'. Thus U = Gl(n, R )  is an open 
set-the complement of the closed set of those A such that det A = 0, and 
we see that G/(n, R )  is an open submanifold of .X,(R). 

(1.7) Theorem Let M and N be C" manifolds of dimensions m and n. Then 
M x N i s  u C" manifold of diniension m + n with C" structure determined by 
coordinute neighborhoods of the form { U x V ,  cp x $}, where U ,  cp and V ,  $ 
are coordinate neighborhoods on M and N ,  respectively, and cp x $(p ,  4) = 
(cp(p), $(q) )  in Rm+" = R" x R". 

The proof is left as an exercise. An important example is the torus 
T 2  = S' x S ' ,  the product of two circles (see Fig. 111.2). More generally, 
T" = S' x ... x S', the n-fold product of circles is a C" manifold obtained 
as a Cartesian product. 

Figure 111.2 

(1.8) Example (The  Sphere) We give a fairly detailed proof, using 
Theorem 1.3, that the unit 2-sphere S2 = ( X E  R 3  1 llxll = I }  is a C' manifold 
(see Fig. 111.3). The idea used is an elaboration of that discussed in 
Section 1.3. I t  extends in an obvious way to S"-' ,  the unit n - 1 sphere in R". 
A somewhat simpler method, using stereographic projection, is left to the 
exercises: it also extends to S"- '. 

We take S2 with its topology as a subspace of R3,  that is, U is open in S2 
if U = 0 n S2 for some open set 0 c R 3 .  This implies that S2 is Hausdorff 
with a countable basis; we shall show that it is locally Euclidean. For i = 1, 
2, or 3, let 0; = {(x', x2, x3) I xi > 0) and 0; = ((2, x2, x') I xi < 0); 
these 0: are two open sets into which the coordinate hyperplane xi = 0 
divides R 3 .  The relatively open sets U: = 0: n S2, i = 1, 2, 3, cover S2. We 
define cp,' : UT --t R 2  by projection: 

cp:(x', x2, x3)  = (x2, x3), 

cp; (XI, x2, x3) = (XI,  x3), 

cp;(x', x2, x3)  = (.XI, x2). 
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tx3  

Figure 111.3 

These are homeomorphisms to the open set W = {x E R2 1 llxll < 1) as is 
easily checked; thus S' is locally Euclidean and a topological manifold. 
However, the formulas for the change of coordinates are C"', and thus these 
coordinate neighborhoods are C"-compatible. For example, cp: 0 ( (p i ) -  is 
given on U r  n U ;  by composing (cp;)-' and cp: 

(vz- l - '  
(XI, x3) - (s', - (1  - (XI)' - (x3")1", x3) 

vl + 
(XI, -(1 - (XI) '  - (X3)2)1", x 3 )  - (-(1 - (XI)' - (x3)2)1/2, x3). 

Then, by change of notation, using (u ' ,  u')  as U;-coordinates and (0'. u 2 )  as 
UT-coordinates instead of (x', x3) and (x', x3), we have 

"1 = - ( I  - (u1)2 - (u')')1/2, 0 2  = u2. 

The ui are C" functions of the ui since the square root term is never zero on 

By similar computations, cp; 0 (cp:)-' is C" on {(d, u') I (u') '  + 
(u')' < 1). Thus the coordinate neighborhoods U:,cp: and U;,cp; are 
C"-compatible. Parallel arguments apply to the other cases. This naturally 
defined covering of S2 by eight coordinate neighborhoods determines a 
unique C" structure. 

{ (u ' ,  u')  1 (u')' + (u 'y  < 1). 

Thus S2 is an example of a manifold which is a subset of another mani- 
fold, namely R3,  and which satisfies certain other conditions by virtue of 
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which it is a manifold. Very many examples will be of this type as will be seen 
later; they are called sirbmunifolds (to be defined). A two-dimensional sub- 
manifold of E3 or R 3  is often called a surface in Euclidean space and a 
onedimensional submanifold is called a curve; planes and spheres, circles 
and lines are the simplest examples. Classical differential geometry dealt 
extensively with these two cases. Manifolds frequently arise, however, in 
other ways than as submanifolds. In light of this it is natural to ask whether 
every manifold can be represented as a submanifold of some simple mani- 
fold, especially of Euclidean space. This question presents serious difficulties, 
and will be considered later. The next section illustrates some of these 
comments. 

Exercises 

1. Prove Theorem 1.7. 
2. Using stereographic projection from the north pole N(0, 0, + 1) of all of 

the standard unit sphere in R 3  except (0, 0, - 1 )  determine a coordinate 
neighborhood UN , pN . In the same way determine by projection from 
the south pole S(0, 0, - 1 )  a neighborhood U s ,  cps (see the accompany- 
ing figure). Show that these two neighborhoods determine a C" struc- 
ture on S2. Generalize to S"- '. 

3. Check that Definitions 1.1 and 1.2 and Theorem 1.3 are valid if we 
replace C" everywhere by C', similarly C" (real-analytic). 

4. Given any 0 < r I co, show that any point p of a manifold M has a 
coordinate neighborhood U ,  cp with p(p) = (0, . . . , 0) and p( U )  = B:(O). 

5. Let .Mm,,(R) be the space of all real m x n matrices and &h(R) be the 
subset of all those m x n matrices whose rank is 2 k .  Show that A k n ( R )  
is an open subset of -Nmn(R). 
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2 Further Examples 

In this section we shall discuss two related examples of “abstract ” mani- 
folds, that is, manifolds which are not defined as submanifolds of Euclidean 
space. The first example is the space of classical (real) projective geometry, 
the second-technically more difficult to define than any example we have 
met thus far-is the Grassman manifold, consisting of all k-planes through 
the origin in R”, n > k ;  it will be treated more fully in Section IV.9. Both 
examples-in fact the latter includes the former-arise from equivalence 
relations defined on simpler manifolds, the underlying space of the new 
manifold being the set of equivalence classes with a suitable topology. 

Let X be a topological space and - an equivalence relation on X. 
Denote by [x] = { Y E  X I y - x} the equivalence class of x, and for a subset 
A c X ,  denote by [ A ]  the set (JOE A [a] ,  that is, all x equivalent to some 
element of A.  We let X/ - stand for the set of equivalence classes and denote 
by n : X + X/- the natural mapping (projection) taking each X E  X to its 
equivalence class, n ( x )  = [XI. With these notations we define the standard 
quotient topology on X/ - as follows: V c X/ - is an open subset if n- ’ ( V )  
is open; the projection n is then continuous. 

(2.1) Definition With the above notation and topology we shall call XI- 
the quotient space of X relative to the relation -. 

As a simple example let X = R the real numbers and let Z be the 
integers. We define x - y if x - ~ E Z  and denote by R / -  the quotient 
space. We shall leave as an exercise the proof that this quotient space may be 
naturally identified with S’ = {ZE C 1 I z I = I}, the unit circle in the com- 
plex plane, and that n : R + R / -  is then identified with the map n(t) = 
e x p ( 2 n t o ) .  Note that X/- is a space of cosets of a group relative to a 
subgroup; this situation occurs frequently. 

(2.2) Definition An equivalence relation - on a space X is called open if 
whenever a subset A c X is open, then [ A ]  is also open. 

Our examples will usually be open equivalence relations. The following 
lemma will show why. 

(2.3) Lemma An equivalence relation - on X is open ifand only i fn is an 
open mapping. When - is open and X has a countable basis of open sets, then 
XI - has a countable basis also. 

Proof Let A c X be an open subset. Since [ A ]  = n-’(n(A)), we see by 
definition of the quotient topology on X/- that [ A ]  is open if n is open and 
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conversely [ A ]  open implies n ( A )  is open. Now suppose - is open and X has 
a countable basis {Ui) of open sets. If  W is an open subset of X / - ,  then 
n - I ( W )  = U j s J  U j  for some subfamily of {UJ  and W = n(n- ' (W))  = 

I ujGJ n(Uj) .  I t  follows that { n ( U , ) )  is a basis of open sets for X / - .  

This lemma is clearly useful in determining those equivalence relations 
on a manifold M whose quotient space is again a manifold, for a manifold 
must be a Hausdorff space with a countable basis of open sets. Unfor- 
tunately, there is no simple condition which will assure that the quotient 
space is Hausdorff. In fact, as Exercise 2 shows, a quotient space X / -  may 
be locally Euclidean with a countable basis of open sets and still fail to be 
Hausdorff. Nevertheless we obtain important examples by this method, 
sometimes with the assistance of the following lemma. 

(2.4) Lemma Let he an open equivalence relation on a topological space 
X .  Then R = ((x, y) I x - y }  is a closed subset of the space X x X ifand only 
if the quorient space X/ - is Hausdorff: 

Proof' Suppose X / -  is Hausdorff and suppose (x, y) @ R,  that is, x + y.  
Then there are disjoint neighborhoods U of n ( x )  and I/ of n(y). We denote 
by 0 and P the open sets n - ' ( U )  and .-'(I/), which contain x and y, 
respectively. If the open set 0 x P containing (x, y) intersects R ,  then it 
must contain a point (x', y') for which x' - y', so that n(x') = n($) contrary 
to the assumption that U n V = 0. This contradiction shows that 0 x t 
does not intersect R and that R is closed. 

Conversely, suppose that R is closed, then given any distinct pair of 
points n(x). n(y) in X /  -, there is an open set of the form 0 x containing 
(x, y )  and having no point in R .  It follows that U = n ( 0 )  and I/ = n( t) are 
disjoint. Lemma 2.3 and the hypothesis imply that U and I/ are open. Thus 
X / -  is Hausdorff. I 

(2.5) Example ( R e d  prqjecfire space P " ( R ) )  We let X = R"' ' - (01, all 
(n + I)-tuples of real numbers .Y = (x' ,  . .., x"+l )  except 0 = (0,. .., 0), and 
define .Y - j* if there is a real number t # 0 such that y = tx .  that is, 

( ~ ~ , . . . , y , , + ~ )  = (txI,...,rx,,+J. 

The equivalence classes [.Y] may be visualized as lines through the origin 
(Fig.111.4). We denote the quotient space by P"(R);  it is called real prqjectiue 
space. We prove: 

P"( R )  is a difft.rentiublr inanifold of dimension n. 
To do so we first note that n : X -, P"(R) is an open mapping. If t # 0 is a 
real number, let cpf  : X + X be the mapping defined by cp,(x) = tx. It is 
clearly a homeomorphism with c p f - '  = (P,,~. If U c X is an open set, then 
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- /  Figure 111.4 

[ U ]  = U cp,( V), the union being over all real t # 0. Since each cp,( V )  is open, 
[ V] is open and II is open by Lemma 2.3. 

Next we apply Lemma 2.4 to prove that P"(R) is Hausdorff. On the open 
submanifold X x X c R"" x R"" we define a real-valued function 
f (x, Y) by 

f ( x 1 ,  . . . X"+ 1 ; y', . . . , y"+ 1 )  = 1 (X'yJ - xjyi)? 
i + j  

Thenf(x, y) is continuous and vanishes if and only if y = tx for some real 
number t # 0, that is, if and only if x - y. Thus 

R = {(x, y) Ix - y} = f - ' ( O )  

is a closed subset of X x X and P"( R )  is Hausdorff. 
We define n + 1 coordinate neighborhoods U i ,  q i ,  i = 1, . . . , n + 1, as 

follows: Let oi = {x E X I xi # 0) and Ui = n(oi). Then c p i :  U i  + R" is 
defined by choosing any x = (x', . . . , x"+ ') representing [XI E U i  and putting 

x1 x i - l  x i + l  x n + l  

It is seen that if x - y, then cpi(x) = cpi(y); moreover cpi(x) = cpi(y) implies 
x - y. Thus qi:  U i  + R" is properly defined, continuous, one-to-one, and 
even onto. For z E R", cp; ' ( 2 )  is given by composing a C" map of R" to R"' 
with n, namely, cp; ' ( 2 ' .  . . . , z") = n(zl, . . . , zi-  ', + 1, zi, . . . , 2");  therefore 
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c p i '  is continuous. Thus P"(R) is a (topological) manifold and is C" if the 
coordinate neighborhoods are C"-compatible, that is, 'pi 0 9,: is C" (where 
defined) for 1 5 i, j I I I  + 1. The verification is simple and explicit and is 
left to the reader. This completes the proof that P"(R)  is a manifold. 

(2.6) Example (Grassman mutiijiilds G ( k ,  n ) )  The Grassman manifold 
G(k,  tz) is the set of all k-planes through the origin of R"- or k-dimensional 
subspaces of v" = R" (as a vector space)-endowed with a suitable topology 
and differentiable structure. We will realize G(k ,  n )  as a quotient space aris- 
ing from an equivalence relation on the manifold F(k, n )  of k-frames in R", 
where we define a k-jirame in R" to be a linearly independent set x of k 
elements of R": 

1 X I  = ( X I ,  ...) X Y ) ,  

A k-frame in R" may be identified with the k x n matrix, which we also 
denote by x,  whose rows are x l ,  . . . , xk.  We use the fact that the set Akn( R )  
of all k x ti real matrices is a differentiable manifold by virtue of its 
identification with Rk". The matrices which correspond to k-frames, that is, 
those of rank k ,  form an open subset and hence F(k ,  n )  is a differentiable 
manifold. This is because of the fact that ' ' x  is of rank k "  means that the 
following two equivalent statements hold: (i) the row vectors form a linearly 
independent set and (ii) not all k x k minor determinants are zero simultan- 
eously. Statement (ii) shows that the rank is less than k at the simultaneous 
zeros of a set of continuous functions on .Mkn(R),  that is, on a closed subset, 
so F ( k ,  n )  is open. 

Clearly each frame x determines a k-plane or point of G(k, n), namely, the 
subspace spanned by x l ,  . . . , .xk,  so that we have a natural map of F ( k ,  n )  
onto G(k, n). Moreover x = ( x l . .  .., xk) and y = (yl, ..., yk) determine the 
same k-plane if and only if y i  = cj"= ctij x j ,  where a = (aij) is a nonsingular 
k x k matrix, that is, if and only if y = ax,  the product of the matrices a and 
x .  It is natural to define - by 

y - x if y = ax,  U E  Gl(k,  R ) .  

We then identify G ( k ,  n )  with F ( k ,  n ) / - ,  the set of equivalence classes, and 
the above mentioned natural map with n. We sketch a proof that G(k,  n )  
with the quotient space topology has the structure of a differentiable mani- 
fold of dimension k ( n  - k ) .  A different proof will be given in Section IV.9. 
Note that if k = 1, then U E  G(1, R )  = R* and G(k,  n )  becomes I"- ' ( R ) .  The 
proof that n is an open mapping is analogous to Example 2.5 and is left to 
the reader. The proof that G(k,  n )  is Hausdorffis trickier, but is also left as an 
exercise. 
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It remains to describe a covering by coordinate neighborhoods with 
Cm-compatible coordinate maps so that Theorem 1.3 may be applied to 
complete the proof. We shall use the k x k submatrices of x E A k n ( R )  to 
accomplish this. Let J = ( j , ,  . . . , j,) be an ordered subset of (1, . . . , n) ,  for 
example, J = (1,2, .  . ., k )  and J' be the complementary subset [for the 
example then, J' = ( k  + 1,.  . ., n)]. By X, we denote the k x k submatrix 
(x?), 1 I i, I <  k ,  of the k x n matrix x, and by x J ,  we denote the com- 
plementary k x ( n  - k )  submatrix obtained by striking out the columns 
jl, . . . , j ,  of x. Let 0, be the open set in F(k, n) ,  consisting of matrices for 
which X, is nonsingular and let U ,  = A( 0,) be the corresponding open set in 
G(k, n) .  Each y E 0, is equivalent to exactly one k x n matrix x in which the 
submatrix X, is the k x k identity matrix; for example, if J = (1, 2, . . . , k) ,  
then x is of the form 

(In fact the x equivalent to a matrix y for which yJ is nonsingular is given by 
the matrix formula x = yJ 'y.) 

by deleting the k 
columns corresponding to J in this representative x of y, thus 'pJ([y]) = x,, 
(the matrix comprising the last n - k columns, in the example above). We 
leave it as an exercise to show that 'p, is properly defined and maps U ,  onto 
Rk(n-k' homeomorphically and that the U,, 'p,, for all subsets J of k distinct 
elements of (1,2, . . . , n),  form a covering of G(k,  n )  by C"-compatible coor- 
dinate neighborhoods; a verification of this for G ( 2 , 4 ) ,  the 2-planes through 
the origin of R4, is sufficient to show how to proceed in general. As men- 
tioned, a different proof will be given later. 

We define 'p, : CJ, + identified with 

Exercises 

1. Prove the statements after Definition 2.1 concerning R / - ,  S', and the 
mapping x: R -+ R/  - . Show that x is an open mapping. 

2. Let X consist of the disjoint union of two copies of the real line, 
X = R ,  u R , ,  that is, U c X is open if U = U ,  u U2 with U i  open in 
R i ,  i = 1,2. We define - on X as follows: Any t i  2 0, r i E  R i ,  is equiva- 
lent only to itself. If t ,  E R 1  is negative, it is equivalent to itself and to the 
t , ~  R ,  which has the same value. Thus X / -  is obtained by pasting 
together or identifying corresponding negative numbers of R ,  and R 2  
(compare Section 1.3, Exercise 1). 



3 DIFFERENTIABLE FUNCTIONS A N D  M A P P I N G S  85 

Show that X / -  is locally Euclidean and has a countable basis of 
open sets but is not Hausdorff. 

3. Let a:  S" -+ S" be the map of the unit sphere in R"+' taking each x to its 
antipodal point a(x )  = -x. Show that x - y if y = x or y = a(.) is an 
equivalence relation and that Sn/- is naturally identified with P"(R). 

4. Show that P 2 ( R )  may be obtained from the circular disk O2 = {XE R2 1 
x2 + y 2  2 1) by identifying opposite endpoints of each diameter. State 
the problem in terms of an equivalence relation on D2. 

5. Let X be a square with its boundary and define - on X as follows: Each 
interior point is equivalent only to itself, each boundary point to the 
boundary point opposite (the four corners are all equivalent). Determine 
the nature of the quotient space Xi-. 

6 .  Show that A :  F(k,  n )  + G(k, n )  is an open mapping and that G(k,  n) is 
Hausdorff. [ H i n t :  show that x - y if and only if a certain collection of 
( k  + 1 )  x ( k  + 1) minor determinants of the 2k x n matrix whose rows 
are xl, . .. , x,; y, ..., yk all vanish and apply Lemma 2.4.1 

7. I n  the case G(2,4) complete the proof that this space is a C" manifold. 
8. Let J1, ,. ., JN, N = (i), be the collection of distinct subsets (1,2, . . ., nf 

containing k integers and for each x E F(k, ti) ,  let I xJ I = det x, . Define 
a mapping @: F(k ,  n )  -+ P N ( R )  by @(x) = [( 1 x,, 1 ,  ... , I x f N  I )] and 
show x - y implies @(x) = @(y) so that @ defines a mapping of G(k, n)  
into P N ( R ) .  Show that this mapping is continuous and univalent. Use 
this to prove that G(k,  n )  is Hausdorff. 

3 Differentiable Functions and Mappings 

On a topological space the concept of continuity has meaning; in an 
analogous way, on a C" manifold we may define the concept of C" function. 

Let f' be a real-valued function defined on an open set W, of a C" 
manifold M ,  possibly all of M ;  in brief,$ W, -., R. If U ,  cp is a coordinate 
neighborhood such that W, TS U # 0 and if xl, . . . , x" denotes the local 
coordinates, then .f corresponds to a function 3(x1, . . . , x") on cp( 4 n U )  
defined by,f= f c p - ' ,  that is, so thatf(p) = , f ( . ~ ' ( p ) ,  ..., x"(p ) )  = f ( c p ( p ) )  
for all P E  W, n U .  We will customarily omit the caret and use the same 
letter '' 1'" forf'as defined on W, and for $ its expression in local coordin- 
ates. Ordinarily this will result in no confusion; if two coordinate neighbor- 
hoods U,cp and V ,  JI are involved, we will use different Ietters for the 
coordinates, say x i ,  , . . , x" and y', . . . , y". Thus for p E W, n U n 1/ we have, 
omitting carets, 

f ' ( P )  = f ' ( . K ' ( P ) ,  * I * 1 -Y"(P)) = f ( Y  (PI? . . . ?  Y ~ ~ P ) ) ,  

the latter two f ' s  denotingjl's, orJu  cp-l andf'n $-', respectively, the ex- 
pressions in local coordinates. 
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(3.1) Definition Using the notation above,$ W, -+ R is a C"function if 
each P E  W, lies in a coordinate neighborhood U ,  cp such that 
f o  cp- '(xl, . . . , x") = f(xl, . . . , x") is C" on cp( W, n u). [Clearly, a C" func- 
tion is continuous.] 

Among the C" functions on M are the n-coordinate functions 
(x'(q), . . . , x"(q)) of a coordinate neighborhood U ,  cp. More precisely, if 
ni: R" + R is defined by ni(xl, . . . , x") = xi, these functions are defined by 
xi(q) = ni 0 (p(q), and their expression in local coordinates, on cp(U), by 

k'(x1, ..., x") = xi(q-'(x', ..., x")) = n'(x1, ..., x") = xi. 

As mentioned above, the caret is usually omitted so we have the statement 
xi(xl, ..., x") = xi, i = 1, ..., n,-somewhat confusing since the same letter 
is used for a function and its values. 

It is a consequence of the definition that iffis C" on W and V c W is an 
open set, thenf I V is C" on V .  Moreover, if W is a union of open sets on 
each of which a real-valued functionfis C", thenfis C" on W .  Using the C" 
compatibility of coordinate neighborhoods, it is easily verified that iffis C" 
on Wand r! $ is any coordinate neighborhood intersecting W thenfo $-'  
is C" on the open set $(I/ n W )  in R". 

Just as in the case of R" we proceed from definition of C" function to 
definition of C" mapping. Suppose that M and N are C" manifolds, 
W c M is an open subset, and F :  W + N is a mapping, then we make the 
following definition. 

(3.2) Definition F is a C" mapping of W into N if for every PE M there 
exist coordinate neighborhoods U ,  cp of p and V ,  $ of F ( p )  with F ( U )  c I/ 
such that $ 0 F 0 cp- ' : cp( U )  -, $( V )  is C" in the sense of Section 11.2. 

More precisely, this means that F I U :  U -, V may be written in local 
coordinates x', . . ., x" and y' ,  . .. , ym as a mapping from q ( U )  into $ ( V )  by 

F(x1, ..., 9) = (f'(x1, ..., x"), ...) fm(X1, ..., x")), 

[or simply y' = fi(x), i = 1, . . . , m] and eachf'(x) is C" on cp(U). Note that 
C" mapping is a more general notion than C" function, the latter being a 
mapping to N = R, which is, of course, the same as R'. 

(3.3) Remark It is important to note that C" mappings are continuous; 
that their restrictions to open subsets are C" ; and that any mapping from an 
open subset W c N into M ,  whose restriction to each of a collection of open 
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sets (which cover W )  is C", is necessarily C" on W As with 
Definition 3. I, the C" compatibility of local coordinate neighborhoods, 
Corollary 11.2.4, and the remarks above show easily that the property does 
not depend on any particular choice of coordinates. Similarly it follows from 
the same corollary that composition of C" mappings is again a C" mapping. 

Many authors refer to C"' manifolds, functions, and mappings as smooth. 
From now on we shall refer to differentiable manifold, function and mapping 
although this is not very logical since we previously (in Chapter 11) used this 
word in a much weaker sense than C". One reason that C" is a desirable 
differentiability class to use is that when we later take derivatives of C" 
functions on manifolds, we obtain C" functions-in the c' case we would 
obtain C'- functions. Thus assuming infinite differentiability relieves us of 
many irritating concerns about order of differentiability. Of course, the same 
would be true for C" (real-analytic), but this is too restrictive for most 
purposes since we are unable to obtain important theorems of the following 
type. 

(3.4) Theorem Let F be a closed subset and K a compact subset of a C" 
manifold M with F n K = 0. Then there is a C" function f dejned on M 
which has the value + 1 on K and 0 on F.  

Proof The proof of this theorem and that of the following corollary 
require a slight modification of Theorem 11.5.1. This is left to the reader as 
an exercise. I 

(3.5) Corollary Let U be an open subset of a manifold M ,  suppose P E  U ,  
and let f be a C" function on U.  Then there is a neighborhood V of p in U and a 
C"' junction f * on M such that f * = f on V and f * = 0 outside of U .  

We conclude this section with a definition, an example, and some re- 
marks on a basic problem referred to in Section 1. 

(3.6) Definition A C" mapping F :  M + N between C" manifolds is a 
diffeomorphisrn if it is a homeomorphism and F - '  is C". M and N are 
difleomorphic if there exists a diffeomorphism F :  M + N .  

This extends the concept of diffeomorphism, previously defined for open 
subsets of R" only, to arbitrary C" manifolds. Diffeomorphism of manifolds 
is an equivalence relation since composition of C" maps is C" and composi- 
tion of homeomorphisms is a homeomorphism. From this transitivity fol- 
lows; reflexivity and symmetry are obvious from the definition. It is 
important that F -  ', as well as F ,  be C" as the following example shows. 
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(3.7) Example Let F :  R + R be defined by F ( t )  = t3 .  Then F is C" and a 
homeomorphism, but it is not a diffeomorphism since F -  ( t )  = r113 and this 
is not even of class C'-let alone C"-at t = 0. This same example shows 
how it is possible to define two distinct C" structures on R. The first is the 
usual one defined by letting U = R and cp:  U + R be the identity map; this 
determines a C" structure on R by Theorem 1.3. We may also consider the 
structure defined by the coordinate neighborhood V ,  II/ with V = R and 
II/: V + R defined by $( t )  = r 3 .  Then cp 0 I I / - ' ( r )  = t 1 I 3  so that U ,  cp and 
V ,  II/ are not C"-compatible and hence not in the same differentiable struc- 
ture. However, R with its first structure-the usual one-is diffeomorphic to 
d, denoting R with its second structure, the diffeomorphism F :  R + d being 
defined by F ( t )  = t113 so that in local coordinates it is given by 
I+$ 0 F 0 c p - l ( t )  = t. 

We have just seen, then, that two C" manifolds with the same underlying 
topological manifold but incompatible C" structures can still be diffeo- 
morphic. A fundamental question is: Can the same manifold M or homeo- 
morphic manifolds have C" structures which are not diffeomorphic? This 
was an unsolved problem for many years, and it was finally settled by 
Milnor [4] who proved the existence of two C" structures on S7 which were 
not diffeomorphic. 

We conclude with a remark which is occasionally useful: A necessary 
and sufficient condition that an open set U of M ,  together with a mapping 
cp: U + R", be a coordinate neighborhood is that cp be a diffeomorphism of 
U onto an open subset W of R". Conversely, if W is an open subset of R" and 
II/: W + M is a diffeomorphism onto an open subset U ,  then U ,  II/- is a 
coordinate neighborhood. We sometimes call W ,  II/ a parametrization, 
especially in the case dim M = 1. 

1. 

2. 
3. 
4. 

5 .  

Exercises 

Show that a continuous mapping F :  M N ,  C" manifolds, is C"' ifand 
only if for any C" functionfon an open set W, c N the functionfc' F is 
C". 
Verify the statements of Remark 3.3. 
Prove the statement of the concluding paragraph of this section. 
Prove Theorem 3.4 and Corollary 3.5 by adapting the proof of 
Theorem 11.5.1 to manifolds. 
Let M ,  N ,  and A be C" manifolds and p l :  M x N + M ,  
p z :  M x N --$ N be projections to the factors. For (a, b ) ~  M x N ,  let 
i: M + M x N be defined by i(p) = ( p ,  b )  and j :  N --+ M x N by j ( q )  = 

(a, y). Show that pl ,  p z ,  i, a n d j  are C" mappings. Show that a mapping 
F :  A -+ M x N is C" if and only iffl = p1 0 F andf, = p z  0 F are C". 
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6. 

7. 

8. 

4 

Suppose M and N are C" manifolds, U an open set of M ,  and F :  U + N 
is C " .  Show that there exists a neighborhood V of any P E  U ,  V c U ,  
such that F can be extended to a C" mapping F*:  M -+ N with F ( q )  = 
F * ( q )  for all q E  V .  
Identify the set of k-frames F ( k ,  n )  of Rn with the set ofk x n matrices of 
rank k in A,#) and let n: F(k ,  n )  + G(k,  n )  be the mapping taking 
each such matrix to its equivalence class (see Example 2.6). Show that 
this map is C" relative to the differentiable structure of F(k, n )  as an 
open submanifold of A~?~, , (R) .  
Let A, B, M, N be C" manifolds and let F :  A --t M and G: B -+ N be C" 
mappings. Show that F x G :  A x B + M x N is C", where 
( F  x G)(x, Y) = (F(.x),  G(y)). 

Rank of a Mapping. Immersions 

Let F :  N + M be a differentiable mapping of C"' manifolds and let 
p E N .  If U ,  cp and V ,  $ are coordinate neighborhoods of p and F ( p ) ,  respec- 
tively, and F (  U )  c V ,  then we have a corresponding expression for F in local 
coordinates, namely, 

P = $ F 0 c p - ' :  cp(U) + $(V) .  

(4.1) 
in Section 11.8). 

Definition The rank of F at p is defined to be the rank of E at ~ ( p )  (as 

Thus the rank at p is the rank at a = q ( p )  of the Jacobian matrix 

of the mapping P(,x', . . ., x") = ( f " ( . x ' ,  . . . , x"), . . . , f m ( x 1 ,  . . . , x")) expres- 
sing F in the local coordinates. This definition must be validated by showing 
that the rank is independent of the choice of coordinates. This is left as an 
exercise--a second definition which is clearly independent of the choice is 
given in the next chapter. 

(4.2) Remark As might be conjectured, the important case for us will be 
that in which the rank is constant. In fact Theorem 11.8.1 (theorem on rank) 
and its Corollary 11.8.2 can be restated as follows: 
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Let F :  N -+ M be as above and suppose dim N = n, dim M = m and rank 
F = k at every point of N .  If p E N ,  then there exist coordinate neighborhoods 
U ,  q and V ,  $ as above such that q ( p )  = (0, .. ., 0), $(F(p) )  = (0, . . ., 0) and 
P = I+$ o F o q-'  is given by  

P ( X 1 ,  . ..) x") = ( x i , .  . . , X k ,  0,. . ., 0). 

Moreover we may assume q ( U )  = C:(O) and $ ( V )  = Cr(0) with the same 
E > 0. 

An obvious corollary to this remark is: a necessary condition for 
F :  N -+ M to be a diffeomorphism is that dim M = dim N = rank F .  Oth- 
erwise k would be either less than n or less than m, in which case the 
expression in local coordinates implies that it is not possible for both F and 
F -  ' to be one-to-one, even locally. For example, if k < n in the expression 
above, all points in U with coordinates of the form (0, ..., 0, x k + l ,  ..., x") 
are mapped onto the same point of V .  

(4.3) Definition Using the notation above, suppose that n < m. We say 
that F is an immersion of N in M if rank F = n a t  every point. If an immer- 
sion F :  N -+ M is univalent (injective), then we say that the image 
m = F ( N ) ,  endowed with the topology and C" structure which makes 
F :  N -+ fi a diffeomorphism, is a submanifold (or an immersed submanifold). 

In the next section the concept of submanifold will be carefully elu- 
cidated. The remainder of this section will be devoted primarily to some 
implications of the concept of immersion, including a number of examples. 
In every case that follows, N = R or an open interval of R, and M = R2, 
except in the first example where M = R3. We use the natural coordinates 
(given by the identity map). 

To verify that F is an immersion it is necessary to check that the Jacob- 
ian has rank 1 at every point, that is, that one of the derivatives with respect 
to t differs from zero for every value oft for which the mapping F is defined; 
this is left to the reader. 

(4.4) Example F :  R -P R3 is given by F ( t )  = (cos 2xt, sin 2xt, t ) .  The 
image F(R) is a helix lying on a unit cylinder whose axis is the x3-axis in R3 
(Fig. IIISa). 

(4.5) Example F :  R --f R2 iscgiven by F ( t )  = (cos 2xt, sin 2xt). The image 
F ( R )  is the unit circle S' = {(d, X ' ) \ ( X ' ) ~  + ( x ~ ) ~  = l} in R2 (Fig. IIISb). 
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( b )  

Figure 111.5 

(4.6) Example F :  ( 1 ,  co) -, RZ is given by 

F ( t )  = (( l / t )  cos 2nt, ( l / t )  sin 2nt). 

The image is a curve spiraling to (0,O) as t + 00 and tending to (1,O) as 
t + 1 (Fig. III.6a). 

(4.7) Example F :  ( 1 ,  00) + R2, as in the previous example. However, F is 
modified so that the image F(R)  spirals toward the circle with center at (0,O) 
and radius as t .-+ 00. The mapping is given by 

r + l .  cos 2x4 ~ -~ sin 2nt 
2t 

[It is not difficult to check that the Jacobian could have rank 0, that is, both 
derivatives dx' /dr  and dx2/dt could vanish simultaneously on 1 < t < co if 
and only if cot 2nt = -tan 2nt, which is impossible (Fig. III.6b).] 

(bl 

Figure 111.6 
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(4.8) Example F :  R + R2 is given by 
F ( t )  = (2 cos(t - in), sin 2(t  - in)). 

The image is a “figure eight” traversed in the sense shown (Fig. III.7a) with 

( 0 )  (bl 

Figure 111.7 

the image point making a complete circuit starting at the origin as t goes 
from 0 to 2n. 

(4.9) Example G:  R + R2 again and the image is the “figure eight” as in 
the previous example, but with an important difference: we pass through 
(0,O) only once, when t = f. For t + - 00 and t + + co we only approach 
(0,O) as limit-as shown in Fig. III.7b. The immersion is given by changing 
parameter in the previous example: Let g(t) be a monotone increasing C“ 
function on -co < t < co such that g(0) = n, 1irnt+-“ g(t) = 0 and 
limt++m g ( t )  = 2n. For example, we may use g ( t )  = n + 2 tan-’ t .  Then 
G ( t )  is given by composition of g(t) with F ( t )  from the previous example: 

(4.10) Example Again F :  R + R2 so that 

[(:,sin nt) for 1 I t c oo , 
F ( t )  = 

((0, t + 2) for -co < t I - 1. 

This gives a curve with a gap as shown in Fig. 111.8. For - 1 s t _< + 1 we 
connect the two pieces together smoothly as shown by the dotted line. This 
gives a C“ immersion of all of R in R2 whose image is as shown. As we shall 
see, this is a useful example to keep in mind. 
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4 Figure 111.8 

We may draw some conclusions from these examples about the nature of 
immersions. First we note that an immersion need not be univalent, that is, 
one-to-one into (injective), in the large, even though it is one-to-one locally 
as we see from Remark 4.2. Examples 4.5 and 4.8 show this since, for exam- 
ple, in  both cases t = 0, f 2n, f4n, . . . all have the same image point: (0, 1 )  
in the case of the circle and (0,O) for the figure eight. 

The second conclusion we can draw is that even when it is one-to-one, an 
immersion is not necessarily a homeomorphism onto its image, that is, 
F :  N -+ M a one-to-one immersion does not imply that F is a homeomor- 
phism of N onto A = F ( N )  considered as a subspace of M .  Examples 4.9 and 
4.10 show this: in the case of Example 4.9, fl is the figure eight whereas N is 
the real line R~--two spaces which are not homeomorphic. In the case of 
Example 4.10. N is again the real line and m = F ( N )  as a subspace of R2 is 
not locally connected at all of its points: there are points on the x2-axis such 
as (0, +), which do  not have arbitarily small connected neighborhoods; hence 
fi and N = R are not homeomorphic. In any case, of course, F :  N + M is 
continuous-since it is differentiable. These examples lead to the definition 
of a more restrictive concept. 

(4.11) Definition An iriibedding is a one-to-one immersion F :  N + M 
which is a homeomorphism of N into M ,  that is, F is a homeomorphism of 
N onto its image, fi = F ( N ) ,  with its topology as a subspace of M .  The 
image of an imbedding is called an imbedded submanifold. 

We remark that Examples 4.4,4.6, and 4.7 are imbeddings. The following 
theorem, essentially a restatement of the theorem on rank and its corollary 
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along the lines of a remark above, show that the distinction between immer- 
sions and imbeddings is a global one-it does not depend on the nature of F 
locally. 

(4.12) Theorem Let F :  N + M be an immersion. Then each P E  N has a 
neighborhood U such that F I U is an imbedding of U in M .  

Proof According to Remark 4.2, we may choose cubical coordinate 
neighborhoods U, cp and V ,  $ of p E N and F ( p )  E M ,  respectively, such that 
cp(p) = (0, ..., 0) in R", $ ( F ( p ) )  = (0, ..., 0) in R" with q(U)  = C:(O) and 
$( V )  = Cr(0) (cubes of the same breadth E )  and such that F = $ 0 F 0 cp- 
the expression of F in these local coordinates, is given by 

F(x1, ...) x") = (XI ,  ...) x", 0, ...) 0). 

To see that F I U is a homeomorphism of U onto F ( U )  with the relative 
topology, it is enough to see that P is a homeomorphism of C:(O) onto its 
image in Cr(0). This is because F ( U )  c V ,  an open subset of M ,  so the 
topology of F ( U )  as a subspace of M is the same as its topology as a 
subspace of V ,  and because cp: U + Ct(0) and $: V + Cr(0) are homeomor- 
phisms. But it is clear that F is a homeomorphism of C:(O) onto the subset 
X n + l  - - . . .  - - x" = 0 of CZ(0); hence the theorem holds. I 

(4.13) Remark It is convenient to call a subset S of a cube Cr(a )  in R" a 
slice if it consists of all points for which certain of the coordinates are held 
constant. For example, S = {x E Cr(0) I x"+' = * a -  = X" = 0) is a slice 
through the center 0 = (0, . . . , 0) of Cr(0). If V ,  $ is a cubical coordinate 
neighborhood on a manifold M and S' is a subset of V such that $(S') is a 
slice S of the cube $(V) ,  then S' is called a slice of V.  

We note for future use that in the proof of Theorem 4.12, S' = F ( U )  is a 
slice of V .  In general this slice is not equal to the set V n F ( N )  but only 
contained in it, even if F is univalent and U is chosen very small. The reader 
should verify this using the preceding examples. 

Exercises 

1.  Using the fact that if P and Q are nonsingular matrices, then the rank of 
A and PAQ are the same, show that the rank of a mapping of C" 
manifolds is independent of the choices of local coordinates made in 
Definition 4.1. 

2. Show that if the C" mapping F :  M + N is one-to-one onto and its rank 
is everywhere equal to dim M = dim N ,  then it is a diffeomorphism. 

3. Assume only that the rank of F = dim M = dim N in Exercise 2, and 
show that F ( M )  is an open subset of N .  
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4. 
5. 

6. 

7. 

8. 

9. 

5 

Show that composition of immersions is an immersion. 
(i) Show that the restriction to an open subset of a C" function on M 
or of a C" mapping of M is again C". 
(ii) Show that ifM = u V , ,  V ,  open sets, and F :  M -+ N is C" on each 
V , ,  then it is C" on M. 
Show that a continuous mapping F :  M + N ,  C" manifolds, is C" if and 
only if for any C" functionfon an open set Wr c N the functionfo F is 
C" on F-'(W'). 
Show that the map F :  S"-' -+ P - ' ( R ) ,  defined by F(x' ,  ..., x") = 
[XI, . .., x"], is C" and everywhere of rank n - 1. 
Let F :  M -+ B be a C" mapping of manifolds and let A be an (im- 
mersed) submanifold of M .  Show that F I A is a C" mapping into B. 
Let F :  M -+ N be a continuous mapping of C" manifolds and let { V , ,  cp,} 
be a covering of N by coordinate neighborhoods with coordinate func- 
tions y,' , . . . , y," on V,  . Show that F is C" if and only if every yi 0 F is a 
C" function on F - ' ( & ) ,  its domain on M .  

Submanifolds 

In this section we shall discuss in some detail the various types of _ _  
submanifold. This term is used in more than one sense in the literature; 
however all agree that a submanifold N of a differentiable manifold M is a 
subset which is itself a differentiable manifold. The confusion arises over the 
question of whether or not it should be required to be a subspace of M, that 
is, to have the relative topology. We have adopted the definition which 
seems to be the most popular, namely, a submanijiold N is the image in M of a 
one-to-one immersion F :  N -+ M, N = F(N' ) ,  of a manifold N into M 
together with the topology and C" structure which makes F :  N' + N a diffeo- 
morphism. We also frequently refer to N in this case as an immersed submani- 
fold. As shown by Examples 4.9 and 4.10, the C" structure of N has an 
obscure and complicated relation to that of M .  A more natural notion- 
which we shall now develop, is that of a regular submanijiold; as its name 
implies, it will be a special case of the one above. It is more natural since its 
topology and differentiable structure are derived directly from that of M .  We 
will first state the characteristic feature of those subsets of a differentiable 
manifold M which are regular submanifolds; to do so we suppose 
m = dim M and that n is an integer, 0 I n I m. 

(5.1) Definition A subset N of a C" manifold M is said to have the 
n-submanijold property if each p E N has a coordinate neighborhood U, cp on 
M with local coordinates xl, ..., xm such that (i) q(p) = (0, ..., 0), (ii) 
q ( V )  = CT(O), and (iii) q ( U  n N )  = { X E  Cr(0) 1 x"" = . * .  = xm = 0). If N 
has this property, coordinate neighborhoods of this type are called preferred 
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coordinates (relative to N ) .  Figure 111.9 shows such a subset N in M = R3 
(n = 2 and m = 3). 

Note that immersed submanifolds do not always have this property, for 
example, take p = (0,O) in Examples 4.9 and 4.10. 

Denote by n: R" + R", n I m, the projection to the first n coordinates, 
then we may state the following lemma, using the notation above. 

n 

N '  

M =R3 

N )  

Figure 111.9 

(5.2) Lemma Let N c M have the n-submanifold property. Then N with 
the relative topology is a topological n manifold and each preferred coordinate 
system U ,  cp of M (relative to N )  defines a local coordinate neighborhood V ,  (7, 
on N by V = U n N and (7, = n 0 cp I V .  These local coordinates on N are 
C"-compatible wherever they overlap and determine a C"' structure on N 
relative to which the inclusion i :  N + M is an imbedding. 

Proof Assume N has the subspace topology relative to M. Then V ,  (7, 
are topological coordinate neighborhoods covering N ;  for V = U n N is an 
open set in the relative topology and (7, is a homeomorphism onto C:(O) = 
n(Cr(0)) in R". Suppose that for two preferred neighborhoods, U ,  cp and 
U', cp', V = U n N and V' = U' n N have nonempty intersection. Since 
V ,  (7, and V', (7,' are topological coordinate neighborhoods, we know that the 
change of coordinates is given by homeomorphisms (7,' 0 (7,- and (7, u (@')-I, 

which we must show to be C". Let 8: R" + R" be given by O(x', . . . , x") = 
(XI, . . . , x", 0, . . . , 0) so that II 0 8 is the identity on R". This map 8 is Ca as is 
its restriction to C:(O), an open subset of R"; thus 3-  = cp- ' 'J 0 is C" since 
i t  is a composition of C" maps. On the other hand (7,' = n c cp', and because 
cp' is a C" map of U' and its open subset U' n U to R", we see that @' is C" 
on V n V'. Thus (7,' o 4-I is C" on its domain, @(V n V ' ) .  
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It is even easier to see this if we write the expressions in local coordinates. 
If yi = ?(XI. . . . , x"'), i = 1, . . . , ni are the functions giving cp' 0 cp- ', which 
we know to be C", then it is easily checked that 3'0 3-l is given by 
yi = p(x ' ,  . .. , x", 0, ..., 0), i = 1,. . . , n. Therefore @' 0 +-' is C" by 
Definition 3.2. 

By Theorem 1.3 of this chapter, the totality of these neighborhoods 
defines a unique differentiable structure on N .  In preferred local coordinates 
V ,  4, i: N + M is given on V by (XI, .. . , x") -+ (.xi,. .., x", 0, . . ., 0), so it is 
obviously an immersion. Because we have taken the relative topology on N ,  
i: N + M is by definition a homeomorphism to its image i ( N )  = N ,  with the 
subspace topology, that is, i is an imbedding. I 

The foregoing completes the proof of Lemma 5.2 and allows us to make 
the following important definition. 

(5.3) Definition A regular sirbmanijiild of a C" manifold M is any sub- 
space N with the submanifold property and with the C" structure that the 
corresponding preferred coordinate neighborhoods determine on it. 

As an example we shall see that S 2  = { X E R ~  I llxll = 1) is really a 
submanifold, as was indicated at the end of Section 1.  If q = (a1, u2, a 3 }  is an 
arbitrary point on S 2 ,  it cannot lie on more than one coordinate axis. For 
convenience we suppose that it does not lie on the x3-axis. We introduce the 
usual spherical coordinates (Y, 0, cp); they are defined on R3 - fx3-axis} and if 
(1, cf,, cpo) are the coordinates of q we may change the coordinate map 
slightly so that r is replaced by i: = r - 1, B by 8 = 8 - O o ,  and cp by 
+ = v, - (po. Then for sufficiently small 0, the ne ighborho~  V ,  t,h with 
coordinate function t,h: p --t (F(p),  o(p), + ( p ) )  defined for p such that I i: 1 < E, 

18 I < E ,  and 1 @ 1 < c defines a coordinate neighborhood of q,  with q 
having coordinates (0, 0,O) and with V n S2 the open subset of S 2  corre- 
sponding to i; = 0. The fact that these neighborhoods are compatible with 
the ones previously defined for S 2  (Example 1.8) can be proved by writing 
down the standard equations giving rectangular Cartesian coordinates as 
functions of the spherical coordinates. 

(5.4) At this point we have defined three classes of submanifolds 
in a manifold M - i ~ n ~ ~ ~ r s e d ,  ~ ~ n b e ~ d e { l ,  and regular. The first of these, which 
we usually call simply a suhmanijdd, was defined (Definition 4.3) as the 
image N = F ( N ' )  of a C^ univalent immersion F of N' into M .  Since 
F :  N' --t N c M is one-to-one and onto, we may and do (as part of the 
definition) carry over to N the topology and differentiable structure of N ' ;  
open sets of N are the images of open sets of N' and coordinate neighbor- 
hoods U ,  (p of N are of the form U = F(U'), cp = cp' 0 F - ' ,  where U' is a 

Remark 
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coordinate neighborhood of N'. The fact that F is continuous implies that 
the topology of N obtained in this way is in general finer than its relative 
topology as a subspace of M ,  that is, if V is open in M ,  then V n N is open in 
N, but there may be open sets of N which are not of this form. 

An imbedding is a particular type of univalent immersion, one in which 
U' is open in N if and only if F( U ' )  = V n N for some open set V of M so 
that the topology of the submanifold N = F ( N )  is exactly its relative topo- 
logy as a subspace of M .  An imbedded submanifold is thus a special type of 
(immersed) submanifold. (Note: although submanifold and immersed sub- 
manifold are the same thing by definition, nevertheless we will frequently use 
the latter term both to emphasize that we are dealing with the most general 
case and as a concession to the confusion in terminology in the literature.) 

Finally, if N c M is a regular submanifold, then it is also an imbedded 
submanifold since the inclusion i: N -+ M is an imbedding. 

The following theorem shows that imbedded and regular submanifolds 
are essentially the same objects. 

(5.5) Theorem Let F :  N' -, M be an imbedding of a C" manifold N of 
dimension n in a C" manifold M of dimension m. Then N = F ( N )  has the 
n-submanifold property and thus N is a regular submangold. As such it is 
diffeomorphic to N' with respect to the mapping F :  N -+ N .  

Proof Let q = F ( p )  be any point of N .  According to Theorem 4.12 (and 
its proof), there are cubical coordinate neighborhoods U ,  cp of p and V ,  $ of 
q such that (i) cp(p) = (0, . . . , 0) E C;(O) = cp(U), (ii) $(q)  7 CF(0) = $( V ) ,  
and (iii) the mapping F I U is given in local coordinates by F :  (x', . . . , x") I+ 

(xl, . . . , x", 0, . . . , 0). If F ( U )  = V n N, then the neighborhood V ,  $ would 
be a preferred coordinate neighborhood relative to N. In order to achieve 
this situation we must use the fact that F is an imbedding (see Remark 4.13). 
This implies at least that F ( U )  is a relatively open set of N, that is, F ( U )  = 
W n N ,  where W is open in M .  Since V 3 F ( U )  it is no loss ofgenerality to 
suppose W c V .  Thus $( W )  is an open subset of C:(O) containing the origin 
and $ ( W )  3 $ ( F ( U ) ) ,  which is a slice S of Cy(O), S = { X E  CF(0) I 
x"+l = ... = xm = O}. Therefore we may choose a (smaller) open cube 
CY(0) c $(W)  and let V' = $-'(C!(O)), $' = $ I V .  This is a cubical coor- 
dinate neighborhood of q for which F ( U )  n V' = V' n N ;  moreover, taking 
U' = cp-'(C:(O)) = F - ' ( V ' ) ,  we see that U', cp', with cp' = cp I U', is a coor- 
dinate neighborhood of p and the pair U', cp', and V', $' have exactly the 
properties needed, namely, (i), (ii), (iii) and F ( U ' )  = V' n N. This proves 
simultaneously that N has the n-submanifold property and that F is a diffeo- 
morphism. The latter is true since the inverse of F :  N' -, N is given in the 
local preferred coordinates V', x o $' and U', cp' by P- l(xl, . . . , x") = 
(x', ..., x"), which is clearly C". I 
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(5.6) Remark The following addendum to Remark 4.13 and the preced- 
ing comments are often useful. Suppose that N c M is an (immersed) sub- 
manifold and that q E N .  Then there is a cubical neighborhood V ,  $ of q with 
$(q)  = (0, . . . , 0) E Cr(0) = $( V )  such that the slice S' c I/, consisting of all 
points of V whose last m - n coordinates vanish, is an open set and a cubical 
coordinate neighborhood of the submanifold structure of N with coordinate 
map $'(r) = 71 0 $(r )  = (x'(r) ,  . . . , x"(r)) (in the notation used in Theorem 5.5 
and in Remarks 4.12 and 4.13). The proof is left as an exercise. 

We now have a definition of regular submanifold, and we wish to obtain 
examples-which are useful for many reasons, among which is that they give 
further interesting examples of manifolds. Since it is usually easier to deter- 
mine that a map from one C" manifold into another is an immersion than to 
see that it is an imbedding, the following theorem is useful. A generalization 
is given in the exercise. 

(5.7) Theorem If F :  N + M is a one-to-one immersion and N is compact, 
then F is an imbedding and f i  = F ( N )  a regular submanifold. 

Proof Since F is continuous and both N and R-with the subspace 
topology-are Hausdorff, we have a continuous (one-to-one) mapping from 
a compact space to a Hausdorff space. Since a closed subset K of N is 
compact, F ( K )  is compact and therefore closed. Thus F takes closed subsets 
of N to closed subsets of m, and being one-to-one onto it takes open subsets 
to open subsets also. It follows that F -  ' is continuous so F :  N + is a 
homeomorphism and therefore an imbedding. The rest of the statement 
follows from our remarks above. I 

The most useful method of finding examples of submanifolds is given by 
the following theorem and its corollary. Since many examples of manifolds, 
as we have seen, occur as submanifolds of some other manifold, especially 
Euclidean space, the corollary is also very helpful in proving that some of the 
objects we have looked at are indeed C"' manifolds. Examples are given 
below. 

(5.8) Theorem Let N be a C" manifold of dimension n, M be a C" manifold 
of dimension m, and F :  N + M be a C" mapping. Suppose that F has constant 
rank k on N and that q E F ( N ) .  Then F - ' ( q )  is a closed, regular submanifold 
of N of'dirnension n - k .  

Proof Let A denote F -  ' ( 4 ) ;  A is a closed subset since the inverse image 
of {q} ,  a closed subset of M ,  under a continuous map is closed. We shall show 
that A has the submanifold property for the dimension n - k. Let P E A ;  
since F has constant rank k on a neighborhood of p ,  by the theorem on rank 
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(Remark 4.2) we may find coordinate neighborhoods U ,  cp and I/, $ of p and 
q, respectively, such that cp(p) and $(q)  are the origins in R" and R", q ( U )  = 
C;(O), $ ( V )  = Cr(O), and in local coordinate (x', ..., x") and (y', ..., y"), 
F I U is given by the mapping 

$ 0 F 0 cp- '(x) = P ( x ' ,  . .. , x") = (XI, . .. , Xk, 0, . . ., 0). 

This means that the only points of U mapping onto q are those whose first k 
coordinates are zero, that is, 

A n U = cp-'(cp 0 F-' 0 $-'(O)) 

= cp-'(P-'(0))=cp-'{xEC~(O)~X1= . . .= xk=O}. 

manifold property. I 
Hence A is a regular manifold of dimension n - k since it has the sub- 

(5.9) Corollary If F :  N -+ M is a C" mapping of manifolds, dim M = 
m I n = dim M, and i f the rank of F = m at every point of A = F-'(a), then 
A is a closed, regular subman$old of N .  

The corollary holds because at p E A,  F has the maximum rank possible, 
namely m. It follows from Section 11.7 and the independence of rank on local 
coordinates that, in some neighborhood of p in N ,  F has this rank also; thus 
the rank of F is m on an open subset of N containing A. But such a subset is 
itself a manifold of dimension n-an open submanifold-to which we may 
apply the theorem. 

The first two applications of Corollary 5.9 are just very simple ways of 
demonstrating that S"- ' and the torus, described, as in Example 1.3.4, by 
rotating a circle around a line in its plane which does not intersect it, are 
both manifolds. Other applications will be made in the next section. 

(5.10) Example The map F :  R" + R defined by F(x', ..., x") = 
(xi)' has rank 1 on R" - {0}, which contains F -  ' (+ 1) = S"- Thus 

S"- ' is an (n - 1)-dimensional submanifold of R" by Corollary 5.9. 

(5.11) Example The map F :  R3 -, R given by F(x', x', x3) = (a  - 
((x')' + (x')')"')' + (x3)' has rank 1 at  each point of F- ' (b2 ) ,  a > h > 0. 
Thus the locus F-'(b') ,  the torus in R3, Fig. L2b, is a submanifold. 

Exercises 

1. Let M and N be C" manifolds of the same dimension and F :  N -, M an 
immersion. If N is compact and M is connected, prove F is onto. 
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2. 

3. 

4. 

5 .  
6 .  

7. 

6 

Let F :  N + M be a one-to-one immersion which is proper, that is, the 
inverse image of any compact set is compact. Show that F is an imbed- 
ding and that its image is a closed regular submanifold of M .  
Show that the mappings i :  M -+ M x N and j :  N + M x N defined in 
Exercise 3.3 are imbeddings. 
Let A c M and B c N be submanifolds of M and N .  Show that A x B 
is (by inclusion) a submanifold of M x N .  Show that if A and B are 
regular, so is A x B. 
Prove the statement of Remark 5.6. 
If N is a submanifold of M and V is a connected, open subset of M ,  then 
show that N n U is the union of a countable collection of connected 
open subsets of N (with its submanifold topology). 
Show that if N c M is a submanifold and f~ Cm(M), then f I N E 

C a ( N ) .  State and prove an analogous result for a C" mapping on M .  
Show by example that there may be functions that are C" on N and that 
cannot be obtained by restriction of a C" function on M .  

Lie Groups 

The space R" is a C" manifold and at the same time an Abelian group 
with group operation given by componentwise addition. Moreover the alge- 
braic and differentiable structures are related: (x, p) + x + y is a C" map- 
ping of the product manifold R" x R" onto R", that is, the group operation is 
differentiable. We also see that the mapping of R" onto R" given by taking 
each element x to its inverse - x  is differentiable. 

Now let G be a group which is at the same time a differentiable manifold. 
For x, J 'E  G let xy denote their product and x - '  the inverse of x. 

(6.1) Definition G is a Lie group provided that the mapping of 
G x G -+ G defined by (x, y )  -+ xy and the mapping of G + G defined by 
x -+ x-  ' are both C" mappings. 

(6.2) Example Gl(n, R) ,  the set of nonsingular n x ) I  matrices, is as we 
have seen, an open submanifold of ,L , , (R) ,  the set of II x n real matrices 
identified with R"'. Moreover Gl(n, R )  is a group with respect to matrix 
multiplication. In fact, an n x n matrix A is nonsingular if and only if 
det A # 0; but det(AB) = (det A)(det B) so if A and B are nonsingular, AB 
is also. An I I  x t7 matrix A is nonsingular, that is, det A # 0, if and only if A 
has a multiplicative inverse; thus Gl(n, R )  is a group. Both the maps 
( A ,  B) -+ AB and A + A - '  are C". The product has entries which are poly- 
nomials in the entries of A and B, and these entries are exactly the expres- 
sions in local coordinates of the product map, which is thus C", hence C". 
The inverse of A = (aij) may be written as A- '  = (l/det A)(Gij), where the 
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iiij are the cofactors of A (thus polynomials in the entries of A )  and where 
det A is a polynomial in these entries which does not vanish on Gl(n, R). It 
follows that the entries of A -  ' are rational functions on Gl(n, R) with non- 
vanishing denominators, hence C" (and C"). Therefore Gl(n, R) is a Lie 
group. A special case is GI( 1, R) = R*, the multiplicative group of nonzero 
real numbers. 

(6.3) Example Let C* be the nonzero complex numbers. Then C* is a 
group with respect to multiplication of complex numbers, the inverse being 
2- l  = l/z. Moreover C* is a onedimensional C" manifold covered by a 
single coordinate neighborhood U = C* with coordinate map z + q ( z )  
given by q ( x  + iy) = (x, y) for z = x + iy. Using these coordinates, the 
product w = zz', z = x + iy ,  and z' = x' + iy' is given by 

((x, y) (x ' ,  y')) + (xx' - yy', xy' + y x ' )  

and the mapping z + z - '  by 

This means that the two mappings of Definition 6.1 are C"; therefore C* is a 
Lie group. 

(6.4) Theorem If G1 and G2 are Lie groups, then the direct product 
G1 x G 2  of these groups with the C" structure of the Cartesian product of 
manifolds is a Lie group. 

The proof is left as an exercise. 

(6.5) Example (The toral groups) The circle S' may be identified with 
the complex numbers of absolute value + 1. Since I z1 z2  I = I z 1  I I z2 1 ,  it is 
a group with respect to multiplication of complex numbers-a subgroup of 
C*. It is a Lie group as can be checked directly or proved as a consequence 
of Example 6.3 and the next theorem. Combining this with Theorem 6.4, we 
see that T" = S' x . . .  x S',  the n-fold Cartesian product, is a Lie group. It 
is called the toral group. Since S' is abelian, T" is Abelian also. 

As might be expected, the subgroups-in the sense of algebra-of a Lie 
group which are also submanifolds play a special role. The following 
theorem will enable us to give many examples of Lie groups. 

(6.6) Theorem Let G be a Lie group and H a subgroup which is also a 
regular submanifold. Then with its differentiable structure as a submanifold H 
is a Lie group. 
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Proof It follows without difficulty that H x H is a regular submanifold 
of G x G .  Thus the inclusion map F ,  : H x H --f G x G is a C" imbedding. 
If F , :  G x G --f G is the C" mapping ( g ,  g ' )  + gg' and F = F ,  0 F1 the 
composition, then F is a C" mapping from H x H -+ G with image in H .  
Let F denote this map considered as a map into H ;  it is not the same 
mapping as F since we have changed the range. We must show that F is C" 
and similarly that the map H + G given by taking h + h- is C" as a map 
onto H .  These facts both follow from the next lemma, which completes the 
proof. I 
(6.7) Lemma Let F :  A + M be a C" mapping of C" manifolds and sup- 
pose F ( A )  c N ,  N being a regular submanifold of M .  Then F is C" as a 
mapping into N .  

Proof Since N is a regular submanifold of M, each point is contained in 
a preferred coordinate neighborhood. Let P E  A, let q = F ( p )  be its image, 
and let U ,  cp be a neighborhood of p which maps into a preferred coordinate 
neighborhood V ,  Ic/ of q. We have Ic/( V )  = C;(O) with $(q)  = (0, . . . , 0), the 
origin of R", m = dim M;  and V n N consists of those points of V whose 
last rn - n coordinates are zero, n = dim N .  Let (xl, . . . , x p )  be the local 
coordinates in U ,  cp on A. Then the expression in local coordinates for F is 

E(x1, ..., XP)  = (f yx), . . . , f " ( x ) ,  0, .. ., O), 
that is, f " + l ( x )  = ... = f " ( x )  = 0 since F ( A )  c N .  

F ,  considered as a mapping into N ,  is given in local coordinates by 
However, V n N ,  IT 0 Jy is a coordinate neighborhood of q on N ,  so 

(X I ,  . . . , x") + (f yx), . . . , f " (x ) ) .  

This is P followed by projection to the first n coordinates (projection of R" 
to R"), which is a composition of C" maps and is therefore C". I 

(6.8) Remark Lemma 6.7 does not hold for immersed submanifolds. In 
Example 4.9 if we map the open interval ( -  1, 1 )  by a mapping G into 
N = F(R),  the figure eight, so that it crosses the origin as shown in 
Fig.III.10, then G is C"' as a mapping into R2, but not even continuous as a 
mapping to N .  Thus N is diffeomorphic to the real line by F :  R + N ,  and 
identifying N and R,  we may think of G as taking part of the open interval 
( -  1, l ) ,  say (0, I ) ,  onto the real numbers t > 1,O onto 0, and ( -  1,0), the 
remaining part, onto the real numbers t < 1. The image is not even con- 
nected, so G is not continuous. This situation is clarified in the Exercise 5. 

We may use Theorem 6.6 and Theorem 5.8 to give many further 
examples of Lie groups. To do so we make use of the following naturally 
defined maps of a Lie group G onto itself (i) x x- ', (ii) left and right 
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Figure 111.10 

translations by a fixed element a of G, that is, La, R, : G + G defined by 
L,(x) = a x  and R, (x )  = xu. These maps are C" by definition of Lie group 
and have inverses which are C", so they are, in fact, diffeomorphisms. The 
mapping of (i) is its own inverse and we have (La)-'  = L, I and 
( R J - '  = R,-I.  

(6.9) Example Sl(n, R )  = {X E GI(n, R )  I det X = + 1) is a subgroup and 
regular submanifold of GI(n, R),  hence a Lie group. To prove this, we con- 
sider the mapping F: Gl(n, R )  -, R*, F(X) = det X. According to the pro- 
duct rule, det(XY) = (det X)(det Y). Thus F is a homomorphism onto 
R* = GI( 1, R ) ;  it is also C" since it is given by polynomials in the entries. 
Finally, its rank is constant: Let A E  Gl(n, R ) ;  let u = det A ;  and let L,, L, 
denote left translations in GI(n, R )  and GI( 1, R )  = R*. Then 

F ( X )  = L, 0 F 0 L A - l ( X )  

since we have a * det(A-'X) = det X. Applying the chain rule, 
Section 11.2.3, using DL, = a # 0, and using the fact that L A  - I is a diffeo- 
morphism (so that D L , - ,  is nonsingular), we have 

rank D F ( X )  = rank[aDF(A-'X)DL,- ,(X)] = rank DF(A-'X) 

for all A E GI(n, R). In particular, rank D F ( X )  = rank DF(X- 'X)  = 
rank DF(I) ,  and thus we see that the rank is constant as claimed. It follows 
that SI(n, R )  = F - ' (  + 1) is a closed, regular submanifold by Theorem 5.8. It 
is also a subgroup-in fact the kernel of a homomorphism-by virtue of the 
product rule for determinants; therefore it is a Lie group. 

(6.10) Example O(n)  = {X E GI(n, R) ('XX = I}, the subgroup of ortho- 
gonal n x n matrices is a regular submanifold and thus a Lie group. Let 
F(X) = 'XX, 'X = transpose of X, define a ,mapping from GI(n, R) to 
Gl(n, R). If A E Gl(n, R), we will show that rank D F ( X )  = rank D F ( X A -  '); 
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and since any Y E  Gl(n,  R )  can be written in the form Y = X A - ' ,  it follows 
that rank DF is constant on Gl(n, R) .  To obtain this equality we note that 
F ( X A - ' )  = L f A - ,  R , 4 - ,  0 F ( X ) .  Therefore 

D F ( X A - ' )  = D L , , - ,  o D R A - l  o D F ( X ) ,  

where D R A - ,  and D L , , - !  are evaluated at F ( X )  and R A - , ( F ( X ) ) ,  respec- 
tively. Then the equality of rank D F ( X A - ' )  and rank D F ( X )  follows as 
above from the fact that D L , , - ,  and D R , - ,  are everywhere nonsingular. 
Since O(n)  = F - ' ( I ) ,  where I is the identity matrix, the statement follows 
from Theorem 5.8. 

(6.11) Definition Let F :  G1 + G ,  be an algebraic homomorphism of Lie 
groups G, and G, . We shall call F a homomorphism (of Lie groups) if F is 
also a C"' mapping. 

(6.12) Example Let G, = Gl(n, R )  and G, = R* [= GI(1, R ) ] .  Then the 
map F given by F ( X )  = det X is a homomorphism. 

(6.13) Example Let G1 = R,  the additive group of real numbers, and 
G, = S', identified with the multiplicative group of real numbers of absolute 
value 1. Then the mapping F ( t )  = eZni' is a homomorphism. Similarly, let- 
ting G1 = R", a Lie group with componentwise addition, and G 2  = T" = 

S' x ... x S', the mapping F: R" + T" given by F ( t , ,  ..., t , )  = 
(exp h i t l ,  ..., exp 2nit") is a homomorphism. Its kernel is the discrete 
additive group 2" consisting of all n-tuples of integers; it is called the 
integriil lattice of R". 

(6.14) Theorem If '  F :  G1 + G ,  is a homomorphism ojLie groups, then the 
rank qf F is constant ; the kernel is a closed regular submanifold and thus a Lie 
y m r p ;  and dim ker F = dim G I  - rank F. 

Proof Let a E G1 be arbitrarily chosen and let b = F ( a )  be its image in 
G ,  . Denote by el ,  e ,  the unit elements of G,, G,, respectively. Then we may 
write 

F ( x )  = F ( a a - ' . ~ )  = F ( u ) F ( u - ' x )  = L ,  0 F 0 La-,(x), 

so that for all a E G ,  

DF(u)  = DLb(e2) 9 DL,- ,(a). 

Then, since L a - ,  and Lb are diffeomorphisms, and thus have nonsingular 
Jacobian matrices at each point, the rank of F at  a and at e l  is the same. By 
Theorem 5.8, ker F = F -  '(el) is a closed regular submanifold whose dimen- 
sion is dim G ,  - rank F.  From Theorem 6.6, ker F is a Lie group since it is a 
regular submanifold (and a group). I 
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(6.15) Example A very useful example of a submanifold which is not 
regular but is a subgroup of a Lie group is obtained as follows: Let 
T 2  = S' x S' and let F : R 2  + T 2  be given by F ( x ' , x 2 )  = 
(exp 2xix', exp 2nix2) as in Example 6.13. Then F is a C" map of rank 2 
everywhere and is a homomorphism of Lie groups; the rank may be easily 
computed at (0,O) and it is constant by Theorem 6.14. 

Now let a be an irrational number and define G :  R + R2 by G ( t )  = 
( t ,  at).  Thus G is obviously an imbedding; its image is the line through the 
origin of slope a. It follows that H = F 0 G is an immersion of R into T 2  
since DH = DF . DG has rank 1 for all t E R .  Moreover H is one-to-one 
since H ( t , )  = H(t , )  is equivalent to exp 2nit1 = exp 2nit2 and exp 2niatl = 
exp 2niat2. However, exp 27th = exp 27th if and only if u - u is an integer. 
Clearly t l  - t2  and a(t,  - f 2 )  are both integers only if t ,  = t 2 .  Thus 
H :  R + T 2  is a one-to-one immersion and H ( R )  is an immersed submani- 
fold. However, the interesting fact is that H(R)  is a dense subset of T 2 ,  so it is 
about as far from being a regular submanifold as one can imagine: for 
example, as a subspace it is not locally connected at any point. 

We shall prove that H ( R )  is dense in T 2 .  Since F is continuous and onto, 
a dense subset D of R2 is mapped to a dense subset of T 2 .  We will show that 
D = F - ' ( H ( R ) )  is dense. D consists not only of the line of slope a through 
the origin but of all lines which can be obtained from it by translation by an 
integral vector in either direction, that is, any points (x' + m, x2  + n),  with 
m, n integers and with x' = t, x2 = at, must also be in D since F(x',  x 2 )  = 
F(x' + m, x2  + n).  These lines are all parallel to the given one H(R) .  In fact 
D consists of the union of all lines t -+ ( t  + m, at + n), that is, all lines with 
equation 

x2 = ax' + ( n  - am) 

for arbitrary integers n, m (Fig. 111.1 1). 

Obviously, D is dense on the plane if the y-intercepts (n - am) form a 
dense subset of the y-axis. Thus we must show that given a, any real number 
b, and any E > 0, there is a pair of integers n, m with 1 b - (n - am) 1 < E .  

Assume that there exist integers n', m' such that 0 I n' - am' < E ;  since 
n' - am' is irrational, it must then in fact be positive. It follows that for some 
integer k, k(n' - am') I b I ( k  + l)(n' - am'), which implies 0 < b - 
k(n' - am') < n' - am' < E .  Since n - am = kn' - akm' is a y-intercept ofa 
line of D, the observation that either n' - am' or (- n') - a( - m') is non- 
negative and the following fact from number theory suffices to complete the 
proof. 
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Figure 111.11 

(6.16) If a > 0 is any irrational number, then there exist arbitrarily large 
integers n', m' such that 

A proof is given by Auslander and MacKenzie [l], or Hilbert and Cohn- 
Vossen [ 11. The preceding facts (Example 6.15) are essentially the Kronecker 
approximation theorem; several beautiful proofs are given by Bohr [ 11. 

We remark that H :  R + R2 in addition to being a one-to-one immersion 
is a homomorphism of Lie groups so that fi  = H ( R )  is a subgroup alge- 
braically and an immersed submanifold. It is clearly a Lie group with the 
manifold structure of R.  However, it is not a regular submanifold nor is it a 
closed subset. 

(6.17) Definition A (Lie) subgroup H of a Lie group G will mean any 
algebraic subgroup which is a submanifold and is a Lie group with its C" 
structure as an (immersed) submanifold. 

We have already discussed subgroups that are regular submanifolds. We 
shall prove the following theorem about such subgroups. 

(6.18) Theorem 
G,  then H is closed as a subset of G. 

If H is a regular submanifold and subgroup of a Lie group 
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Proof It is enough to show that whenever a sequence {h,} of elements of 
H has a limit g E  G, then g is in H .  Let U ,  cp be a preferred coordinate 
neighborhood of the identity e relative to the regular submanifold H .  Then 
q ( U )  = Cr(0) is a cube with cp(e) = 0; V = H n U consists exactly of those 
points whose last m - n coordinates are zero, and cp' = cp I y  maps V homeo- 
morphically onto this slice of the cube. If (6,) is a sequence in V = H n U 
and lim 6, = i j  with i j  E U ,  then the last rn - n coordinates ofij are also zero 
so G E  H n U c H .  

Now let {h,} be any sequence of H with lim h, = g and let W be a 
neighborhood of e small enough so that W - ' W  c U ,  where 
W -  W = { x -  ' y  E G I x ,  y E W}. Such W exist by continuity of the group 
operations (see Exercise 1). There exist N such that for n 2 N ,  h, E gW, in 
particular h N  E gW. Using group operations, we may verify that (i) 
i j  = g - ' h , E  W and, setting h;, = h i ' h , ,  we have (ii) lim 6, = 8. But for 
n 2 N ,  6, = h i ' h ,  lies in (gW)-'gW = W - ' W  c U.  Thus by theremarks 

I above, i j  E H ,  and hence g = h, 8- ' E H ,  which was to be proved. 

(6.19) Remark A converse statement is also true: A Lie subgroup H of a 
Lie group G that is closed as a subset is necessarily a regular submanifold; 
this is proved later (Lemma IV,9.7). In fact it is even true that an algebraic 
subgroup (not assumed to be an immersed submanifold), which is closed as 
a subset, is a regular submanifold. This is considerably harder to prove and 
we shall not prove it in this text (see Helgason [l]  and Hochschild [l]). 
However, it motivates and validates terminology which we use hereafter: A 
subgroup H of a Lie group G, which is a regular submanifold, will be called a 
closed subgroup of G. This is a special but important class of Lie subgroups. 

Exercises 

1. 

2. 

3. 

4. 

5 .  

Show that given any neighborhood U of e, the identity of a Lie group G, 
there exists a neighborhood V of e such that V V - '  c U ,  and a neigh- 
borhood W of e such that W 2  = W W  c U .  
Show that the collection {XU} ,  over all neighborhoods U of e, is a 
base of neighborhoods for x (similarly for { U x } ) .  
Let A be an arbitrary subset and U an open subset of a Lie group. Show 
that AU = {au l a €  A, U E  U }  is open. 
Prove Theorem 6.4 and also that the projections pl,  p 2  and injections i , j  
of Exercise 3.3, with (a, b )  = (el, e2) the identity of GI x G2, are homo- 
morphisms of Lie groups. 
In Lemma 6.7 show that if N is an immersed submanifold and F is 
assumed to be continuous as a mapping into N ,  then F is C" as a 
mapping into N .  
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6. Show that if G is a Lie group, U E  G, then the map I , :  G G,  defined by 
I,(x) = axu- ’, is an automorphism of G .  

7. Show that the set of all matrices of the form ( -  :) in G1(2n, R) ,  where 
A and B are n x n real matrices, is a closed subgroup (a submanifold) 
and is naturally isomorphic (algebraically) to Gl(n, C), nonsingular, 
n x n, complex matrices. 

8. Show that if H is an algebraic subgroup of a Lie group G,  then its closure 
R is also an algebraic subgroup. 

9. In Example 6.15, assume that c1 (used in the definition of G )  is a rational 
number. Show that H(R)  is then a regular submanifold of T 2  diffeo- 
morphic to S1. 

7 The Action of a Lie Group on a Manifold. 
Transformation Groups 

The definition of a group as a set of objects with a law of composition 
satisfying certain axioms is a relatively recent development. Historically, 
groups arose as collections of permutations or one-to-one transformations 
of a set X onto itself with composition of mappings as the group product; for 
if X is any set whatsoever, then the collection S ( X )  of all of its 
‘‘permutations’’-in this broad sense-is easily seen to be a group with 
respect to composition of permutations as product. The same is true for any 
subcollection G which contains, together with each transformation 
cr: X 4 X, its inverse cr-’, and which contains the composition cr 0 T of any 
two of its elements cr and T. In particular, if X contains just n elements, then 
S ( X )  is the symmetric group on n letters and has n! elements, the one-to-one 
transformations of X onto itself. This was, for example, the point of view of 
Galois [ 13, who considered groups of permutations of the roots of a polyno- 
mial. Much later Klein [ 13 discovered the central role of groups in all of the 
classical geometries : Euclidean, projective, and hyperbolic (non-Euclidean). 
In this approach, to each geometry is associated a group of transformations 
or permutations of the underlying space of the geometry, and in each case 
the geometry with its theorems may be derived from a knowledge of the 
underlying group. For example, the group G of Euclidean plane geometry is 
the subgroup of S(E2) which leaves distances invariant: If x, y e  EZ and 
d(x, y) is their distance, then a transformation T :  Ez -, E2 is in the group if 
and only if d(Tx ,  T y )  = d(x ,  y) for all x, y. This is called the group of rigid 
motions and it is generated by translations, rotations, and reflections. 

Even though the concept of group does not appear in Euclid’s axioms, 
that of congruence does. These ideas are intimately related: Two figures are 
congruent if and only if there is a rigid motion cr in G which carries one 
figure onto the other. It is a consequence of the properties mentioned above 
for cr, T E G that congruence is an equivalence relation. 

Although the interpretation of groups as transformation groups of a 
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space has been superseded in algebra, it is still very important in geometry 
and we shall need to discuss it in various aspects. We first define a very slight 
generalization of the group S ( X ) .  

(7.1) Definition Let G be a group and X a set. Then G is said to act on X 
(on the left) if there is a mapping 0: G x X + X satisfying two conditions: 

(i) If e is the identity element of G, then 
O(e, x )  = x for all X E  X .  

(ii) If g l ,  g 2  E G,  then 

8(g l ,  8(g2 , x ) )  = e ( g l  g 2  , x) for all x x. 
When G is a topological group, X is a topological space, and 8 is continuous, 
then the action is called continuous. When G is a Lie group, X is a C" 
manifold, and B is a C", we speak of a C" action. C" action is a fortiori 
continuous. 

As a matter of notation we shall often write gx for O(g, x )  so that (ii) 
reads ( g l  g2)x = g l ( g 2  x ) .  We also let O,(x) denote the mapping 8,: X --f X 
defined by B,(x) = O(g,  x ) ,  g fixed, so that (ii) may also be written 
O,,, ,  = O,, 0 B,, . When we define right action, (i) and (ii) become: 

(i) e(x ,  e )  = x and (ii) O(O(x, g l ) ,  g 2 )  = e(x ,  g 1 g 2 ) .  

Usually we are concerned with left action, but in both cases we usually say G 
acts on X ,  and leave the rest to be determined by the context. 

Note that 8,-, = (8,)-' since 8,-, 0 Be = O , - , ,  = 8, = i , ,  the identity 
map on X by (i). This means that each mapping 8, is one-to-one onto, since 
it has an inverse. This and (ii) show that the following statement holds: 

(7.2) I f  G acts on a set X ,  then the map g + Or is a homomorphism of G into 
S ( X ) .  Conversely, any such homomorphism determines an action with 
e ( g ,  X )  = e,(x). 

We note that the homomorphism is injective if and only if 0, being the 
identity implies that g = e. If this is so, we shall call the action effective. 
When the action is effective, G may be identified with a subgroup of S ( X )  by 
this map g + Be so that we have precisely the situation discussed in the 
beginning of the paragraph. Needless to say, these considerations all refer 
only to the set-theoretic aspects, since S ( X )  has not been topologized. 

We also note that if X is a topological space (C" manifold), G a topologi- 
cal group (Lie group), and the action is continuous (C"), then each 0, is a 
homeomorphism (diffeomorphism). 
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(7.3) Example Let H ,  G be groups, and $: H + G,  a homomorphism. It 
is easy to check that 8: H x G + G defined by O(h, x )  = @ ) x  is a left 
action: 

(i) 8(r, x )  = ~ ( e ) x  = x,  since t,b takes the identity of H to the identity 
of G ,  and 

(4 O(hl9 w 2  1 4 )  = q h l ,  ICl(h2)x) = w h ) ( W Z ) X )  and 

W l h Z  9 x )  = W l  h2)x = ( w h M h 2 ) ) x .  

These agree by the associative law in G .  If H and G are Lie groups and II/ is a 
homomorphism of Lie groups, then the action is C". This may be applied to 
the case where H is a Lie subgroup of G (or even if H = G ) ;  in this case $ is 
the identity (inclusion) mapping of H into G and we say that H acts on G by 
left translations. 

(7.4) Example A rather simple but important example is known as the 
narural action of Gl(n, R )  on R": We let G = Gl(n, R )  and X = R" and we 
define 8: G x R" --t R" by 8(A,  x )  = Ax,  this being multiplication of the 
n x n matrix A by the n x 1 column vector obtained by writing X E  R" 
vertically. This satisfies (i) and (ii) rather trivially, (ii) being again associati- 
vity (of matrix products): 

( A B ) x  = A(Bx).  
Since 8: G x R" + R" is given by polynomials in the entries of 

A E Gl(n, R )  and x E R", it is a Cm-map: 

Now suppose that H c Gl(n, R )  is a subgroup in the sense of Lie groups, 
that is, H has its own Lie group structure such that the inclusion map 
i :  H + Gl(n, R )  is an immirsion, or-if H is a closed subgroup-an imbed- 
ding. Then fl restricted to H defines a C" action 8,: H x R" + R". This is 
because 8, = 8 o i, i: H + G is the inclusion map, and both 8 and i are C". 
Using this idea we may give further examples. 

(7.5) Example Let H c Gl(2, R )  be the subgroup of all matrices of the 
form (: ,") with a > 0. Then H is seen to be a two-dimensional submanifold 
of G1(2, R )  and therefore is a closed subgroup. The restriction to H of the 
natural action of Gl(2, R )  on RZ is just 

which is obviously C", as expected. 
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i 2 1/2 (7.6) Example Identify E with R" and let d(x ,  y )  = (c;= (xi - y ) ) 
be the usual metric. The group G of all rigid motions, that is, diffeomor- 
phisms T :  R" + R" such that d ( T x ,  T y )  = d(x, y) is given by transforma- 
tions T of the form 
(*I 7(x) = AX + b, 

where A E O(n) and b E R"-a rotation A of R" about the origin followed by a 
translation taking the origin to b. The group operation is composition of 
rigid motions. 

The group of rigid motions is a Lie group. It is in one-to-one correspon- 
dence with O(n) x R" and takes its manifold structure from this correspon- 
dence, which is given by assigning to each rigid motion (*) the pair 
( A ,  b)  E O(n) x R". [However, G is not a direct product in the group theor- 
etic sense (Exercise 6).] Since 0:  G x R" + R" defined by O((A, b),  x )  = 

Ax + b, 0 is a C"' mapping. Verification that 8 defines an action is left to the 
exercises. 

(7.7) Definition Let a group G act on a set M and suppose that A c M is 
a subset. Then G A  denotes the set {ga I g E G and a E A}.  The orbit of x E M is 
the set Gx. If Gx = x, then x is a.fixed point of G ; and if G x  = M for some x, 
then G said to be transitive on M. In this case Gx = M for all x. 

(7.8) Example Consider the natural action of Gl(n, R) on M = R". The 
origin 0 is a fixed point of Gl(n, R) and Gl(n, R )  is transitive on R" - {O}. For 
if x = ( x l ,  ..., x") # 0, then there is a basis f l ,  ..., f, with x = f,.  If we 
express these basis elements in terms of the canonical basis fi = cj"= aiiej, 
i = 1, . . . , n, then we see that x = A . el, A = (a i j )€  Gl(n, R). From this it 
follows that every x # 0 is in the orbit of e , .  This action is not very inter- 
esting from the point of view of its orbits. However, if we consider this action 
restricted to various subgroups G c Gl(n, R), then the orbits can be quite 
complicated. A relatively simple case of this type is obtained by letting 
G = O(n),  the subgroup of n x n orthogonal matrices in Gl(n, R). This is a 
closed subgroup as we have seen, and the natural action of Gl(n, R)  res- 
tricted to O(n) is a C" action by Example 7.4. The orbits are the concentric 
spheres with the origin being a fixed point (sphere of radius zero). 

(7.9) Remark The same facts from linear algebra that we used above also 
show that Gl(n, R)  is transitive on the collection B of all bases of R". Given 
any basis {fl, . . . , f,,}, then there exists A E Gl(n, R) such that A . ei = f i ,  in 
fact there is exactly one such A. Thus, letting f = {fl, . .., f,} and 
e = {e, ,  . . . , en} be elements of B, we may define a left action of Gl(n, R )  on B, 
that is, a mapping 8: Gf(n, R )  x B -+ B by 

8 ( A ,  e) = A . e = f = {Ae,, . . ., Ae,}. 



7 A C T I O N  O F  A L I E  G R O U P .  T R A N S F O R M A T I O N  G R O U P S  93 

This action is transitive as mentioned, moreover the uniqueness of A (such 
that A . e = f )  implies that it is simply transitive, that is, given bases f, T, there 
is exactly one A E Gl(n, R )  such that A . f = 'f. This means that Gl(n, R )  is in 
one-to-one correspondence with B: A E Gl(n, R )  corresponds to A . e, where 
e is the canonical basis. We may use this correspondence to give B the 
topology and C"' structure which makes it diffeomorphic to Gl(n, R) .  As a 
C" manifold it is called the space offrames of R". 

We have already mentioned quotient spaces of an equivalence relation as 
a possible source of manifolds and, in fact, we have produced two examples 
of such: projective spaces and Grassman manifolds. The most useful and 
important source of such spaces is furnished by the action of groups on 
manifolds; at the moment we can only consider the topological aspects, and 
then only in part, as a preview of things to come. 

As a matter of notation we let G denote a Lie group, M a C" manifold, 
and we assume a C" action 8: G x M -, M .  We define a relation - on M 
by p - q if for some y E G we have q = 8,(p)  = gp.  It is easily seen that - is 
an equivalence relation and that the equivalence classes coincide with the 
orbits of G. In fact, p - p since p = ep and p - q means q = yp, which 
implies p = g - ' q  or q - p ,  so that the relation is reflexive and symmetric. 
Finally, given that p - q and q - p ,  we must have q = yp and r = hq so that 
r = (hy)p and then p - I'. Obviously, p - q implies that p and q are on the 
same orbit, so the equivalence class [ p ]  c Gp.  Conversely, if q E  Gp, then 

We denote by M / G  the set of equivalence classes; it will always be taken 
with the quotient topology (Definition 2.1) and will often be called the orbit 
space of the action. With this topology the projection T L :  M + M / G  (taking 
each s E M to its orbit) is continuous, and since the action 0 is continuous, x 
is also open: If U c M is an open set, then so is O,(U) for every y e  G and 
hence GU = [ U ]  = U B E ( ;  O,(U),  being a union of open sets, is open. The 
orbit space need not be Hausdorff-but if it is, then the orbits must be closed 
subsets of M (each is the inverse image by a of a point of G / H  and points are 
closed in a Hausdorff space). We shall be particularly interested in discover- 
ing examples in which M / G  is a C" manifold and a a C" mapping. 

I? - q so GI? c [PI. 

(7.10) Example When M = R" and G = O(n)  acting naturally as a sub- 
group of Gl(n, R) ,  then the orbits correspond to concentric spheres and thus 
are in one-to-one correspondence with the real numbers r 2 0 by the map- 
ping which assigns to each sphere its radius. This is a homeomorphism of 
R"/O(n) and the ray 0 I I' < cc ; this is not a manifold, but it is almost one. 

(7.11) Example Let G be a Lie group and H a subgroup (in the algebraic 
sense). Then H acts on G on the right by right translations. If H is a Lie 
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subgroup, then according to Example 7.3 this is a C" action; the set G/H of 
left cosets coincides with the orbits of this action and is thus a space with the 
quotient topology. We have the following facts concerning G/H (with this 
topology). 

(7.12) Theorem The natural map R :  G + G/H,  taking each element ofG to 
its orbit, that is, to its left coset, is not only continuous but open; G/H is 
Hausdorfl if and only if H is closed. 

Proof Since this space-usually called the (left) coset space-oincides 
with the orbit space of H acting on G, R is continuous and open. To prove 
the last statement we use the C" mapping F: G x G -, G defined by 
F(x, y )  = y -  'x. Since F is continuous and F -  '(H) is the subset R = {(x, y )  I 
x - y }  of G x G, we see by Lemma 2.4 that R is closed and G / H  is Haus- 
dorff if and only if H is a closed subset of G. I 

We conclude this section with two definitions, using terminology which 
we justify in the exercises. 

(7.13) Definition Let G be a group acting on a set X and let x E X .  The 
stability or isotropy group of x, denoted by G, ,  is the subgroup of all ele- 
ments of G leaving x fixed, G, = { g E  G I gx = XI. 

(7.14) Definition Let G, X be as in the previous definition. Then G is said 
to actfieely on X if gx = x implies g = e, the identity, that is, the identity is 
the only element of G having a fixed point. 

1. 

2. 

3. 

4. 

5. 

Exercises 

Show that if G acts on X as in Definition 7.13, then for each x, G, is a 
subgroup of G, which in the case of continuous action is a closed subset 
of G. 
Suppose that G acts transitively on X. Then given x, y E X ,  prove that 
G, and G,  are conjugate subgroups of G. 
Let G act transitively on X and let xo be a point of X. Define F: G + X 
by a(,) = gxo. Prove: (i) that there is a unique one-to-one mapping 
F: G/G,, + X such that F = F 0 R, R :  G -, G/G,,, the natural projec- 
tion to cosets, (ii) that F and F are continuous if the action is contin- 
uous and in this case F is a homeomorphism if and only if F is open. 
Show that O(n) acts transitively on S"- ', the unit sphere of R", in a 
natural way and determine the isotropy subgroup. 
Show that Gl(n ,R)  acts transitively on P"-'(R) and determine the 
isotropy subgroup of [(1, 0, . . ., O)]. 
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6. 

7. 

8. 

9. 

10. 

I f ,  

Let G = Q(n)  x if" and define a product in G by (A, u)(B, w) 
= (At?, Bv + w ) .  Prove that G is a Lie group and acts on R" by 
( A ,  L)) - .Y = Ax -b 0. Show that { I )  x V", I being the identity matrix, is 
a closed submanifold and normal subgroup and that O(n) x (0) is a 
dosed submanifold and subgroup of G. 
Let G be the set of 2 x 2 matrices of the form {$ where a > Oand b 
are real numbers, Show that G is a Lie group and acts on R by 

Let H ,  a subgroup of G, act on G by left translations. Prove that this is a 
free action. Show that if G acts freely and transitively on the left on X, 
then G and X are in one-to-one correspondence and if they are 
identified, the action is equivalent to left translations. 
Let the multiplicative group of nonzero real numbers R* act on R"' 
by 8: R* x Rnil -, R"' I ,  defined by 8(t, x) = tx .  Show that R"' ' /R* 
is homeomorphic to P ( R ) .  
Let G be a Lie group and H be a closed subgroup and define a left 
action 8: G x GIN --+ G / H  by @(y, x H f  = (g.u)H. Show that this action 
of G on the coset space G / H  is continuous and that the isotropy group 
of [e] = H is exactly H itself. 
Let F(k, n) denote the set of k-frames in R" considered as a C" manifoId 
by virtue of its natural ide~tification with the space of k x n matrices 
over R having rank k (compare Example 2.6). Show that Gl(k, R) acts 
transitivel~ on F(k, R )  by left r n u i r i p ~ j ~ ~ i ~ n  and that this action is C". 
Considering R" as a Euclid~an vector space, obtain a similar result for 
~ r r ~ i ~ n ~ ~ ~ ~ ~  k-frames. 

8 The Action of a Discrete Group on a Manifold 

We will consider in some detail what might seem to be the simplest case 
in which we could hope to use' group action to obtain new examples of 
manifolds via the quotient or orbit space concept discussed in the previous 
section. By a discrete group r we shall mean a group with a countable 
number of elements and the discrete topology (every point is an open set). 
The c~un~abi l~ty means that r falls within our definition of a manifoM: it 
has a countable basis of open sets each homeomorphic to a zero- 
dimensional Euclidean space, that is, a point. Thus r is a z e r o d i m ~ n s i o ~ ~  
Lie group. In this case to verify that an action 0: r x & -, A is C", we need 
only show that for each h E r the mapping Oh: @ 4 is a diffeo~orphism= 
For convenience of notation, we will let h denote 8, , writing hx for Bh(x), and 
so on. We suppose then that a C" action is given and consider the set of 
orbits M = &/r with the quotient topology discussed before: U c M is 
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open if and only if a - ' ( U )  is open in fi, where a: fi 4 M denotes the 
natural map taking each x to its orbit T x ;  we have seen that II is then 
continuous and open. 

If M is Hausdorff in this topology, then points are closed sets and the 
inverse image of any p E M ,  that is, the orbit II- ' ( p ) ,  must be closed. Thus an 
obvious necessary condition for M to possess some kind of reasonable topo- 
logy and manifold structure is that for each x E fi the orbit T x  is closed. 
However, this condition is not sufficient. A stronger requirement is the 
following: Given any point x E fi and any sequence {h,} of distinct elements of 
r, then {h ,x}  does not converge to  any point of fi. A group action with this 
property is called discontinuous; it is equivalent to the requirement that each 
orbit be a closed, discrete subset of fi. In the presence of other conditions 
this is sometimes enough to ensure that fi/l- is Hausdorff (see Exercise 2), 
but in general we need the following condition, which is even stronger: 

(8.1) Definition A discrete group r is said to act properly discontinuously 
on a manifold fi if the action is C" and satisfies the following two 
conditions: 

(i) Each x ~ f i  has a neighborhood U such that the set (hc l -1  
hU n U # 0) is finite; 

(ii) If x,  y e  fi are not in the same orbit, then there are neighborhoods 
U ,  V of x ,  y such that U n rl/ = 0. 

Observe that (ii) implies at once that M = fir is Hausdorff: In fact it is 
equivalent to the statement that the subset R = { ( x ,  y )  I x - y }  c M x M is 
closed (compare Lemma 2.4). 

A consequence of proper discontinuity is the following statement whose 
proof is left as an exercise (Exercise 3)-it could be used to replace (i) in the 
definition, so we denote it by (i'). 

The isotropy group r, of each x E M is jinite, and each x has a 
neighborhood U s u c h t h a t h U n U = ~ i f h # ~ , a n d h U =  U i f h E r , .  

(i') 

(8.2) Example Let M = Sn-', the set { X E  R" I llxll = l}  and r = Z , ,  the 
cyclic group of order 2 with generator h, that is, r consists of h and h2 = e, 
the identity. Then h(x) = - x and e ( x )  = x defines an action of l- on S"- '. It 
is left as an exercise to see that the action 0: Z2 x S"- ' 4 S"- ' is free and 
properly discontinuous and that the quotient space S"- ' /Z2 is none other 
than real projective n - 1 space P - ' ( R ) .  

This and other examples, such as S' identified with R/Z (see Example 8.7 
below), lead to the following theorem: 
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(8.3) Theorem Let r be a discrete group which actsfreely and properly 
discontinuously on a manifold A. Then there is a unique C" structure of 
dgerentiuhle manijold on M = A/r (with the quotient topology) such that 
each P E  M has a connected neighborhood U with the property: 
n- ' ( U )  = u 0, is a decomposition of II- ' ( U )  into its (open) connected com- 
ponents and II I 0, is a diffeumorphism unto U for each component 0,. 

Proof The manifold M is Hausdorff since r acts properly discontin- 
uously. By Lemma 2.3 it has a countable basis of open sets. Using both (i') 
and the assumption that the action is free, we may find for each x E A?l a 
neighborhood 0 such that h a  n 0 = 0 except when h = e. This implies 
that nfi (= n I 0) is one-to-one onto its image U ,  and therefore nc: 0 + U is 
a homeomorphism of 0 to the open set U-the mapping II being both 
continuous and open. There is no loss of generality in supposing 0 to be a 
connected coordinate neighborhood 0, @. Then taking cp = @ 0 nil, we 
have cp: U + @(0) c R" is a homeomorphism. Since every P E  M is the 
image of some x E fi, we see that M is locally Euclidean. Thus M is a 
topological manifold. The coordinate neighborhoods U ,  cp just described 
will be called udniissible; the differentiable structure is determined by the 
admissible coordinate neighborhoods. Note that n- ' (U)  = uhE ,- h 0 ,  a dis- 
joint union of connected open sets each diffeomorphic to 0. Since 
n: h 0  + U is the same map as 7c 0 h - ' :  h 0  + U ,  the fact that II I h 0  is a 
diffeomorphism will follow trivially from the fact that h-' and II I 0: 0 + U 
are diffeomorphisms after we establish that any overlapping admissible 
neighborhoods U ,  cp and V ,  # are C"-compatible, so that they define a C" 
structure. 

To prove this let U = n ( 0 )  and V = n ( t )  where 0, @ and P, $ are the 
corresponding coordinate neighborhoods on fi. If p E U n V ,  then there are 
points X E  0 and Y E  P (possibly not distinct) with n(x)  = p = n(y) .  This 
latter implies that x = h y )  for some h E r. Since h is a diffeomorphism, 
t, = h ( P )  with $, = k 0 h - '  is a coordinate neighborhood and 
$ = $ o I I E '  = 0 np,' . However, 0, @ and t,, G1 are 
C"-compatible and thus U ,  cp and V ,  # are also compatible. Because of the 
requirement that n( 0) be a diffeomorphism, no other C" structure is possib- 

' I  h I? ni = 

le. I 

We remark that n is C" of rank n = dim fi = dim M since it is locally a 
diffeomorphism. Of course, it can be one-to-one only when r = {e}  for 
II- ' ( p )  = Tx for some x, and this orbit Tx is in one-to-one correspondence 
with r itself by virtue of the assumption that r acts freely. 

We shall prove a lemma and then a theorem which will supply some 
examples of free, properly discontinuous action. 
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(8.4) Lemma Let G be a Lie group and T a subgroup which has the 
property that there exists a neighborhood U of e such that U n T = {e}. Then 
r is a countable, closed subset of G and is discrete as a subspace. 

Proof We first show that T is closed as a subset and is discrete in the 
relative topology. Let V be a neighborhood of e such that V V -  c U .  As we 
have seen before there exist such V since the map ( g l ,  9,) -+ g 1  g ;  ' is contin- 
uous and takes (e, e )  --t e. If {h,} c r is a sequence and lim h, = g ,  then there 
is an integer N > 0 such that for n > N we have h, E Vg, a neighborhood of 
g. Suppose u,,  U , E  V so chosen that h, = u,g and h, = v,g. Then 
h, h i '  = u , u i l  E U .  From U n l- = {e} it follows that h,h;' = e so h, = h, 
for all n, m > N ;  thus g = hN E r, which means that r is closed. Moreover 
for U of the hypothesis and h E T, hU is a neighborhood ofh whose intersec- 
tion with r is just h;  this proves the discreteness. Finally T must be count- 
able since {hV, h E T} form a nonintersecting family of disjoint open sets 
indexed by T. In fact, if hl V n h, V # 0, then hl u1 = h, u2 for u,, u, E V 
and this implies h; ' h ,  = u,  u;' E VV- '  c U so that h,  = h,. Were T not 
countable, this would mean we could not have a countable basis of open 
sets. I 

We remark that a with this property is a closed zerodimensional Lie 
subgroup of G in the sense of Definition6.17; such subgroups are often 
called simply discrete subgroups. We give examples below. 

(8.5) Theorem 
properly discontinuously on G by left translations. 

Any discrete subgroup T of a Lie group G acts freely and 

Proof No other translation than the identity has a fixed point so the 
action is free. To see that it is properly discontinuous we must check (i) and 
(ii) of Definition 8.1. Choosing U ,  V neighborhoods of e as in the proof of 
the preceding lemma so that V V - '  c U and U n r = {e}, we see that the 
only h E T such that hV n V # 0 is h = e. This proves (i). To prove (ii) we 
argue as follows. If Tx and T y  are distinct orbits, then x $ Ty,  and since T y  is 
closed, by the regularity of G there is a neighborhood U of x such that 
U n Ty = 0. Let V be a neighborhood of e such that xVV- '  c U .  I f  the 
open sets TxV and TyV intersect, then some element of x V V - '  must be in 
Ty, which is an immediate contradiction. This completes the proof. I 

(86) Corollary If T is a discrete subgroup of a Lie group G, then the space 
of right (or left) cosets G/T is a C" manifold and n: G + G/T is a C" mapping. 

This is a combination of Theorems 8.3 and 8.5. It may also be considered 
as a generalization of Theorem 7.12 since r is a closed subgroup of G. 
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(8.7) Example A particularly important example is the following. Let 
G = V", that is, R" considered as a vector space, and let r = Z", the n-tuples 
of integers-usually called the integral lattice. [More generally one could 
take for the integral linear combinations of any basis f , ,  . . . , f, of V".] is a 
discrete subgroup; the neighborhood C:(O) of the origin with E < 1 does not 
contain any element of r other than (0, . . . , 0). The reader should verify that 
V"/r = V"/Z" is diffeomorphic to T" = S' x x S' ,  the n-dimensional 
torus, and that n is a Lie group homomorphism of V" onto T" with r as 
kernel. 

(8.8) Example Any finite subgroup r of a Lie group G is a discrete 
subgroup. When C is compact, a discrete subgroup must be finite; but even 
in this case there are interesting examples. Thus in the case of S 0 ( 3 ) ,  the 
group of 3 x 3 orthogonal matrices of determinant + 1, the subgroups of 
symmetries of the five regular solids give examples among which is the, 
famous icosahedral group, which contains 60 elements. (See Wolf [l, 
Section 2.61.) 

(8.9) Example In the case of groups which are not compact we have 
many variations of the following theme: Let Go = Gl(n, R )  and 
To = Sl(n, Z) ,  the n x n matrices with integer coefficients and determinant 
+ 1. Since the topology of Go is obtained by considering it as an open subset 
of R"', it is clear that To corresponds to the intersection of G o  with the 
integral lattice Z"* and hence is discrete. Having said this, suppose G to be a 
Lie subgroup of Go and let r = To n G. Then r is discrete in G. An illustra- 
tion is the following: Let G be all matrices in Gl(n, R )  with + 1 on the main 
diagonal and zero below and let r be its intersection with Sl(n, 2). 

An interesting question about which one can speculate is the following: 
In which, if any, of these cases is G/T compact? Note that it is compact when 
G = V" and r = Z". A necessary and sufficient condition for compactness is 
the existence of a compact subset K c G whose r-orbit covers G,  TK = G. 
In Example 8.7, any cube K of side one or greater has this property. 

We terminate by mentioning some examples related to "tiling" the plane 
and to crystallography. Note that reflection in a line is a rigid motion of the 
plane, and in fact any rigid motion is a product of reflections, which thus 
generate the group of motions of the plane. For example, the group r 
generated by reflections in the four lines x = 0, x = f, y = 0, y = relative 
to a fixed Cartesian coordinate system contains the group of translations 
(x, y )  -, (x + m, y + n), rn, n integers. This latter group may be identified 
with the subgroup Zz of V2 discussed above. Moreover the action of r 
leaves unchanged the figure consisting of lines x = k/2,  y = 1/2, k,  1 integers, 
that is, a collection of squares which "tile" the plane. 



Similarly, if we tile the plane with other polygons as in Fig. 111.12, we see 
that the group r of reflections in all lines forming edges of these polygons 
leaves the whole configuration or tiling unchanged. The reader can verify 
geometrically that the group r in these illustrations acts properly discontin- 
uously. Is the action free? This is an important method of obtaining such 
group actions. 

Figure 111.12 

1. 

2. 

3. 

4. 
5. 

6. 

9 

Exercises 

Verify that if r acts discontinuously as a discrete group of diffeomor- 
phisms of a manifold M, then the orbits rx are closed, discrete sets and 
conversely if the orbits are closed and discrete, then the action is 
discontinuous. 
Suppose that a C" manifold M is a metric space and that r is a discrete 
group of C" isometries acting discontinuously on M. Show that the 
action is necessarily properly discontinuous. 
(a) Show that (i) may be replaced by (i') in Definition 8.1; and 
(b) show that (ii) may be replaced by (ii'): fi/r is Hausdorff. 
Check that P/.? and T" = S' x . . x S" are diffeomorphic. 
Check in detail that Z ,  acts freely and properly discontinuously on S"-' 
and that Sn-'/Z2 is P"-' (R) .  
Let G consist of all 3 x 3 matrices which have + 1 along the diagonal 
and zero below and r the matrices in G with integer entries. Show that 
is a closed discrete subgroup and G/T is a compact Hausdorff space. 

Covering Manifolds 
Some of the examples of the previous section are intimatelv related to the 

notion of covering manifolds. Let fi and M be two C" manifolds of the 
same dimension and n: fi M a C" mapping. Using this notation. we 
make the following definition: 

(9.1) Definition fi is said to be a cooering (manifolbltl) of M with covering 
mapping n if it is connected and if each p E M has a conncctcd neighborhood 
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U such that n - ' ( U )  = u U,,  a union of open components U , ,  with the 
property that q,, , the restriction of IT to U,,  is a diffeomorphism onto U.  
The U are called atlmissihk neighborhoods and IC is called the projection or 
cowrimq mapping. 

Examples abound in the previous section: ,a = R covers M = S' 
realized as complex numbers of absolute value + I with n(r) = exp h i t .  
(This may be visualized as in Fig. 111.13 with n thc puicction to the circle S'. 

Figure 111.13 

M =s' 

Morc generally = R" covers T". Example 8.2 shows that S"-'  covers 
PI- ' ( R )  and in a very general way Theorem 8.3 tells us that if acts freely 
and properly discontinuously on fi, then fi covers M = m/r. Here the 
map 7c is the obvious one: it takes each .YE M to its orbit T.u which is a point 
of M. 

I t  would seem at first glance that the examples of covering manifolds 
must be much more extensive than those furnished via Theorem 8.3. We 
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shall see much later that this is not the case. At present we can only begin to 
show how this is demonstrated. Let us assume then that a:  fi -, M is any 
covering of a manifold M by a connected manifold fi. We indicate how this 
may give rise to a group f acting freely and properly discontinuously on a. 
(9.2) Definition A diffeomorphism h :  fi 4 fi is said to be a covering 
transformation, or deck transformation, if a 0 h = R. 

Note that this is equivalent to the requirement that each set n- ' (p)  is 
carried into itself. In case the covering is one arising from free, properly 
discontinuous action of a group r on fi, then each h E r is a covering 
transformation of the covering a: fi -, fir. We verify at once that the set 
of all covering transformations is a group acting on fi. It contains at least 
the identity so it is not empty. 

Given any x E fi and p = R ( x ) ,  let U be an admissible neighborhood of p 
so a- ' (V)  = u cu, where a = 1, 2, ... (the collection of mutually disjoint 
neighborhoods { Uu} .must be countable), and let xu = a-  ' ( p )  n 0,. Then x 
is one of the xu's, say x 1  ; the set of xu's is exactly n- ' (p)  and h :  n- ' (p)  4 
n- ' (p)  is a permutation of this set. It follows that h(x,) = xu, and 
h :  0, -, o,, is a diffeomorphism; in fact h 1 0, = ni,! 0 ag,. We can con- 
clude that the points left fixed by h form an open set. By continuity of h they 
also form a closed set, and-fi being connected-this set is empty or h is the 
identity. In particular, two covering transformations with the same value on 
a point x must be identical. Thus covering transformations are completely 
determined by the permutation a -, a' they induce on the set of points 
{xu} = a - ' ( p )  for an arbitrary (but fixed) point P E  M .  In particular, the 
action of f on fi is free. If x i  E n-'(p), then h + hx, maps F into n- ' ( p ) .  
This mapping is an injection so f must be countable, and as a discrete group 
of diffeomorphisms of fi, it acts differentiably on A. This proves, in part, the 
following theorem : 

(9.3) Theorem With the notation above, f actsfreely and properly discon- 
tinuously on fi. If p E M and f is transitive on IL- ' ( p ) ,  then fir is naturally 
difleomorphic to M and relative to this diffeomorphism the covering map 
a:  fi -, M corresponds to the projection of each x E a to its orbit f, . 

Proof We have already seen that f acts on a freely since only the 
identity has a fixed point. We must check (using admissable neighborhoods) 
that the action is properly discontinuous. If x E fi and p = a(x) ,  then 
X E ~ X , }  = a-'(p), say x = xlr and if h # e, then h(x , )  = xp # x 1  so 
h ( U , )  = 0, with 0, n 0, = 0. Thus the first part of proper discontinuity 
is proved. 

For the second part we take x, y E fi not in the same orbit of f and 
consider two cases: either a(x)  = n(y) or not. If they are the same, denote 
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this point by p. as above, and note that in permuting {xu} = TI- ' ( p ) ,  no h E f 
takes x = xu to y = xg (a # /I); whence 0, is not carried to 0, by any h E f .  
This establishes (ii) of Definition 8.1 in this case. When, on the other hand, 
n(x) = p and n(y) = q are distinct, it is even easier. Let U ,  V be disjoint 
admissible neighborhoods of p, 4, respectively. Then the open sets n- ' (U)  
and n- '( V )  are disjoint and carried into themselves by every h E f ,  so they 
answer to requirement (ii). Thus the action is properly discontinuous. 

Now define a map n1 : fir + M as follows: If [y] is a point of fir, that 
is, an orbit f y  o f f ,  then let a, ( [y ] )  = n(y). This makes sense since n(hy) = 
n(y). Since &l is connected, fi/f is connected. The mapping n l  is onto, since 
n: + M is onto. Further nl is a covering map (to see this one must merely 
check the definition of fir from Theorem 8.3). Now suppose further that f 
is transitive on n- ' (p) for some p E M .  Then n; '(p) consists of a single point. 
This reduces the proof of the last part of the theorem to the following lemma, 
whose proof is left to the exercises. I 

(9.4) Lemma Let n: fi --f M he a covering and suppose that for some 
P E  M ,  n-'(p) is a single point. Then n is a diffeomorphism. 

Exercises 

1. Prove Lemma 9.4 by using the connectedness of a. 
2. If n: fi + M is a covering and the group f of covering transformations 

is not transitive on fi, then show that we have naturally defined cover- 
ings nl: fi + 

3. Show that the covering transformations form a group and that if 
x, y E M, a covering manifold of M ,  then there is at most one covering 
transformation taking x to y. 

4. Let I = [0, 13 be the closed unit interval and I" = I x x I, the n-fold 
Cartesian product. Suppose F :  I" + M is continuous with 
p = F(0,  . . . , 0). If n: a + M is a covering and x E n- ' ( p ) ,  then prove 
that there is a unique continuous map F: I" + fi such that F = n 0 F 
and p(0, . . . , 0) = x.  

5 .  Let fi, M be C" manifolds of dimension n and n: + M a C" map 
which is onto and has rank n at each point. Prove or disprove the 
statements: (a) n is locally a diffeomorphism; (b) a is a covering map. 

6 .  Let n: fi + M be a covering and X a connected space F :  X -, M a 
continuous mapping. Suppose F,, F,: X -, fi have the property that 
n o F i  = F, and suppose they agree on one point of X .  Show that 

7. Let n: fi + M be a covering and F :  [a, b] + M a continuous curve from 
F ( a )  = p to F(b)  = q. If xo E n- '(p), show that there is a unique contin- 
uous curve F: [a, b] + fi such that F(a) = xo and n 0 F = F. 

and n2: fir + M such that n = n2 0 nl. 

. FI = F 2 .  
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Notes 

The concept of differentiable manifold which was presented in this chapter is the result of 
many influences and the work of many great mathematicians beginning with Gauss and Riem- 
ann. In its present form it is of fairly recent creation. The early work in differential geometry was 
of a local character-hence open subsets of Euclidean space were adequate models. Even the 
space of non-Euclidean geometry, as a manifold, is equivalent to Euclidean space-it is only the 
metric aspects of the geometry which are different. The same is true of Lie groups, as studied by 
Lie, since only group germs or local Lie groups, that is, neighborhoods of the identity, were 
considered. Except for Riemann surfaces and projective spaces. there was little to force the 
global aspects of manifolds into prominence. However, in the present century, beginning 
especially with the work of Poincare, manifolds as they are now studied became a major 
preoccupation of mathematics. 

Poincare, whose imprint is everywhere in this subject, studied manifolds from many points 
of view: as phase spaces of dynamical systems, as Riemann surfaces (in which covering spaces 
and discontinuous groups played an important role), and from the aspect of algebraic topology. 
(For discussion of these topics the reader can consult the survey article by Smale [ I ]  and the 
books of Siege1 [l] or Lehner [l].) All of the work of Cartan on Lie groups and diNerential 
geometry (see Chern and Chevalley [l]) has had an enormous influence on the subject. Finally 
Weyl's book [I]  on Riemann surfaces and the paper of Whitney [ I ]  did much to refine the 
concept of differentiable manifold to its present form. 



Iv VECTOR FIELDS ON A MANIFOLD 

In  this chapter we introduce some of the most basic tools used in the study of differentiable 
manifolds. First we define the tangent space T,(M) attached to each P E  M ,  M a C"' manifold. 
Each element X, of T,,(M) can be considered as an operator (directional derivative) on 
C'-functions at p, generalizing one of the definitions in the case of R". We also see that a C"' 
mapping F: M - N induces a linear map F,:  T,(M) -. T&,(N) on the tangent space at each 
point. 

Assigning a vector X p  to each PE M we obtain a vector field on M, just as in the special case 
R". Vector fields are intimately associated with the action of the Lie group R on M, that is, 
one-parameter transformation groups. The relation between them is a consequence of-and in 
some sense equivalent to-the fundamental existence theorem for solutions of systems of ordin- 
ary differential equations. Section 2 gives the basic definitions of vector fields, Section 3 the 
basic definitions of one-parameter transformation groups acting on a manifold and Section 4 
the existence theorem. Systems of ordinary differential equations are shown to coincide with 
vector fields on manifolds and their solutions with curves on the manifold which are tangent to 
the vectors of the field. These curves are also orbits of the group action. In Section 5 a number 
of examples are given, using Lie group action as a starting point. 

In Section 6 a study is made of one-parameter (onedimensional) subgroups of a Lie group 
G. These are basic in the study of Lie groups, but we use them primarily as a source of examples 
and to illustrate the basic ideas above. They are in one-to-one correspondence with the vectors 
X,,E Te(G) the tangent space to G at the identity element and, in the case of matrix groups, are 
easily obtainable in terms of the "exponential" of a matrix. 

Section 7 is concerned with the set X ( M )  of all C' -vector fields on M. I t  is a vector space 
105 
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over R and a module over the C" functions on M. Moreover it has a naturally defined product, 
the bracket [X. Y]. Using all these ideas one is able to define the Lie derivative L ,  Y of the 
vector field Y in the direction of the field X ;  this gives a new vector field dependent on X and Y. 
This derivative results from the group action associated with X, which enables us to compute 
the change in Y as we move along the orbit. 

The final two sections give Frobenius' theorem, a very basicexistence theorem in manifold 
theory, and some applications. These two sections can be omitted on a first reading; they are 
important but we make relatively few applications of them. For a first reading, in fact, 
Sections 1-4 are the most crucial. 

1 The Tangent Space at a Point of a Manifold 

Let M denote a C" manifold of dimension n. We have defined for M the 
concepts of C" function on an open subset U and of C" mapping to another 
manifold. This allows us to consider Cm(U), the collection of all C" func- 
tions on the open subset U (including the special case U = M), and to 
verify-as we did for U c R"-that it is a commutative algebra over the real 
numbers R. As before, R may be identified in a natural way with the constant 
functions and the constant 1 with the unit. Given any point P E  M we 
may-as for R"4efine C"(p) as the algebra of C" functions whose domain 
of definition includes some open neighborhood of p ,  with functions 
identified if they agree on any neighborhood of p .  The objects so obtained 
are called "germs" of C" functions (Exercise 1). Choosing an arbitrary 
coordinate neighborhood U ,  cp of p it is easily verified that cp* :  C"(cp(p)) + 

Cm(p) given by cp*(f) = f o  cp is an isomorphism of the algebra of "germs" 
of C" functions at cp(p) E R" onto the algebra C"(p). This is to be expected 
since locally M is C"-equivalent to R" by the diffeomorphism cp. Our main 
purpose is to attach to each p E M a tangent vector space T,(M), as was done 
for R" and E". [See Fig. IV.1 for the geometric idea of T,(M).] Although our 
first definitions in the latter case giving T,(R") as directed line segments do 
not generalize, the identification (based on Theorem 11.4.1) of T,(R") with 
directional derivatives does. 

(1.1) Definition We define the tangent space T,(M) to M at p to be the set 
of all mappings X , :  C"(p) -+ R satisfying for all a,  P E R andf, g E C m ( p )  the 
two conditions 

(i) X , ( a f +  Pg) = a ( x , f )  + P(X,g )  (linearity), 

(4 X, ( fS )  = ( X P f ) 9 ( P )  + f ( P ) ( X , d  (bibniz rule), 
with the vector space operations in T,(M) defined by 

( X ,  + Yp) f=  X , f +  ypf, 

( a X , ) f =  a ( X , f ) .  

A tangent vector to M at p is any X , E  T,(M). 
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Figure IV.1 

One should check that this does in fact define a vector space T,(M) at 
each point p of M .  Although we are now dealing with C" functions on a 
manifold, formally the proofs are the same as in Section 11.4 where it was 
established that 9(a ) ,  the mappings of Cm(a) to R having properties (i) and 
(ii), was a vector space. 

We remark that the definition of T,(M) uses only C"(p), not all of M ;  
thus if U is any open set of M containing p ,  then T,(U) and T,(M) are 
naturally identijied. Of course, our proof that T,(M) is a vector space in- 
cludes the earlier case of R", the difference is that we no longer have the 
alternative "geometric" way of defining T,(M) as pairs of points pz as we 
did in R", because that method used special features of R", namely the 
existence of a natural one-to-one correspondence with the vector space Y". 
For manifolds in general, any such correspondence entails a choice of a 
coordinate neighborhood and depends on the particular neighborhood 
selected; so it is not natural in the sense we have used the term. However, for 
each choice of coordinate neighborhood U ,  cp containing p E M we obtain an 
isomorphism to Y" as we shall see. It is by this method that we can establish 
that dim T,(M) = dim M .  

(1.2) Theorem Let F :  M + N be a C" map of manifolds. Then for  P E  M 
the map F*: C"(F(p))  + C m ( p )  dejned by  F*( f )  = f 0 F is a homomorphism 
of algebras and induces a dual vector space homomorphism F, :  T,(M) + 

TF(p)(N) ,  dejned by  F J X , )  f = X,(F*f) ,  which gives F, (X, )  as a map of 
C"(F(p))  to R. When F :  M + M is the identity, both F* and F ,  are the 
identity isomorphism. If H = G 0 F is a composition of C" maps, then 
H* = F* 0 G* and H ,  = G , .  F , .  
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Proof The proof consists of routinely checking the statements against 
definitions. We omit the verification that F* is a homomorphism and con- 
sider F ,  only. Let X , E  T , ( M )  andf ,  g E C"(F(p)) ;  we must prove that the 
map F,(X,): C"(F(p))  + R is a vector at  F(p), that is, a linear map satisfy- 
ing the Leibniz rule. We have 

F,(XP)(fS) = X,F*(fS) = X L "  F ) ( g  0 1  
= XP(f0  F)S(F(P)) + f ( F ( P ) ) X , ( f O  G)? 

and so we obtain 

F*(XP)(fS) = ( F , ( X p ) f ) @ ( P ) )  + f (F(p ) )F*(X , )g  

(linearity is even simpler). Thus F , :  T,(M) + TF(p,(N).  Further, F ,  is a 
homomorphism 

F,(aXp + P y x  = (ax, + PYJF o f )  = aXp(F 0 . f )  + PY,(F o f )  

= aF, (X , ) f  + PF,(YP).f 

= "F,(XfJ)  + PF,(Yp)lf: I 

(1.3) Remark The homomorphism F ,  T p ( M )  + TF(p)(M) is often called 
the difSerentia1 of F .  One frequently sees other notations for F , ,  for example, 
dF, DF, F', and so on. The * is a subscript since the mapping is in the same 
"direction" as F,  that is, from M to N ,  whereas F * :  C m ( F ( p ) )  + C"'(p) goes 
opposite to the direction of F .  This notational convention can be quite 
important and reflects a similar situation in linear algebra related to linear 
mappings of vector spaces and their duals. 

Although, once definitions are correctly made and rather mechanically 
applied, the statements above have trivial proofs, nonetheless they are most 
important and useful, even if M and N are Euclidean spaces. We shall 
consider some of the consequences now. 

(1.4) Corollary lj' F :  M --t N is  a dgeomorphism of M onto an open set 
U c N and p E M ,  then F , :  Tp( M )  -, TFcp,( N )  is an isomorphism onto. 

This follows at once from the last statement of the theorem and the 
remark after Definition 1.1 if we suppose G is inverse to F. Then both 
G ,  0 F , :  T,(M) -, T p ( M )  and F ,  0 G,: TF[,)(N) + TF(p)(N) are the identity 
isomorphism on the corresponding vector space. 

Remembering that any open subset of a manifold is a (sub)manifold of 
the same dimension, we see that if U ,  cp is a coordinate neighborhood on M ,  
then the coordinate map cp induces an isomorphism 'p,: T p ( M )  + T,,,)(R") 
of the tangent space at each point p E U onto T,(R"), a = cp(p). The map 'p- ', 
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on the other hand, maps T,(R") isomorphically onto T,(M). The images 
E; ,  = cp+ '(?/?xi), i = 1, . . . , n,  of the natural basis d/dx l ,  . . . , d/dx" at each 
a E c p ( U )  c R" determine at p = c p - ' ( a ) ~  M a basis El,,  ..., En, of T,(M); 
we call these bases the coordinute .frames. 

(1.5) Corollary T o  each coordinute neighborhood U on M there corre- 
sponds a naturul basis El, ,  . . . , En, of T,(M) for every p E U ; in particular, 
dim TJM) = dim M. Let f be u C*,functioii dejned in a neighborhood of p ,  
and .f = f c-1 cp- ' its expression in local Coordinates relative to U ,  cp. Then 
Eip.f'  = (?f/(3~')~(,,, . I n  particular, ifx'(q) is the ith coordinate function, X ,  xi is 
the ith component qf X, in this basis, that i s ,  X ,  = cy= ( X ,  xi )Ei , .  

The last statement of the corollary is a restatement of the definition in 
Theorem 1.2 for E;, = cp; '(d/d.x'), namely, 

I f  we take ,f to be the ith coordinate function, f ( q )  = x'(q) and 
X ,  = 1 aJEjp,  then 

We may use this to derive a standard formula which gives the matrix of 
the linear map F ,  relative to local coordinate systems. Let F :  M -+ N be a 
smooth map, and let U ,  cp and V ,  $ be coordinate neighborhoods on M and 
N with F ( U )  c V .  Suppose that in these local coordinates F is given by 

yi = f ' ( x l ,  ..., x"), i = 1, ..., m, 

and that p is a point with coordinates a = (a ' ,  . . ., a"). Then F ( p )  has y 
coordinates determined by these functions. Further let dyj/dx' denote 
?fJ/? xi. 

(1.6) Theorem Let E i ,  = '(6/?xi) and Ejp(,,, = $, ' ( S / S j J ) ,  i = 1, . . . , n 
and j = 1, . . . , ni, be the busis q/' T,(M) rind TF(p)(N), respectively, determined 
by the given coordinates neighhorhoods. Then 

I n  terms of components, if X = c aiEi,, maps to F,(X,) = c PJTF(,), then we 
haw 
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The partial derivatives in these formulas are evaluated at the coordinates of 
p :  a = (a', . . . , a") = cp(p). 

Proof We have F,(Ei,)  = F ,  0 ( p i  l(a/axi)q(p) 2nd  according to 
Corollary 1.5, to compute its components relative to EjF(,), we must apply 
this vector as an operator on Cm(F(p))  to the coordinate functions y j  

these derivatives being evaluated at the coordinates of p, that is, at cp(p); they 
could also be written (8#/8xi),+,(,). I 

We now obtain two corollaries to Theorem 1.6, in the first, F,  M ,  and N 
are as in Theorem 1.6. 

(1.7) Corollary The rank of F at p is exactly the dimension of the image of 
F ,  (T,(M)). F ,  is an isomorphism into ifand only if this rank is the dimension 
of M ;  it is onto if and only i f  the rank equals dim N.  

Proof We obtain this immediately from linear algebra since (dy'/dxj) is 
exactly the Jacobian of $ 0  F 0 q- ' ,  which we used to define the rank in 
Definition 111.4.1, and is also the matrix of the linear transformation 
F,:  T,(M) + T,(N) in the given bases. I 

This corollary gives a characterization of the rank which is independent 
of any coordinate systems, a situation toward which we constantly strive in 
studying properties of various objects on manifolds. 

If we apply the theorem to the maps F = @ 0 cp-'  and F - I  = cp 0 @ - '  
which give the change of coordinates from U, cp to 0, @ in U n 0 on M ,  
then we obtain formulas for change of basis in T,(M) and the corresponding 
change of components relative to these bases. 

(9 Corollary Let p E U n 0 and let Ei, = ( p i  ' (a /dx i )  and 
Ei, = @i' (a /ax ' )  be the bases of T , ( M )  corresponding to the two coordinate 
systems. Then with indices running from 1 to n, we have 

lf X, = aiEi, = c f l j E j p ,  then 
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The proof is left as an exercise. The second set of formulas is often used to 
define tangent vector at a point p of a manifold: a tangent vector X, is an 
equivalence class of the collection of all n-tuples { (a ' ,  . . . , a")(u. ,,,) lai E R, U ,  cp 
a coordinate neighborhood of p } ;  two such n-tuples (a1, . . . , a")", ,,, and 
(p', . . . , p ) ~ , ~  being equivalent if they are related as in last formula of 
Corollary 1.8 (see Exercise 4). 

We may apply Corollary 1.7 to the following situation: M is a submani- 
fold of N with F :  M -+ N the immersion or inclusion map of M into N .  In 
either case, the mapping F from M (with its C" manifold structure) into N 
(with its C"' structure) is a C" mapping, and rank F = dim M .  This means 
that F,: T,(M) -+ Tp(N) is an injective isomorphism so that T,(M) can be 
identijed with a subspace of T,(N). This identification being made we can 
think of T,(M), the tangent space to M, as a subspace in T , ( N )  for each 
p E M .  Applying this principle to our examples of submanifolds of R", 
especially when n = 2 or 3, will enable us to recapture some of the intuitive 
meaning of tangent vector which was lost in the transition from Euclidean 
space to general manifolds. Of course this applies only to those manifolds 
which can be realized as, that is, are diffeomorphic to, a submanifold of R". 

(1.9) Example Consider the case of a C" curve F :  M + N in a manifold, 
where M = (a,  b )  is an open interval of R ;  for the moment we drop the 
requirement that F is an immersion. Given t o €  M ,  a < to  < b, then d/dt 
taken at to is a basis for T,,(M). Suppose p = F( to )  and f~ Cm(p), then 
F,(d/dt)  is determined by its value on all such f: 

We shall call this vector the (tangent) velocity vector to the curve at p .  
(Fig.IV.2). In this interpretation we use the parameter t E R as time, and we 
think of F ( t )  as a point moving in M .  

In particular, if U ,  cp are coordinates around p, then in the local coordin- 
ates F is given by p ( t )  = q 0 F ( t )  = (xl(t), . . . , x"(t)) .  The ith coordinate x i  is 
a function on U and using somewhat sloppy notation, we write x i ( [ )  = 
(xi 0 F ) ( t ) ;  thus F,(d/dt)x' = (dxi /dt) , , ,  which we denote x i ( r o ) ,  i = 1, . . . , n. 
So by Theorem 1.6 (with El, = d/dt and E's replacing Ps), 

Now as a special case let N = R". With the usual (canonical) coordinates 
of R" this formula means that the image of d/dt is just the velocity vector at 
the point p = ( x ' ( t o ) ,  . . . , x"( to) )  of the curve. Its components relative to the 
natural basis at the point p are x'(ro), ..., i " ( to ) ;  it is the vector of Tp(R") 
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Figure 1V.2 

whose initial point is p = x( to )  and whose terminal point is ( x l ( t o )  + xl(to), 
. . . , x"(to) + Y(to)). If the rank of F at to is 1, then F ,  is an isomorphism and 
we may identify the tangent space to the image curve at  p with the subspace 
of T'(R") spanned by this vector, thus obtaining the usual tangent line at  the 
point p of the curve. If the rank of F at to  is 0, then F,(d /d t )  = 0. 

(1.10) Example We now suppose M to be a two-dimensional submani- 
fold of R3, that is, a surface. Let W be an open subset, say a rectangle in the 
(u, u)-plane R2 and 8: W -+ R3 a parametrization of a portion of M 
(Fig.IV.3). Namely, suppose 8 is an imbedding whose image is an open 
subset V of M; V ,  8-' is a coordinate neighborhood on M. Suppose 
0(u,,  uo) = (xo , y o ,  zo), where we now u e  (x, y, z )  as the natural coordin- 
ates in R3. We may assume that 0 is given by coordinate functions 

x = f ( u ,  u), y = g(u, u), z = h(u, u) .  

Since 8 is an imbedding, the Jacobian matrix a($ g, h)/a(u, u )  has rank 2 at 
each point of W .  We consider the image of the basis vectors a/& and c?/du at 
(uo ,  u,,). We denote these by ( X J 0  and (XJo. According to the first formula 
of Theorem 1.6, they are given by 
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W 

Figure IV.3 

where we have written dxlau, d x l a u  for aflau, aflau, and so on, these deriva- 
tives being evaluated at u o ,  uo . Since 8, has rank 2, these are linearly 
independent vectors, and they span a two-dimensional subspace of 
qxo. zo) (R3) .  This subspace is what we have, by our identification, agreed 
to call the tangent space  of M ut the point  ( x o ,  y o ,  zo); it consists of all the 
vectors of the form aO,(d/&) + pO,(a/Ju) = a(X,),  + p ( X , ) , ,  a, B E  R ;  
their initial point, of course, is always at (xo, y o ,  zo). It is easily seen that this 
subspace is the usual tangent plane to a surface, as we would naturally 
expect it to be. We use one of the standard descriptions of the tangent plane 
at a point p of a surface M in R 3 :  the collection of all tangent vectors at p to 
curves through p which lie on M .  In fact let I be an open interval about 
t = to and let us consider a curve on N through (xo , y o ,  zo). It is no loss of 
generality to suppose thecurve given by F :  I -, W composed with 8: W + R 3 ;  
thus u, 11, are functions of t  with u( tO)  = uo and o( to)  = to  and the curve is 
given by 

W t ) )  = ( X ( ~ W 9  o(t))9 y(u(Q N), z(u(t)y 4t))). 

The tangent to the curve at ( x o ,  y o ,  zo) is given by 

(0 0 .)*(if) = x(to)ax a + j ( t 0 )  ~- a + t ( t 0 ) -  a 
dY aZ ' 

where 
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evaluated at ( x o ,  y o ,  zo) and t = t o .  Substituting and collecting terms, we 
have 

= 4 t o ) ( X u ) o  + 4 t o ) ( X v ) o .  

If we let u = t, u = u o ,  we obtain just ( X u ) o  = 0,(d/du) and analogously 
(XJ0 is tangent to the parameter curve u = u o ,  u = t. The coordinateframe 
vectors are tangent to the coordinate curues. 

This could also be derived directly from the relation (0 o F ) ,  = 6, 0 F ,  
of Theorem 1.2. This means that the (tangent) velocity to every curve in M 
through p = ( x o ,  yo ,  zo )  lies in the subspace Tp(M) c Tp(R3) spanned by 
( X J 0  and ( X J 0 .  Conversely by suitable choice of the curve every vector of 
T'(M) may be so represented. 

1. 

2. 

3. 
4. 

5. 

6. 

Exercises 

Let 8, be the family of C"' functionsf on open sets WJ of M which 
contain the point p .  Define a relation - on 9, byf-  g i f f =  g on a 
neighborhood of p .  Show that - is an equivalence relation and that the 
equivalence classes, called germs of C" functions at p ,  form an algebra 
C(p) with unit over R.  
Let F :  M -+ N be a C" mapping of manifolds. Show that 
f +  F * ( f )  = F ofdefines a homomorphism F*: C"(F(p))  -+ P ( p )  and 
prove the statements of Theorem 1.2 about F*. 
Prove Corollary 1.8. 
For p E M let % be the collection of all coordinate neighborhoods con- 
taining p. Let (u, ,  . . . , (p and (PI, . . . , P,,)O,G be objects consisting of 
an element of R" together with-or labeled by-a coordinate neighbor- 
hood of %. They will be called equivalent if they correspond by the 
formulas of Corollary 1.8. Show that this is an equivalence relation and 
that the classes form a vector space naturally isomorphic to T,(M). 
Using the notation of Example 1.10, show that for any a, j E R there is a 
parametrized curve on M through p whose velocity vector is exactly 

If the surface of Example 1.10 is given in the form z = h(x,  y) with 
zo = h(xo, yo), then show as a special case of our discussion that with 

a(Xu)o + P(X")O. 
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suitable parametrization the tangent plane qxo+ yo. zo ) (M)  consists of all 
vectors from (xo, y o ,  zo)  to points (x, y, z) satisfying 

Let N c M be a regular submanifold and U ,  q~ be a preferred coordinate 
neighborhood relative to N with local coordinates (x’, . . . , x”) and 
frames (El, ..., Em).  If N n U is given by x”+l = = x“ = 0, show 
that El, ,  .. ., En, is a basis of T,(N) for every P E N  n U .  Modify this 
statement so as to include immersed submanifolds. 

Vector Fields 

In a previous paragraph (Definition l . l) ,  we defined the notion of a 
tangent vector to a manifold at a point P E M ,  that is, an element X, of 
T,(M). In this section we will define and give examples of a C‘-vector field on 
M, r 2 0. A vector field X on M is, first of all, a “function” assigning to each 
point p of M an element X, of T,(M) (see Fig. IV.4). We place the word 
“function” in quotation marks since we have not really defined its range, 
only its domain M .  The range is, in fact, the set T ( M )  consisting of all 
tangent vectors at all points of M ,  T ( M )  = U P E M  T,(M). 

Figure IV.4 

Vector field X on M. 
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For future reference we note some properties of T ( M ) .  It is a set that is partitioned into 
disjoint subsets ( T p ( M ) }  which are indexed by the points of M, that is, to P E  M corresponds its 
tangent space T,(M). I t  follows that there is a natural projection A :  T ( M )  + M taking the 
vector X P e  T ( M )  to p. The vector field X as a function X :  M + T ( M ) ,  must satisfy the condi- 
tion n 0 X = iy , the identity on M .  Further details are given in Exercises 5-7. 

Second, a vector field X is required to satisfy some condition of regular- 
ity, that is, of continuity or differentiability. We impose this as follows: For 
p E M let U ,  cp be any coordinate neighborhood of p ,  and let El, ,  . . . , En, be 
the corresponding basis (coordinate frames) of T,(M). Then X , ,  the value of 
X at p ,  may be written uniquely as X, = a'&, . If p is varied in U ,  the 
components a', . . . , a" are well-defined functions of p which must, then, be 
given by functions of the local, coordinates (denoted by the same letters) 

a' = ai (x l ,  ..., x"), i = 1, ..., n, on cp(U) c R". 

We say that X is of class C', r 2 0, if these functions are of class c' on U for 
every local coordinate system U ,  cp. Since the expressions given in 
Corollary 1.8 (see also Exercise 4) are linear with C" coefficients, we see that 
this definition is independent of the coordinates used. (Note that we include 
the case r = 0 of continuous components.) Collecting these requirements 
leads to the precise definition: 

(2.1) Definition A oectorjeld X ofclass C'on M is a function assigning to 
each point p of M a vector X,E T,(M) whose components in the frames of 
any local coordinates U ,  cp are functions of class C' on the domain U of the 
coordinates. Unless otherwise noted we will use vector field to mean 
C"-vector field hereafter. 

We remark that this definition is somewhat awkward, especially as re- 
gards the regularity condition; our treatment places reliance on local coor- 
dinates. One way to avoid this is to define X to be C' if for every C" function 
f whose domain W, is an open subset of U ,  the function XJ defined by 
( X f ) ( p )  = X , f ;  is of class C'. Another very elegant approach is to give T ( M )  
the structure of a C" manifold and then X becomes a mapping, X :  M + 

T ( M ) ,  of one C" manifold to another. In this case we have already defined 
the meaning of c' in Definition 111.3.3. We shall develop these important 
ideas in the exercises. 

(2.2) Example If we consider M = R3 - {0}, then the gravitational field 
of an object of unit mass at 0 is a C"-vector field whose components 
a', a', a3 relative to the basis a/axi = E l ,  a/ax2 = E , ,  and (-i/ax3 = E 3  are 

. xi 
a' = -. 

r3  ' 
i = 1, 2, 3 with r = ((x')' + (x')' + ( x ~ ) ~ ) ~ ' ~ .  
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(2.3) Example Given any coordinate neighborhood U ,  cp on a manifold 
M ,  then U ,  being an open set of a manifold, is itself a manifold of the same 
dimension, say 11. The vector fields El = ( p i  '(?/?s'), i = 1, . . . , 11, have com- 
ponents a' = S j .  These are constants and hence C" functions on U ,  so that 
each El  is a C'-vector field on I/. The set El ,  . . . . E,, is a basis of T,(M) at 
each p~ U ,  the coordina~efiumes (Fig. IV.5). 

More generally, a set of k vector fields on a n ~ i ~ t ~ i f ~ l d  M ,  dim M = 11, 

which is linearly independent at each point is called ;I Irc4d o f k f a m e s  on M. 
If k = 11, then the frames form a basis at each point. Of course, it would be 
convenient if on a manifold one could always find such ;I field of n-frames, 

Figure IV.5 

Coordinate frames on U c M 

for then the components of any vector field would be globally defined, that 
is, functions whose domain is all of M .  This would relieve us ofthe necessity 
of using local coordinate neighborhoods and the associated frames 
El ,  .. ., E n .  However, i t  is known that this is not possible in general, for 
example, on the sphere S2 it is not possible to define even one continuous 
vector field X which is linearly independent (nonzero) at each point of S2. 
This a classical theorem of algebraic topology discovered by Brouwer ; it will 
be proved in Section VI.8. We shall give some further related examples for 
which we need the following lemma: 

(2.4) Lemma Lct N hr a reyulur suhmunifold of' M and let X he u 
C * -rector ,field on M .wdi rliut ,for each p E N, X, E T,(N). Then X restricted 
to N is a C - i w r o r  , f i r l t /  011 N .  
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Proof By hypothesis X assigns to each P E  N the tangent vector X, in 
the subspace T,(N) of T,(M). We must prove that X restricted to N is of class 
C". Let U, cp be a preferred coordinate neighborhood in M relative to N so 
that V = U n N ,  i,b = cp I y  is a coordinate neighborhood on N such that 
p E V if and only if its last m - n coordinates are zero: x""(p) = = 
xm(p)  = 0, dim N = n and dim M = m. If on U we have X = xyx l  aiEi ,  
then on V = U n N we must have a"" = = am = 0. This is because 
El,, . .., Em, span T,(N) for P E  V ,  a consequence of Corollary 1.7 (see 
Exercise 1.7). The ai are the same functions as in the case of U but with the 
last m - n variables equated to zero when we restrict to V .  Thus X restricted 
to N has C"-components relative to the frames El, . . . , En of preferred coor- 
dinate systems. However, by Corollary 1.8 it is clearly sufficient to check that 
X is C" for a covering by coordinate neighborhoods; it must then be C" 
relative to any coordinates. I 

(2.5) Example Although no nonvanishing continuous vector field exists 
on the 2-sphere S2, there are three mutually perpendicular unit vector fields 
on S 3  c R", that is, a frame field. Let S3 = { (x ' ,  x 2 ,  x3, x") 1 xf=l (x i )2  = l} 
and let the vector fields be given by 

at the point x = (x ' ,  x2 ,  x3 ,  x") of S3.  Since at each point these are mutually 
orthogonal unit vectors in R", they are independent. To see that they are 
tangent to S 3  it is enough to see that they are orthogonal to the radius vector 
from the origin 0 to the point x of S 3 ;  this is easy to check. There remains 
only the question of whether they are C"-vector fields. However, this is an 
immediate consequence of the preceding lemma with N = S3 and M = R". 

It is possible to show that all odddimensional spheres have at least one 
nonvanishing Cm-vector field and that-like S2-no evendimensional 
sphere has any continuous nonvanishing field of tangent vectors. It has 
recently been proved that only the spheres S', S3,  S7 have a C" field of bases 
as we have just seen to be the case for S3.  Manifolds with this very special 
property are called parallelizable. As already mentioned, coordinate neigh- 
borhoods are parallelizable. 

Having established the concept of vector field on a manifold, we must 
now consider what happens when we map a manifold N on which a vector 
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field is defined into another manifold M .  In Section 1 we saw that if 
F :  N M is a C" map, then to each point P E  M there is associated a 
homomorphism F,: T,(N) -+ 7',",(pJM). If X is a vector field on N ,  then 
F,(X,) is a vector at Ffp) .  However, this process does not in general induce a 
vector field on M for various reasons: first, F ( N )  may not be all of M ,  that is, 
given q E M it may well happen that for no p~ N is F ( p )  = 4. Second, even if 
F - ' ( q )  is not empty, it may contain more than one element, say p i ,  p z  with 
p 1  # p 2 ,  and then it may happen that F,(X, , )  # F,(X,,)  so that there is no 
uniquely determined vector Yp at 4 which is the image of vectors of the field 
X on N .  It is easy to construct examples of these mishaps, for instance, let N 
be the half-space x1 > 0 in R3 and F: N -+ M be projection to the coordin- 
ate plane x3 = 0. If X is the gravitational field of Example 2.2 restricted to 
N ,  we see that the image vectors do not determine a vector field on M .  

(2.6) Defini~ion If, using the notation above, we have a vector field Y on 
M such that for each 4 E M  and P E  F -  ' ( 4 )  c N we have F, (Xp)  = 5 ,  then 
we say that the vector fields X and Y are F-re~ated and we write, briefly, 
Y = F , ( X ) .  [We do not require F to be onto: If F - ' ( q )  is empty, then the 
condition is vacuously satisfied.] 

(2.7) Theorem If F: N + M is a diffeomorphism, then each vector Jield X 
on N is F-related ro a uniquely determined vectorjeld Y on M .  

Pvoof Since F is a diffeomorphism, it has an inverse G :  M 4 N ,  and at 
each point p we have F,: T,(N) -+ TF(p)(M)  is an isomorphism onto with G ,  
as inverse. Thus given a C"-vector field X on N ,  then at each point 4 of M ,  
the vector 5 = F,(XG{,& is uniquely determined. It then remains to check 
that Y is a C"-vector field. This is immediate if we introduce local coordin- 
ates and apply Theorem 1.6 to the component functions. I 

We remark that under the hypotheses of Lemma 2.4 we have a second 
example of F-related vector fields: Let F :  N -, M be the inclusion map and 
let X' be X restricted to N .  Then X' and X are F-related by the lemma. 
Further examples of F-related vector fields arise from the study of Lie 
groups. 

(2.8) Definition If F :  M -+ M is a diffeomorphism and X is a C" vector 
field on M such that F , ( X )  = X ,  that is, X is F-related to itself, then X is 
said to be invariant wirh respect to F ,  or F-invariant. 

(2.9) Theorem Let C be a Lie group and K ( G )  the tangent space at the 
identity. Then each X ,  E T,(G) determines uniquely a C"-vector Jield X on G 
which is inuariunt under left translations. I n  particular, G is parallelizable. 
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Proof To each g E G there corresponds exactly one left translation L, 
taking e to g .  Therefore if it exists, X is uniquely determined by the formula: 
X, = L,*(X,). Except for differentiability, this formula does define a left 
invariant vector field since for a E G, we have L,,(X,) = L,, 0 Lg*(Xe) = 
L,,*(X,) = Xag. We must show that X, so determined, is C". Let U ,  cp be a 
coordinate neighborhood of e such that cp(e) = (0, . . . , 0) and let V be a 
neighborhood of e satisfying V V  c U. Let g ,  h E V with coordinates 
x = ( x ' ,  . .., x") and y = (y ' ,  ..., y"), respectively, and let z = (z' ,  . . ., z") be 
the coordinates of the product gh. Then zi = f i ( x ,  y ) ,  i = 1, . . . , n, are C" 
functions on q( V )  x cp( V ) .  If we write X, = yiEi,, y l ,  . . . , y" real num- 
bers, then according to Theorem 1.6 the formula above for X, becomes 

since in local coordinates L, is given by zi = f i ( x ,  y ) ,  i = 1, . . . , n, with the 
coordinates x of g fixed. It follows that on V the components of X, in the 
coordinate frames are C" functions of the local coordinates. However, for 
any a E G the open set aV is the diffeomorphic image by L, of V .  Moreover 
X, as noted above, is La-invariant so that for every g = ah E aV we have 
X, = La*(X,,). It follows that X on aV is &,-related to X on V and therefore 
X is C" on aV by Theorem 2.7. Since X is C" in a neighborhood of each 
element of G, it is C" on G. I 

(2.10) Corollary Let G1 and G ,  be Lie groups and F: G1 -, G2 a homomor- 
phism. Then to each left-invariant vector field X on G1 there is a uniquely 
determined left-invariant vectorjield Y on G ,  which is F-related to X. 

Proof By Theorem 2.9, X is determined by X,,, its value at the identity 
el of G1. Let e ,  = F ( e l )  be the identity of G2 and let Y be the uniquely 
determined left-invariant vector field on G ,  such that X I  = F*(X,J. That Y 
should have this value at e2 is surely a necessary condition for Y to be 
F-related to X; and it remains only to see whether this vector field Y satisfies 
F,(X,) = YF(,) for every g E  GI. If so, Y is indeed F-related (and uniquely 
determined). We write the mapping F as a composition F = I,,(,, o F o L,- 1, 

using F ( x )  = F ( g ) F ( g - ' x ) ,  and note that since both X and Y are left- 
invariant by assumption, this gives 

F*(Xg) = LF(g)* F* " Lg-I*(xg), 
F*(Xg) = LF(g)* " F*(Xe) = LF(g)* &, 1 

F*(X,) = YF(,) * 

Therefore Y meets all conditions and the corollary is true. I 
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2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

Exercises 

Show that a function X assigning to each P E  M an element of 
T,(M)-as in Definition 2.1-is C" if and only if wheneverfis a C" 
function on an open set Wf of M ,  then Xf, defined by ( X f ) ( p )  = X,f, is 
C"' on W f .  
Show that a C"-vector field X on M defines a derivation on C " ( M )  by 
f-t Xfas defined in Exercise 1. 
Show that the derivations of C"(M), M a C" manifold, are in a natural 
one-to-one correspondence with X ( M )  the collection of all Cm-vector 
fields on M .  
Show that the collection X ( M )  of all C"-vector fields on M ,  is closed 
under addition and multiplication by C" functions [both defined poin- 
twise: (X + Y ) ,  = X, + Y, and (fX), = f ( p ) X , ] .  
Define a C" structure of a manifold on T ( M )  in such a manner that for 
each coordinate system U ,  q~ on M ,  with local coordinates (x', . . . , x") 
and frames El,  ..., E n ,  the set 0 = n - ' ( U )  with mapping @: 0 + 

R2" = R" x R" defined as follows is a coordinate neighborhood: For 
p E U ,  X, E 0, we suppose X, = a'&, and define @(X,) = (x ' (p) ,  
..., ~"(p); a', ..., a") = (cp(p) ;  a', ..., a"). 
Using Exercise 5, show that n: T ( M )  + M is C" and that T , ( M )  = 
n-'(p) is a submanifold of T ( M ) .  
Using Exercise 5,  show that the C"-vector fields on M correspond 
precisely to the C" mappings X: M + T ( M )  satisfying n 0 X = i M ,  the 
identity map on M [n(Xp)  = p ) ] .  
Show that if F :  N + M is C" and X is a C"-vector field on N ,  then an 
F-related vector field Y on M ,  if it exists, is uniquely determined if and 
only if F ( N )  is dense in M .  Let F :  N -t M be a one-to-one immersion 
and Y a C"-vector field on M such that for each q E F ( N )  we have Y, 
tangent to the submanifold F ( N ) .  Then show that there is a unique 
C'-vector field X on N such that X is F-related to Y .  [We call it the 
restriction of Y to the submanifold F(N) . ]  
Show that the restriction of 

10. 

1 1 .  

on R" + ' to S2"- ' defines a nonvanishing Ca-vector field on S2"- '. 
Let F :  M + M be a C" covering and Y any C"-vector field on M .  
Show that there is a unique C"-vector field X on fi such that X and Y 
are F-related. 
Show that any C"-vector field Y on S"-' c R" can be extended to a 
C"-vector field X on R" so that Y is i-related to X ,  i being the inclusion 
mapping. 
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12. Given a C" mapping F :  N + M and C"-vector fields X on N and Y 
on M, show that Y is F-related to X if and only if for any C" function g 
on M we have (6)  0 F = X(g 0 F) on the inverse image F -  '( W,) of the 
domain W, of g. 

3 One-Parameter and Local One-Parameter Groups Acting 
on a Manifold 

We shall now subject the case of a connected Lie group of dimension 1 
acting on a manifold M to the same scrutiny as we did the case of a Lie 
group of dimension 0 in Section 111.8, but with very different emphasis. At 
that time we were interested in the space of orbits; in the present instance we 
are mainly concerned with the relation to vector fields on M. For this reason 
we shall limit ourselves to the action of R, by which we denote the additive 
(Lie) group of real numbers R, acting on M since this will illustrate all the 
relevant facts-it can be shown that R and S' are the only connected Lie 
groups of dimension 1. These two cases, discrete Lie groups and the one- 
dimensional Lie group R acting on M, will give some idea of the depth and 
diversity of the whole subject of group action on manifolds. Later we shall 
have something to say about another special case: transitive action of a Lie 
group G on a manifold. 

Thus, in the present section, we consider Definition 111.7.1 specialized to 
an action 8 of R on M. Let 0: R x M + M be a C" mapping which satisfies 
the two conditions: 

(i) 8&) = p for all P E  M, 
(ii) 8, 0 8,(p)  = 8 ,+ , (p )  = OS 0 8 , (p )  for all P E  M and s, C E  R.  

[We will often write 8(t, p )  as &(p)  or 8,(t), depending on which variable is to 
be emphasized.] 

(3.1) Example Suppose that M = R3 and a = (a', a2, 2) is fixed and 
assumed different from 0. Then 8,(x) = (x' + a't, x2 + a2t,  x3 + a3t) 
defines a C" action of R on M. To each t E R we have thus assigned the 
translation 8,: R3 --t R3, taking the point x to the point x + ta. This is a free 
action and the orbits consist of straight lines parallel to the vector a. A 
particularly simple special case is given by a = (1,0,0) so that 

Suppose that 8: R x M + M is any such C" action. Then it defines on 
M a Cm-vector field X, which we shall call the injnitesimal generator of 8, 
according to the following prescription: For each p E M we define 
X,: C"(p) -+ R by 

e,(x) = + t ,  x2, x3). 
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We may check directly from (3.2) that X, is a vector at p in the sense of 
Definition 1.1, and then verify that p + X, defines a vector field, or we may 
proceed as follows. Let U ,  cp be a coordinate neighborhood of p E M and let 
I ,  x V be an open subset of ( 0 , p )  in R x M, where I = { t  E R I 
- 6 < t < 6}, and V and 6 > 0 are so chosen that 8(l ,  x V )  c U .  In particu- 
lar, V = Uo( V )  is contained in U and contains p. Restricted to the open set 
I ,  x V ,  we may write 8 in local coordinates 

y' = h' ( t ,  XI, ..., x"), 

y" = h"(t, x', ..., x"), 

or y = h(t, x), where x = (XI,. .., x") are the coordinates of q E  V and 
y = ( y ' ,  . . . , y") of 8,(q), its image. The hi are defined and C" on I ,  x q( V )  
and the range of h(t, x) is in q ( U ) .  The fact that B0 is the identity and 
o r , + , ,  - - Of, 0 8,, is reflected in the conditions: 

h'(0, x) = x i  and hi(tl  + t 2  , x) = h i ( t l ,  h(t2 , x)) 

for i = 1, . . . , n. Now iff(xl, . . . , x") is the local expression forfe Cm(p), then 

and 

where we have used a dot to indicate differentiation with respect to t. This 
formula is valid for every P E  V and implies that on V ,  X, = hi(O, x)Ei, 
with Ei = '(dldx') and x = cp(p), which shows that X is a Cm-vector field 
over V .  Since every point of M lies in such a neighborhood, X is C" on M. 
Note that definition of X at PE M involves only the values of 8 on I ,  x V ,  
that is, like derivatives in general, it is defined locally and involves only 
values o f t  near t = 0. 

(3.3) Definition If 8: G x M -+ M is the action of a group G on a mani- 
fold M ,  then a vector field X on M is said to be invariant under the action of G 
or G-inuariant if X is invariant under each of the diffeomorphisms Be of M to 
itself, in brief if 8 J X )  = X (as in Definition 2.8). 

(3.4) Theorem I f  8: R x M + M is a C" action of R on M ,  then the 
infinitesimal generator X is invariant under this action, that is, e , , (X,)  = Xe,(,,) 
for all t E R .  



1 24 I V  VECTOR F I E L D S  O N  A M A N I F O L D  

However, R is Abelian and we have 8, o BA, = Of+,, = S,, 0 gt so 
1 

9 t , ( X , ) f =  fim - " f .  6*,)(6t(P)) - f ( @ , ( P ) ) I  = Xe,,p,f:  
A r - 0  At 

Since this holds for allf, the result follows. I 

(3.5) Corollary Z f X ,  = 0, thenfor each q in the orbit ofp we have X, = 0, 
that is, at the points ofun orbit the assoc~a~ed v e c t o r ~ e ~ d  ~unishes i d e ~ t ~ c ~ ~ ~ ~  
or is never zero. 

Proof The orbit of p consists of all q such that 4 = 6,(p)  for some t E R ;  
thus by the theorem X, = 9,,X,. Since 9, is a diffeomorphism, we know 
that 6[, is an isomorphism of T,(M) onto T , ( M )  so that X, = 0 if and only if 
x, = 0. I 
(3.6) Theorem The orbit o fp  is either a single point or an immersion of R in 
M by the map t -+ 9,(p), depending OH whether or not X ,  = 0. 

Proof The orbit of p is the image of R under the C" map t + 9,(p) into 
M .  Denote this map by F so that F ( t )  = 6,(p). Let to E R and d/dt denote the 
standard basis of T J R ) ;  F is an immersion if and only if F,(d/dt)  # 0 for 
every to E R. Letfe C"(F(t,)) = Cm(et0(p)) and observe that 

d (3 dt 
F ,  - f =  - ( f o  F)to = 

by precisely the same arguments as we used to prove Theorem 3.4. This 
formula and Corollary 3.5 show that either X, # 0 and F is an immersion 
or else Xftrt = F,(d/dt) = 0, in which case F is a constant map with 
F ( R )  = p .  For the proof of this last statement see Exercise 1. I 

We remark that the formula just obtained, namely, 

shows that at  each point p~ M the vector X, is tangent to its orbit and in 
fact is the (tangent) velocity vector of the curve t -+ F ( t )  in M in the sense in 
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which we have previously (Example 1.9) defined the velocity vector to a 
parametrized curve, that is, to a differentiable map of an open interval J of R 
into M, namely F,( t l /d t ) .  This latter notation is not too precise since it does 
not indicate that d/dt E 7;,(R) and that F ,  is a homomorphism of this one- 
dimensional vector space into T,,,,,(M). For this reason we often will write 
either t ( t o )  or (dF/d t ) , ,  to denote the velocity vector. Sometimes it is conven- 
ient to let f + p ( r )  denote the mapping rather than F.  Then its velocity vector 
is written dp/tit or )(t) .  For example, in the notation of Theorem 3.6, the 
formula above can be written &t, p )  = XO,r.  p ) .  

If we change parameter by a function t = f(s)  so that s -, G(s) = F(f(s)) 
gives the curve, then for to = f(so), 

which givc the formula 

Thus the velocity vector with respect to s is a scalar multiple by (dt/ds),,  of 
the velocity vector with respect to t .  This may be conveniently written 

This vector equation is, of course, just a special case of the chain rule. 

(3.8) Definition Given a vector field X on a manifold M, we shall say that 
a curve t 4 F ( t )  defined on an open interval J of R is an integral curue of X if 
d F / d t  = X F ( , )  on J. 

We have just shown that each orbit of the action 8 is an integral curve of 
X ,  the infinitesimal generator of 0, that is, for each fixed P E  M, 

A t  this point some natural questions arise concerning vector fields and 
one-parameter group actions: Is every C" -vector field the infinitesimal gen- 
erator of some group action? Can two different actions of R on M give rise 
to the same vector field X as infinitesimal generator?These questions will be 
answered in this and the next section. However, a simple but instructive 
example will illustrate the difficulties we face and show the necessity for a 
less restrictive concept of one-parameter group action. 

&, P) = XO,,. p ) '  

(3.9) Example Let M = R2 and let 8: R x M + M be defined by 
8(t, (x, y ) )  = (x + t, y). Then the infinitesimal generator is X = d/dx. This 
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action is given by translation of each point (x, y )  to a point t units to the 
right. Suppose now that we remove the origin (0, 0) from R 2 ;  let 
M ,  = R2 - {(O,O)}. For most points d1 is defined as before; however, we 
cannot obtain an action of R on M,, by restriction of 8 to R x M o  since 
points of the closed set F = { ( t ,  (x, 0)) I t + x = 0} = 8-'(0, 0) of R x M 
are mapped by 8 to the origin. On the other hand, let W c R x M o  be the 
open set defined by W = R x M o  - F n ( R  x M,)  Then 0 = 8 I W maps 
W onto M ,  and preserves many of the features of 8 which we have used. For 
example, let p = (x, y )  E M,, then 

(i) (0, P I E  w and B , ( P )  = P I  

(ii) 8 s  O N P )  = 8s+,(P) = 6, O O s ( P )  

if all terms are defined, and the infinitesimal generator X is defined by (3.2) 
just as before and is again X = d/dx. Finally we have orbits t O,(p), which 
are the lines y = constant as before when p = (x, y), y # 0, and for 
p = (x, 0) the portion of the x-axis minus the origin which contains p .  This 
curve is not defined for all values of t  in the case of the orbit of a point on the 
x-axis. A careful study of this example will motivate the following com- 
plicated definition. 

First let M be a C" manifold and W c R x M an open set which 
satisfies the following condition: 

(3.10) For eoery P E  M there exist real numbers a (p )  < 0 < P(p) such that 
w n ( R  x { P I )  = "7 P )  I 4 P )  < t < P ( P ) } .  

We shall denote by Z(p)  the interval ~ ( p )  < t < P ( p )  and by I, the inter- 
val defined by It I < 6. Condition (3.10) simply states that 
W = U p E M  I ( p )  x { p ) .  Then using this notation and with W as above we 
make the following definition: 

(3.11) Definition A local one-parameter group action orpow on a manifold 
M is a C" map 8: W + M which satisfies the following two conditions: 

(i) 8,(p) = p for all p~ M. 
(ii) If (s, P ) E  W ,  then a(es(p)) = a(p) - s, P(&(P))  = P ( P )  - s, and 

moreover for any t such that a(p ) - s  < t < P(p)- ' ,  O,+,(p) is defined and 

It is easy to check that the Example 3.9 given above has these properties. 
This example also shows that if we are to  have any prospect of obtaining a 
correspondence between one-parameter group actions and vector fields, we 
must abandon the requirement that W is all of R x M, which we shall call a 
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global action. Since W is open and contains (0, p )  for each P E  M, it also 
contains I ,  x U ,  U a neighborhood of p, for sufficiently small 6 > 0. There- 
fore the definition of the vector field X (infinitesimal generator) associated 
with 0 as given by (3.2) is valid in the case of local action also and associates 
a Ca-vector field to each flow 0. 

When R acts on M, as in the case of any group acting on M, for each t, 
8,: M + M is a diffeomorphism with 0; ' = O p t .  Something like this is also 
true for the local case of Definition 3.1 1, except that 0, is not defined on all of 
M in general. Let V ,  c M be the domain of definition of O r ,  that is, 
V, = { p  E M I ( t ,  p )  E W } ;  then we have the following consequence of 
Definition 3.11 : 

(3.12) Theorem is an open set for every t E R and 8,: V,  -, V-[ is a dSffeeo- 
morphism with 0,- ' = 0-, . 

Proof Let pee KO, so that ( t o ,  po)€ W .  Since W is open, there is a 
6 > 0 and a neighborhood V of po such that {t  I I t - to I < S} x V c W. 
In particular, { to }  x V c W so that V c Vro. Next, note that according to 
Definition 3.1 l(ii), if P E  V , ,  then ~ ( p )  < t < p ( p )  and by (3.10) t + ( - t )  lies 
in the same interval. It follows that 0 , ( p )  E V-[  and 0-, 0 O,(p )  = p .  Similarly, 
0 - , ( V - , )  c V,  and 0," O - , ( q )  = q for any q E  V - , .  Combining these state- 
ments with the fact that O f ,  & , are C" on any open subsets of M on which 

I they are defined completes the proof. 

(3.13) Remark For local one-parameter action we may show as in the 
global case that: O,,(Xp) = XB,,,) if p E V,.  As before, F ( t )  = 8 , ( p )  defined for 
a ( p )  < t < p ( p )  is a C"'-integral curve of X ,  which is an immersion of I ( p )  in 
M provided that X, # 0 and is a single point if X, = 0. We shall continue 
to refer to these curves as orbits of the local one-parameter group, just as in 
the global case. It is a consequence of our definitions that these curves (and 
points) partition M into a union of mutually disjoint sets. The proofs are the 
same, essentially, as in the global case. 

Finally, we wish to prove that in a neighborhood of any p for which 
X, # 0, Example 3.9 is a prototype for every local (or global) one- 
parameter group action on a manifold. 

(3.14) Theorem Let 0: W + M be as in Dejnition 3.1 1 and let X be the 
associated infinitesimal generator. If p E M such that X ,  # 0, then there is a 
coordinate neighborhood V ,  $ around p ,  a v > 0, and a corresponding neigh- 
borhood V' of p ,  V' c V ,  such that in local coordinates 0 restricted to I ,  x V' 
is given by 

In these coordinates X = $, ' (d ldy ' )  at every point of V .  

(t ,  y ' ,  ..., v") + (y' + t ,  y2 ,  ..., y"). 
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Proof We shall use the notation and formula for X ,  developed in the 
discussion of (3.2). In W introduce coordinates U ,  cp around p and express 6 
in the local coordinates by x + h( t ;  x), where x = (XI, . . . , x") and h(t;  x) 
stands for an n-tuple of functions satisfying: (i) h(0; x) = x, and 
(ii) h(r ;  h(t'; x)) = h(t + t ' ;  x). We will assume coordinates so chosen that 
cp(p) = (0, . . . , 0) ,  that q ( V )  = C:(O), and that X ,  = ( p i  '(d/dx') = Ei , .  
Then the expression for X , ,  X ,  = h"(0; 0, . . . , O)Ei,, implies that 
Ai(0; 0, . . . , 0) is 1 for i = 1 and is 0 for i > 1. 

Choose 6 > 0 small enough so that V" = cp-'(C;f(O)) c U and 
8(I, x V")  c U .  Then map the cube C;(O) c I ,  x R"-' into C;(O) c cp(U) 
by a map F ,  given in local coordinates by 

F :  (y', . .. , y") + ( h ' ( y ' ;  0, y 2 ,  . . . , y"), . .. , h"(y'; 0, y 2 ,  . .. , y")). 

From the expression for X ,  we see that (dh' /dy ' ) ,  = 8,; and from 
yi = h'(0; 0, y2, . . . , y") we see that (dh'/dy') ,  = 6; for j > 1. Thus the Jacob- 
ian of F at y = (0, . . . , 0) is the identity matrix; hence there is a p > 0 with 
p I 6 such that F is a diffeomorphism of CE(0) onto an open set of C:(O) = 
cp(U). Let V = 'p-l o F(C;(O)) and $ = F - '  0 cp; this is a coordinate neigh- 
borhood of p with V c U .  

The relations satisfied by h'(t, x), i = 1, ..., n, give 

(i) $(P) = F-'(cp(p)) = F - ' ( O ,  ..., 0) 

(ii) h'(r + y'; 0, y 2 ,  ..., y") = h'(t, h (y ' ;  0, y 2 ,  ..., y")), i = 1,. .., n. 

and for (y', . . . , y") E C,(O) and I t 1 c v with v = p/2 they give 

Formula (ii) may be interpreted as follows: In the coordinate system ( V ,  $), 
if $(q) = (y', ..., y"), then $ ( O , ( q ) )  = (t + y' , .  .., y"), provided only that 
I t I < v and q E $-'(C;(O)), so that all functions are defined. In other 

words, in the y-coordinates of V ,  $, the mapping 6, is expressed by functions 
&, y) defined on I ,  x C:(O) by 

P ( r ,  yl, ..., JP)  = t + y', 

P(t, y', ..., y") = y' for i > 1. 

From these and the formula 

we have X ,  = $; ' ( d / d y ' )  on V' = $- '(Ct(0)). I 

Exercises 

1. Let F :  M + N be a C" mapping whose rank is everywhere zero (that is, 
F ,  = 0 at each p~ M ) .  Show that F maps each component of M into a 
single point. 
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Let F :  M + N be a C" mapping and X and Y vector fields on M and N ,  
respectively, which are F-related. Show that any integral curve of X is 
mapped by F into an integral curve of I/. 
Give a proof without using local coordinates that the infinitesimal gen- 
erator X of 0 as defined in (3.2) is a Cm-vector field on M .  [Hin t :  Use 
Exercise 2.13. 
Verify the statements of Remark 3.13. 

In Exercises 5-8, show directly that X is invariant under the action and 
determine the orbits. 

5. Suppose that a C'" action of R x M ,  M = R 2  has infinitesimal genera- 
tor X = x d/dx + y d/dy  on M .  Determine 8. [Hin t :  Try to find func- 
tions h l ( t ,  x , y )  and h2(t ,  x,y) by solving the system of ordinary 
differential equations dx/dr = x, dy/d t  = y with initial conditions 
x(0) = a, y(0) = b as in Exercise 9.1 

6. Let R act on M = R2 according to the formulas 

.Y + .Y cos t + V sin t ,  y + - x sin t + y cos t ,  

which give O,(x, y). Show that this is a globally defined group action of R 
on M and find X, the infinitesimal generator. 

7. Show that (x. y )  -+ O ( t ;  x, y), defined by 

x + xe", y + ye-3' 

defines a C" action of R on M = R2 and determine the infinitesimal 
generator. 
Let M = G1(2, R )  and define an action of R on M by the formula 8. 

O ( t ,  A )  = (i ;) . A, A E GI(2, R ) ,  

with the dot denoting matrix multiplication. Find the infinitesimal 
generator. 
Let X = c;= f ' ( .~ ) (d /dx ' )  be a C" -vector field on R" which generates 
an action 0 on R". Suppose 0 to be given on its domain W by 8(t, x) = 
( h ' ( t ,  x), . . . , I r"( r ,  x)) and suppose a = (a ' ,  . . . , a")€ R". Then using 
Remark 3.13 show that xi = hi([, a), i = 1, . . . , n, are solutions of the 
differential equations 

9. 

dx' 
~~~ =.f'(x), i = 1, ..., n, 
d t  

satisfying xi = ui, i = I, . . . , n, when r = 0. Verify this for Exercises 6-8. 
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4 The Existence Theorem for Ordinary Differential Equations 

In this section we state a very basic theorem of analysis which we need in 
order to answer some of the questions raised in the previous section and 
which will be applied in essential ways throughout the remainder of the 
book. 

(4.1) Theorem (Existence theorem for ordinary differential equations) 
Let U c R" be an open set and I , ,  E > 0, denote the interval --E < t < E,  

t E R. Suppose f ' ( t ,  x ' ,  . . . , x"), i = 1, . . . , n, to be functions of class C', r 2 1, 
on I ,  x U .  

Then for each x E U there exists 6 > 0 and a neighborhood V of x, V c U ,  
such that: 

( I )  For each a = (a ' ,  . . . , a") E V there exists an n-tuple of c'functions 
x ( t )  = ( x ' ( t ) ,  . . . , x"(t)), defined on I ,  and mapping I ,  into U ,  which satisfy the 
system of jirst-order differential equations 

dx' 
-- = f ' ( t , x ) ,  dt 

i = I ,  ..., n, 

and the initial conditions 

(**) x i @ )  = a', i = 1, ... , n. 

For each a the functions x ( t )  = ( x ' ( t ) ,  . . . , x"(t)) are uniquely determined 
in the sense that any other functions i ( t ) ,  . . . , Y ( t )  satisfying (*) and (**) must 
agree with x ( t )  on their common domain, which includes I,. 

These functions being uniquely determined by a = (a ' ,  ..., a") for 
every a E V ,  we write them x'(t ,  a', . . . , a"), i = 1, . . . , n, in which case they are 
of class c' in all variables and thus determine a C' map of I ,  x V + U .  

(11) 

A proof of (I), which uses the contracting mapping lemma is given in an 
Appendix to this section (see p.172). The proof of (11) is more difficult and 
may be found in the work of Hurewicz [ 13, Dieudonnk. [ 13, or Lang [ 11. 

If the right-hand side of (*) is independent of t ,  then the system of 
differential equations is called autonomous. Throughout the remainder of 
this chapter we shall deal only with autonomous systems. In this case it is 
possible to restate the hypotheses and conclusions of the fundamental exist- 
ence theorem in coordinate-free form using the concepts of vector field and 
integral curve. This will allow us to derive various global theorems useful in 
both geometry and analysis from a purely local existence theorem about 
open subsets of R". 

We first reinterpret the existence theorem in the autonomous case, in 
which the functions f ' depend on x = ( X I ,  . . . , x") alone. For simplicity we 
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shall also assume hereafter that all data are C". Define on U c R" a 
C"-vector field X by 

x =f'(x)-I a + ... +.P(x)- a 
OX ax.. 

By Definition 3.8 an integral curve of X is a C" mapping F of an open 
interval (a, p)  of R into U such that p ( t )  = X F , , )  for all a < t c /I. Ifwe write 
F in terms of its coordinate functions 

F ( t )  = ( X ' ( t ) ,  ...) x"(t)),  

then the vector equation F ( t )  = X,,,, is satisfied if and only if 

dX'  

dr = f ' ( x ' ( t ) ,  . ..) x"(t ) ) ,  i = 1,. .., n, 

which states precisely that the functions x ( t )  = ( x ' ( t ) ,  . . . , x"(t)) are a soh- 
tion of (*). Given x E U ,  ( I )  of Theorem 4.1 states that for each a in a 
neighborhood V of x there is a unique integral curve F ( t )  (see Fig. IV.6), 
satisfying F ( 0 )  = a. F ( t )  is defined at least for -6 < t < 6 where 6 > 0 is the 
same for every a E V .  If we use a notation for these integral curves through 
points of I/ which indicates dependence on the initial point a, say 

F ( t ,  a )  = (xl(t, a), ..., ~ " ( t ,  a))) 

and use an overdot for differentiation with respect to t ,  these equations 
become 

i i ( t ,  a) = f ' ( x ( t ,  a))  and x'(0, u )  = a', i = 1, ... , n. 

I 
Figure IV.6 

Integral curves of a vector field. 
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Part (11) of Theorem 4.1 states that these functions x'(t, a )  are C"-in all 
variables-n Id x V ,  an open subset of R x U .  

U as a 
" flow," that is, a motion within U of the points of V so that the point at 
position a at time t = 0 moves to F ( t ,  a)  at time t (see Fig. IV.7). The path of 
a moving point is the integral curve, and its velocity at any of its positions is 
given by the vector X assigned to that point of U .  

We now turn to a vector field X on an arbitrary manifold, considering 
first a purely local question. 

As an aid to intuition we may interpret the mapping F :  Id x V 

Figure IV.7 

(4.2) Theorem Let X be a C"-vectorjeld on a manifold M .  Then for each 
PE M there exists a neighborhood V and real number 6 > 0 such that there 
corresponds a C" mapping 

6': Id x V -, M ,  

satisfying 

(*) bV(tl 4 )  = XBW. q1 

and 

(**) O'(O, q )  = q .for. all q~ V .  

If F(t )  is an integral curve o f X  with F ( 0 )  = q E V ,  then F ( t )  = O'(t, q)for 
I t I < 6. In particular, this mapping is unique in the sense that if V,, 6,  is 

another such pair for PE M ,  then Bv = 8" on the common part of their 
domains. 



4 THEOREM FOR ORDINARY DIFFERENTIAL EQUATIONS 133 

Proof This is basically a restatement of the existence theorem as fol- 
lows. For p E M we choose a coordinate neighborhood U ,  cp and map X to 
the cp-related vector field 2 = cp,(X) on d = cp( U )  c R". After applying the 
local existence theorem to obtain F :  I ,  x t + d defined by F ( t ,  a )  = 
(XI([, u),  . . . , .u"(t, u ) )  on a neighborhood t c 0 of cp(p), we set V = cp- '( t) 
and define 0": I ,  x I/ + U by O"(t, q )  = cp-  ' ( F ( t ,  cp(q)). Since cp and c p - l  

are diffeomorphisms, we see at once that 0" satisfies (*) and (**). The final 
assertion is a consequence of the uniqueness of solutions. I 

Finally we consider the global aspects of the theory, that is, given a 
vector field X on M, what can be said that goes beyond the description of the 
situation in a neighborhood of a point. Our main purpose is to establish the 
relation between vector fields on M and local one-parameter groups acting 
on M (Theorem 4.6). The first result depends only on ( I )  of the existence 
theorem. 

(4.3) Theorem Let X be a Cm-vector jield on a manifold M and suppose 
PE M .  Then there is a uniquely determined open interval of R, I ( p )  = {a (p )  < 
t < D ( p ) )  containing t = 0 and having the properties: 

(1) there exists u C"-integral curve F ( t )  dejined on I ( p )  and such that 
F(O) = p ;  

( 2 )  given any other integral curve G ( t )  with G(0) = p ,  then the interval of 
drjinition o fG is contained in I ( p )  and F ( t )  = G ( t )  on this interval. 

Proof Let F ( t )  and G ( t )  be two integral curves such that F ( 0 )  = p = 

G(O), and suppose I , ,  IG to be the open intervals on which they are defined, 
I*  the set on which they agree. I*  is not empty since it contains t = 0 and it 
is closed since F ( t )  and G ( t )  are C" mappings (hence continuous). Suppose 
S E  I * .  Since S E  I ,  n I , ,  an open set, there is some interval -6 < t < 6 on 
which F ( t )  = F(t + s )  and G(t )  = G(t  + s) are both defined. They are both 
integral curves satisfying the same initial condition: when t = 0, 
F(0) = F ( s )  = G ( s )  = G(0). From the existence theorem they agree on some 
open interval I t I < 6 around t = 0. Thus F ( t )  = G ( t )  on an open set 
around s and I* is open. It follows that I*  = I ,  n IG. Therefore I ( p )  is 
defined: i t  is the union of the domains of all integral curves which pass 
through p at r = 0; the asserted properties are immediate. Note that it is 
quite possible for a(p )  = -cc and/or p ( p )  = +a. If both occur, then 
1 ( p )  = R .  I 

We shall use the notation F ( t )  = H ( t ,  p )  for the unique integral curve F ( t )  
such that F ( 0 )  = p .  When we wish to emphasize dependence on t ,  we may 
write O,(r) for e(t, p ) .  
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Now let the subset W c R x M be defined by 

w = I(4 P) E R x M Ia(p) < t < P ( P ) ) .  

According to what has been shown thus far both W and 8 are uniquely 
determined by X and W is the domain of 8: W + M .  Moreover we have the 
following properties of 8 and W : 

(i) {0} x M c W and O(0, p )  = p for all p E M .  
(ii) For each (fixed) P E  M ,  let O,(t) = 8(t, p ) .  Then 

8,: z(p) -, M 

is a Cm-integral curve, that is, b,(t) = XO,(,). 
(iii) For each p E A4 there is a neighborhood V and a 6 > 0 such that 

I ,  x V c W and 8 is C" on I, x V .  

Using this notation and the same facts that we used in the proof of 
Theorem 4.3, we obtain the following addendum relating I ( p )  and I (q )  for 
any two points p and q of the same integral curve. 

(4.4) Corollary Let s E I ( p )  and q = 8,(s) = 8(s, p )  be the corresponding 
point ofthe integral curue determined by p. Then a(q) = a(p)  - s and p(q) = 
p ( p )  - s so that 

I ( q )  = @,(s)) = I4P)  - s < t < P ( P )  - 4. 

q t ,  q s ,  p ) )  = q t  + s, p ) .  

Thus t E I ( q )  if and only if t + s E I @ ) ,  and then we have 

Proof Suppose that SE I ( p )  and let F ( t )  = 8,(s + t) .  Then F ( t )  is 
defined on the open interval a(p )  < s + t < @ ( p )  and F ( 0 )  = O,(s) = q. By 
the fact that F ( t )  is an integral curve and by uniqueness we have F ( t )  = 
8(t, 8,(s)) = O(t, q )  so its domain must be I ( q )  = {a(q) < t < p(q)}. I 

We take note that what has been proved to this point answers any 
questions we might have about the existence of integral curves of a vector 
field X on a manifold. It does not describe completely the nature of W .  We 
do that now and at the same time specify the relation between vector fields 
and one-parameter group action. 

(4.5) Theorem For any C"-vectorfield X the domain W of8(t, p )  is open in 
R x M and 8 is a C" map onto M .  

Proof We must show that for each (t', p o )  E W there is a neighborhood 
V of p o  and 6 > 0 such that the open set (t' - 6, t' + 6) x V is in W and 8 is 
C" on it. This is already known to be the case for (0, po) .  If the theorem fails, 
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then there must be some ( to ,  pO)e W such that for each 0 I t' < to there 
exists (t' - 6, r' + 6) x V with the above properties, but not for ( to ,  po) .  
[We have assumed, without loss of generality, that to > O).] We shall show 
by contradiction that there can be no ( t o ,  po) .  

Should there be such, then using Theorem 4.2, we find do > 0 and a 
neighborhood Vo of qo = O ( t , ,  p o )  such that I , ,  x V, c Wand 0 is C" on it. 
By continuity of 8(t ,  p o )  in t we may find t ,  < to with both I to - t ,  1 < j a0  
and 8(t,, po)e  Vo. Since t ,  c t o ,  by our assumption on ( to ,  p o )  there is a 
6, > 0 and a neighborhood V, of p o  such that ( t ,  - 6,, t ,  + 6,) x V, c W 
and such that 8 is C" on this open set. In particular, 8(t,, p o )  is in Vo and 
O , , :  V, -, M is defined and C", so we may suppose by continuity (and 
restricting Vl if necessary) that 8,,(Vl) c Vo. We now have 8(s + t , ,  4) 
defined and C" on the open set I s I < 6, and q E V, ; and its values for s = 0 
are in V,. By Corollary 4.4 for a(8(tl, 4)) < s < f l (O(t , ,  q ) )  the equation 

e(s + t , ,  4 )  = qs,  w1, 4 ) )  

is valid. Since 8(t , ,  q )  is in Vo, by the definition of do and Vo the interval 
l (O(t , ,  q ) )  contains all s for which I s I < d o .  Thus 8(s + t , ,  q )  is defined and 
C" for I s 1 < do and any q E V, .  However, this is an open set containing 
( t o ,  p o )  since I to - t ,  I < f6,. This shows that our assumption on ( to ,  p o )  
leads to a contradiction. I 

We recall that the definition of a (local) one-parameter group 0 acting on 
M was defined (Definition 3.11) in terms of a C" mapping 8 of an open set 
W c R x M into M-with both 6' and W satisfying certain properties. If Oi, 
q ,  i = 1,2, are two such local group actions, we shall say that O1 = 0, if 
they are equal (as mappings) on W, n W, . From expression (3.2) it is at once 
clear that if 0, = 8, , then they have the same infinitesimal generator X. We 
note once again that if W = R x M ,  then 0 defines an action of R on M ,  that 
is, a global one-parameter group action. Collecting Theorems (4.3) and (4.5) 
and Corollary 4.4 we have the following: 

(4.6) Theorem T o  each local one-parameter group action 0 on M is asso- 
ciated a unique maximal domain ojdejnition W. If O,, W, is equal to 8, W, then 
Wl c W and 0, = 0 1 W,. Two  focal one-parameter groups are equal ifand 
only if they have the same injnitesimaf generator X ; and each vectorBeld X on 
M determines a local one-parameter group 0, W of which it is the injnitesimal 
generator. 

This theorem summarizes the results of the last two sections-at least for 
the autonomous case in which the vector field X does not depend on t 
(time), but only on the point of the manifold. Not only does it follow from 
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the existence theorem but, conversely, it implies it as a special case when M 
is assumed to be an open set of R". (The reader should verify this, 
Exercise 8.) 

(4.7) Remark A general nth order ordinary differential equation in the 
independent variable t and dependent variable x and its derivatives is given 
by a relation 

dx 
F t , x , -  ,..., ..) =o. ( dr dt" 

We suppose that this is a function of class C' defined on some neighborhood 
in Rn+2 of the point (0, ao,  a,, a,, . . . , a,) and that in a neighborhood U of 
this point we can write it in the form 

( dx z;';) 
= G  t , ~ , -  ,..., ~. 

dt" dt 

(This can be done if the derivative of F with respect to its last variable is not 
zero at the point.) 

Now let x = x l ,  dx/dt = x2, . . . , d"- 'x /dt"- '  = x" and consider the first- 
order system of ordinary differential equations 

dx2  dx" 
(*I dt dt dt 

= X 2 ,  ~ = x3, ..., - = G(t ,  X I ,  x', ..., x " - ' ) ,  
dx 

with initial conditions 

(**I X i ( 0 )  = a', i = 1, ... , n. 
The original nth order equation has a solution x ( t )  satisfying initial condi- 
tions (at t = 0): 

x ( 0 )  = a', r;) = a2, ..., (;q0 = a" 
0 

if and only if the first-order system (*) has a solution satisfying (**). Hence 
the existence theorem (Theorem 4.1) gives the existence and uniqueness of 
solutions of ordinary differential equations of nth order. This can be ex- 
tended also to systems of ordinary differential equations of higher order than 
one. The conclusions of Theorem 4.1 concerning uniqueness of solutions 
and differentiability of dependence on initial conditions are also valid in this 
more general situation. 

A second generalization is the case in which the functionsf' of system (*) 
of Theorem 4.1 depend on parameters zl, . . . , z" so that the system becomes 

dx' 
- = f i ( t ,  X I ,  ..., x", zl, ..., z"), 
dt  

i = 1, ..., n. 
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If we assume that the functionsf' are of class C' in the z's also on some open 
set U' c R", that is, f '  is a function of class C' on I ,  x U x U' c R x 
R" x R", then the solutions will depend on the z's as well as on the initial 
conditions: 

xi  = x'(t ,  u' ,  ..., a", 2, ..., 2"). 

It is a further consequence of Theorem 4.1 that these functions are of class C' 
in all variables on an open set I ,  x V x V' c R x R" x R". This is very 
easily proved by introducing new equations of the form dzj/dt = 0,j = 1, . . . , 
m, so that we are dealing with a system of n + m ordinary equations to 
which we apply Theorem 4.1. 

An application will be made of this idea in the following case. Choose a 
basis El,  . . . , En of the tangent space at the identity e of a Lie group G and let 
X,(z ' ,  . . . , z") denote the value at g E G of the uniquely determined left- 
invariant vector field X whose value X ,  at e has components z ' ,  . . . , z", that 
is, X ,  = ziEi.  With the choice of basis fixed, the left-invariant vector 
fields on G are thus parametrized by R". The dependence on g and on the 
parameters is C" so that the solutions of the system of equations corre- 
sponding to each of the vector fields X ( z ' ,  . . . , z")  is C" in all variables. Thus 
we have 8( t ;  g; z', . . . , z"), which gives a C" mapping 8: R x G x R" + G 
and, for g, z fixed, determines the integral curve through g. 

1.  

2. 

3. 

4. 

5. 

Exercises 

Consider a system of n ordinary differential equations of second order in 
n unknown functions: 

dx' dx" 
k = 1, ..., n. 

dt2  

State as precisely as you can an existence theorem for solutions and 
derive it from Theorem 4..1. 
Give a detailed statement and proof of the two generalizations indicated 
in Remark 4.7. 
Let M = R2,  the xy-plane, and X = y(a/dx) - x(a/dy). Find the domain 
W and the one-parameter group 8: W + M .  
Let X and Y be vector fields on manifolds M and N ,  respectively, and 
F :  M -, N a C" mapping. Show that X and Y are F-related if and only 
if the local one-parameter groups 8 and 0 generated by X and Y satisfy 
F 0 8,(p) = c, 0 F ( p )  for all (i, p )  for which both sides are defined. 
Give a precise meaning to the following statement and then prove it: If 
the vector field X on M generates the local one-parameter group 8 
acting on M, X is invariant under the action. 
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6. Show that the orbits of a local one-parameter group may be defined in 
terms of an equivalence relation, just as in the case of a group G acting 
on a manifold. Show by example that the orbit space may fail to be 
Hausdorff. 

7. Show that the general (nonautonomous) system on R" of Theorem 4.1 
can be reduced to the autonomous case on R"" by letting t = x"+l and 
adding an equation dx""/dt = 1 with ~ " " ( 0 )  = 0. 

8. Derive Theorem 4.1 from Theorem 4.6. 

5 Some Examples of One-Parameter Groups Acting on a Manifold 

We shall now consider a local one-parameter group B with (maximal) 
domain W and infinitesimal generator X acting on a manifold M .  For p E M ,  
we continue to denote by I ( p )  the set u(p)  < t < p ( p )  of all real numbers t 
such that (t ,  p )  is in W .  The integral curve of X through p is given by 
8,: I ( p )  + M ,  O, ( t )  = O ( t ,  p ) .  I f  X, = 0, the curve is a single point p ;  other- 
wise 8, is an immersion as was shown earlier. In this latter case we consider 
now the nature of the integral curves on M .  

(5.1) Lemma Suppose that P ( p )  < 00 and that { t , )  c I ( p )  is an increasing 
sequence conoerging to p ( p ) .  Then (8( t ,  , p ) }  cannot lie in any compact set. In 
particular, the sequence (O( t , , ,  p ) }  cannot approach a limit on M .  A similar 
statement holds for a decreasing sequence approaching u(p)  if a ( p )  is  finite. 

Proof Let K be a compact subset of M and X a Cm-vector field on M .  
By the existence theorem to each q E M corresponds a 6 > 0 and a neighbor- 
hood V of q such that O is defined on Id x V .  A finite number of such 
neighborhoods cover K and we let do be the minimum 6 for these neighbor- 
hoods. Then for each q~ K ,  B(t, q )  is defined for I t 1 < d o .  Suppose 
{8(t, , p ) }  c K and that N is so large that P ( p )  - tN < 36,. Then we see that 
8(tN + t ,  p )  = O(t ,  e ( t N ,  p ) ) ,  where the right-hand side is defined for all t with 

I t 1 < do since O ( t , ,  p )  E K .  Then the left-hand side is also defined for such t ,  
for example, for t ,  + $5, > P ( p ) ,  which is a contradiction to Corollary 4.4. 
This proves the first statement. The second is an immediate consequence for 
if 8(t,, p )  = q, then there is a neighborhood of q whose closure K is 
compact and contains all but a finite number of terms of the sequence 
{B(t,, p ) } .  We discard the terms not in K and obtain the same contradiction. 
Obviously the same arguments apply to decreasing sequences approaching 
a(p)-if a(p) is finite. I 

(5.2) 
closed subset of M .  

Corollary If I ( p )  is a bounded interval, then the integral curve is a 
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(5.3) Corollary I f ' X ,  = 0, then I ( p )  = R. 

We leave the proofs of these two corollaries to the exercises. 

(5.4) Remark A point p of M at which X, = 0 is called a singular point of 
the vector field and any other point is referred to as regular. We have seen 
(Theorem 3.14) that in the neighborhood of a regular point the integral 
curves are-to within diffeomorphism-the family of parallel lines 
x2 = cz, . . . , x" = c" in R". On the other hand the pattern of integral curves 
at an isolated singularity can take many forms, even in the two-dimensional 
case, and has been extensively studied. At least in the two-dimensional case 
singularities can be visualized in terms of the integral curves of the vector 
field X near p. Some possibilities are shown in Fig. IV.8a-d. The cases (a) 
and (b) correspond to the field 

iy a ay- 
d x d x  ayay  

X = grad f = -- + ~~ 

t 

(a) Extremum of / ( N ,  y )  (b) Saddle polnt of / ( x , y )  

Figure IV.8 
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at a point p = (xo, y o )  which is a simple extremum or saddle point of the 
function f (x, y ) .  The level curves f (x, y) = constant are the dotted lines 
orthogonal to the integral curves. If p is a singularity of a general vector field, 
the pattern can be more complicated; possibilities are shown in (c) and (d). 
Interesting relations between the topological nature of the surface and the 
possible types of singularities possessed by a vector field on it were dis- 
covered by Poincare, Hopf, and others (see Milnor [2]). A consequence of 
these relations is the fact already mentioned that a vector field on S2-in fact 
on any closed orientable surface except T2-must have at least one singular 
point. 

Another important question about a vector field X on M is whether or 
not it has closed integral curves-diffeomorphic to the circle S' (see 
Exercise 3). This can be of importance, for instance, in applications to dyna- 
mics. In these applications one considers the points of a manifold as corre- 
sponding to, or parametrizing, the states of a dynamical system. For 
example, if the system consists of the earth, sun, and moon, then in a fixed 
coordinate system the positions of the three objects can be characterized by 
nine numbers (three sets of coordinates) and their velocities, or momenta, by 
nine more (the components of three vectors). Thus each state or 
configuration corresponds to a point on a manifold M of dimension 18. The 
laws of motion can be expressed as a system of ordinary differential equa- 
tions or vector field X on M ,  and the integral curves correspond to the 
motions beginning from various initial states. A closed integral curve corre- 
sponds to a periodic motion, like that of the planets. This approach to 
mechanics was extensively studied by PoincarCt and Birkhoff, and is still an 
active area of research (see Smale [2]). It has led to many interesting 
questions about vector fields and curves on manifolds. For example, it was 
very recently shown by Schweitzer [l], that there exist everywhere regular 
vector fields on S 3  without any closed integral curves-contrary to a long 
standing conjecture. Classical mechanics in the framework of manifold 
theory is very clearly set forth by Godbillon [l]. An excellent recent book 
on differential equations and dynamical systems is Hirsch and Smale [l]. 

(5.5) Definition A vector field X on M is said to be complere if it generates 
a (global) action of R on M ,  that is, if W = R x M .  

This is clearly the most desirable case and we find i t  very convenient to 
have sufficient conditions for completeness. One of them is an immediate 
corollary of Lemma 5.1. 

(5.6) Corollary If M is  a compact manifold, then every vectorfield X on M 
is complete. 
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To see that this is so we take K = M in the lemma and note that in this 
case ~ ( p )  = - cc and p ( p )  = + co, that is, I ( p )  = R, for every p E M .  

This gives one important case in which we may be sure that a vector field 
is complete. A second case, which we will study in some detail, is a left- 
invariant vector field on a Lie group, as is shown by the corollary to the 
theorem which follows. 

(5.7) Theorem Let X be a C" -vecforjeld on a manifold M and F :  M -, M 
u dijieonzorphisni. Lef  0(f, p )  denote the C"' map 8 :  W -, M dejned by X .  
Then X is inilariant under F if and only tf F(O(t ,  p ) )  = 8(t, F(p))  whenever 
both sides are dejned. 

Proof Suppose that X is invariant under F.  If 8,: I ( p )  + M is the inte- 
gral curve of X with 0,(0) = p .  then the diffeomorphism F takes it to an 
integral curve F(d,(t)) of the vector field F,(X) .  Since F J X )  = X and 
F(O,(O)) = F(p), from uniqueness of  integral curves we conclude that 
F(O,(r)) = O ( f ,  F ( p ) ) .  This proves the "only i f "  part of the theorem. 

Now suppose that F(O(f, p ) )  = 8(f, F(p))  and prove that 
F,(X,) = X F ( , ) .  This could be done directly from expression (3.2) for the 
infinitesimal generator X, but we shall proceed in a slightly different way. 
Let O , ( r )  = 0(t, p )  and let d/dt be the natural basis of T',(R), the tangent space 
to R at t = 0. Then, by definition, X, = d,(O) = 8,,(d/dt) and applying the 
isomorphism F,: T , ( M )  --* TF(,)(M) to this definition we have 

The second equality is the chain rule for the composition of mappings 
applied to 0,: R -, M and F :  M 4 M .  The third equality uses the hypothesis 
that F CJ a,,([) = O F ( , , ) ( f ) .  I 

We remark that in the notation of Section 3 this theorem could be 
stated: F J X )  = X ifund only i f 'O,  u F = F 0, on V,. 

(5.8) Corollary A If$-invariant vecrorjeld on a Lie group G is complete. 

Proof Let X be such a vector field. There is a neighborhood V of e and 
a 6 > 0 such that 8(t ,  g )  is defined on I ,  x V .  For h E G, let Lh denote the left 
translation by h. I f  we apply Theorem 5.7 with F = Lh, then 8(f, L h g )  = 
LhO(t, g), which shows that 8 is defined'on I ,  x Lh(l/) ,  a neighborhood of 
(0,h)  in R x G .  I t  follows that for every h E G there is a neighborhood 
U = L h ( V )  such that I ,  x U c W ,  the domain of 8 with the same 6 > 0 that 
we first obtained for V ,  that is, 6 is fixed and independent of h. By the same 
argument as in the compact case we obtain a contradiction if we assume for 
any y E M that either a(g) or j (g) is finite. Therefore W = R x M and X is 
complete. I 
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We shall now carry our analysis of the Lie group situation somewhat 
further and in this way will obtain a number of examples of actions of R on 
manifolds. 

(5.9) Definition Let R be the additive group of real numbers, considered 
as a Lie group, and let G be an arbitrary Lie group. A one-parameter sub- 
group H of G is the homomorphic image H = F ( R )  of a homomorphism 
F :  R + G. 

We give here several simple examples of one-parameter subgroups. In 
the next section it will be shown how all such subgroups may be determined 
for linear Lie groups, that is, subgroups of Gl(n, R) .  Since we are interested in 
the action of R on manifolds, we recall at this point a comment and 
examples of Section 111.7. Namely, let G be a Lie group which acts on a 
manifold M by 8: G x M + M and let F :  R + G be a homomorphism. 
Then 8: R x M --t M defined by 8(t, p )  = a(F( t ) ,  p )  defines an action of R 
on M .  Now applying Sections 3 and 4 we have an associated infinitesimal 
generator X, integral curves as orbits of the action, and so on. Since the same 
G may act on different manifolds, or in different ways on the same manifold, 
a fixed one-parameter subgroup of G will give many examples of a one- 
parameter group of transformations of a manifold. 

(5.10) Example Let G be the group G1(3, R).  We consider two one- 
parameter subgroups, that is, two homomorphisms F , ,  F 2  of R into G, 
defined as follows (a, b, c E R are constants): 

8' 0 0 1 at bt + +act2 

0 0 ear 

F , ( t )  = ( 0 ear 0 )  and F2( t )  = (: 
7 ) .  

It is left as an exercise to check that these are homomorphisms. Now 
G1(3, R )  acts naturally on R3 (Example 111.7.4) and hence each F ,  defines an 
action on R3.  In the case of F1 we have 8(t, x i ,  x2, x 3 )  = (e"'x', earx2, eorx3). 
Therefore the infinitesimal generator X is given at  x E R3 by 

and the integral curves, or orbits, are the lines through the origin (see 
Fig. IV.9). 

The group Gl(n, R )  also acts on P"-'(R), since it preserves the equi- 
valence relation (proportionality) of n-tuples which defines it. Therefore 
Gl(3, R )  acts on two-dimensional projective space P 2 ( R ) .  In this case F ,  
defines a trivial action e(t, p )  = p .  
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Figure IV.9 

(5.11) Example Let G be the Lie group SO(3) of orthogonal matrices with 
determinant + 1. Define F :  R + SO(3)  and thus a one-parameter subgroup 
bY 

cos at sin at 0 
F ( t )  = ,,;a, ;). 

Again, it is easily checked directly that this is in fact a homomorphism. Thus 
SO(3)  acts on the unit sphere S2 in a standard manner which we previously 
discussed (Section 111.7 and Exercises). The action is just the usual rotation 
of the sphere, and F defines a one-parameter group of rotations holding the 
x3 axis fixed: 

d(r, x', x2, x3) = (x' cos at + x2 sin at, - x '  sin at + x2 cos a x3). 

The orbits are the lines of latitude and the generator X is tangent to them 
and orthogonal to the x3-axis. X = 0 at the north and south poles 
(0, 0, 1). (See Fig. IV.10.) 

(5.12) Example We recall also that a Lie group G acts on itself (on the 
right) by right translations. Thus if  we are given a homomorphism 
F :  R + G ,  we may define an action 8 of R on M = G by O(r, g) = R F ( J g )  = 

gF(r). We have used R ,  to denote right translation: R,(g)  = ga. As 
previously noted in Section 111.7, this is a composition of C" maps, F, and 
right translation. I t  is an action since F is a homomorphism and multiplica- 
tion is associative: 

( i )  O(0, g )  = g F ( O )  = g, 
( i i )  e(t + s, g )  = g F ( t  + s) = g(F(r)F(s)) 

- - ( g F ( t ) ) F ( s )  = q 4  q s ,  9)). 
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Thus the examples above furnish further examples of one-parameter group 
action, namely, on M = G1(3, R) and M = 0(3),  respectively. 

Recalling that a left-invariant vector field on G is uniquely determined by 
its value at the identity e, we may use these ideas to characterize one- 
parameter subgroups of a Lie group. 

(5.13) Theorem Let F :  R + G be a one-parameter subgroup of the Lie 
group G and X the left-invariant vector field on G defined by X ,  = F(0). Then 
O(t, g )  = RF(t)(g) defines an action 8:  R x G + G of R on G (as a manifold) 
having X as injnitesimal generator. Conversely, let X be a left-invariant vector 
field and 8:  R x G --* G the corresponding action. Then F ( t )  = 8(t, e )  is a 
one-parameter subgroup of G and 8(t, g )  = RE(&). 

Proof Given the C" homomorphism F :  R + G, then 0 :  R x G + G, 
defined by 8(t, g) = RF(Jg)  = gF(t)  is, as we have just seen, an action of R 
on G. If a €  G, then L,O(t, g )  = a(gF(t))  = (ag)F(t) = 8(t, L,(g)). By 
Theorem 5.7 it follows that the generator X of 8 is La-invariant, for any 
a E G. However, 8(t, e )  = F ( t ) ,  and so X ,  = b(0, e )  = F(O),  which proves the 
first half of the theorem. 

For the converse X, being left-invariant, is both C" and complete and it 
generates an action 8 of R on G. By Theorem 5.7 for any left translation Lh 
we have Lh8(t, g )  = e(t, Lh(g ) )  or equivalently, h8(t, g )  = 8(t, hg). Let 
F(t) = 8(t, e )  and h = F(s). Then this relation implies 

F(s)F(t) = F(s)O(t, e )  = 8(t, 8(s, e ) )  = B(t + s, e )  = F ( s  + t) .  

Thus t + F ( t )  is a C" homomorphism. But p(0 )  = b(0, e )  = X ,  and since X 
is left-invariant, we see by uniqueness of the action generated by X that 
8(t, g )  = RF(,)(g), the action defined just previously. I 
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(5.14) Corollary There is a one-to-one correspondence between the ele- 
nient.s of' 7;,(G) und one-parameter subgroups of G.  For Z E  T,(G) let 
r + F(r,  Z )  rlenote the (unique) corresponding one-parameter subgroup. Then 
F :  R x 7;,(G) + G i s  C' und satisfies F(t, sZ) = F(st, Z). 

Proof' According to Theorem 5.13, each Z E T,(G) determines a unique 
homomorphism t -, F ( t ,  Z )  of R into G such that p(0, Z )  = Z. By our exten- 
sion of the existence theorem at the end of Remark 4.7 we see that F is C"' 
simultaneously in t and Z [identifying 7;,(G) with R" by some choice of 
basis]. Using the rule for change of parameter in a curve on a manifold, we 
have 

F(ts ,  Z ) ] r = o  = s l i t  F(t.  Z ) ]  r = O  = sZ.  

On the other hand t -+ F(rs, Z )  is a homomorphism. Therefore, by uni- 
queness, F(s t ,  Z )  = F ( t ,  s Z ) .  I 

I .  
2. 
3. 

4. 

5. 

6. 

6 

Exercises 
Prove Corollary 5.2. 
Prove Corollary 5.3. 
Let X be a vector field on M and let F :  I ( p )  -, M be the integral curve 
determined by F ( 0 )  = p.  Suppose for some real number c > 0, F(c)  = 

F(0) .  Show that this implies I ( p )  = R and F ( t )  = F(t + c )  for all t E R .  If 
X , ,  # 0, then prove that there is a diffeomorphism G :  S' + M and a 
number co,  0 < co I c, such that F = G 0 n, with n: R --* 

S' = ( 2  E C I I 2 I = I )  denoting the mapping n(t) = e2n'('ico). 
Given p~ M ,  show that if I ( p )  is bounded for a C"-vector field X on M ,  
then t --* O(t ,  p )  is an imbedding of I ( p )  in M .  
Given p~ M and a C"-vector field X on M ,  let (t,,) be a monotone 
increasing (decreasing) sequence of I ( p )  which has no limit on I ( p ) .  Show 
that iflim,,+m O ( t , ,  p )  exists, then a(p) = + 00 @ ( p )  = - 00, respectively). 
Let L+(p) [or L-(p)] denote the collection of all such limit points 
for increasing (decreasing) sequences. Show that L* ( q t ,  p ) )  = L'(p) 
for every t E I ( p )  and that L*(p) is a closed set and a union of integral 
curves. 
Show that a one-parameter subgroup H of a Lie group G which is not 
trivial, that is, H # (el, is either an isomorphic image of S' or R and a 
closed submanifold, or it is a one-to-one immersion of R and is properly 
contained in its closure. Give examples of each case. 

One-Parameter Sibgroups of Lie Groups 

We have seen that one-parameter subgroups of a Lie group G are in 
one-to-one correspondence with the elements of T,(G). We shall use this to 
help determine all one-parameter subgroups of various matrix groups. We 
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first consider G = Gl(n, R). The matrix entries x i j ,  1 I i , j  I n, for any 
X = ( x i j ) €  Gl(n, R )  are coordinates on a single neighborhood covering the 
group, which is an open subset of A,@), the n x n matrices over R. There- 
fore d / d x i j ,  1 I i, j I n, is a field of frames on G and, relative to these 
frames as a basis at e, there an isomorphism of &,,( R) as a vector space onto 
T,(G) given by A = (a i j )  + ci, ai j (d /dxi j )e .  [When G = Gl(n, R) ,  e is the 
n x n identity matrix 1.1 

(6.1) Definition The exponential ex of a matrix X E A, , (R)  is defined to be 
the matrix given by 

1 1 
ex = I  + x + -X2 + -X3 + ... 

(* 1 2! 3 !  

if the series converges. 

(6.2) Theorem Series (*) Converges absolutely for all X E A , , ( R )  and uni- 
formly on compact subsets. The mapping Jf , , (R)  -, A , , ( R )  dejined by X ex  
is C" and has nonsingular Jacobian at X = 0. Its image lies in Gl(n, R) .  If 
A,  B E  A " ( R )  such that AB = BA, then eA+' = eAen. 

Proof If we denote by xi;) the entries of the matrix Xk with 
XI = X = (x i j )  and Xo = I = (dij), and we let p = sup,,,, j s n  I xij  1 ,  then 
by induction on k we have the inequality 

I XI;) I I (np)k.  

This is true for k = 0, and if it holds for k, then 

From this it follows that the sequence converges absolutely for every X 
and that it converges uniformly on every compact subset of A n ( R ) ;  indeed 
each compact set is contained in a set K ,  = {X 1 I x i j  I I p}. By uniformity 
of convergence it follows that the mapping X -, ex is C" (even analytic) as a 
function of x i i s  since the entries of the partial sums are polynomials in these 
variables. 

If we denote byJj(X) the coordinate functions of the mapping, then the 
terms of degree less than 2 in the variables x i j  are 

J j ( X )  = dij + x i j ,  1 I i , j  I n;  

hence the Jacobian matrix at X = 0 reduces to the n2 x n2 identity matrix. 
Finally, using the fact that the convergence is absolute, so that we may 
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rearrange terms, and an analog of Cauchy's theorem for multiplication of 
series, when A B  = B A  we obtain the equality 

From this we may deduce eAeB = e A + B  (see Exercise 1). In particular, this 
implies e V A  = e0 = I so that e A  is nonsingular, that is, e A E  Gl(n, R )  for 
any u E A'JR).  This completes the proof of the theorem. I 

(6.3) Corollary t + elA is the one-parameter subgroup of Gl(n, R )  whose 
corresponriing lef-invariant vector field has the value xi, aij(a/axij), . All 
one-purumeter subgroups of Gl(n, R )  are of this form. 

Proof The corollary is an immediate consequence of the theorem. For 
every t e  R,  t ,  A and t ,  A commute, thus e" '+ 'Z)A = e' lAetZA and t + elA is a 
group homomorphism; it is C" since it is a restriction of a C"-map on 
. k n ( R )  to the submanifold { t A  I r E R} .  Finally, writing x i j ( t )  for the 4th entry 
of erA and letting A = (aij), we have 

Xij(t)  = dij + taij + O(") 

proves the corollary. I 
so that iij(0) = u i j ,  1 I i. j I n or, equivalently (de'A/dt),=O = A. This 

(6.4) Example 

implies 
elA = I + t A  + it2 + ... .  

However, Ak = 0 if k > 2 so that we obtain once again Example 5.10: 

1 tu th + qt2ac 

By virtue of the following theorem, we can use the mapping X + ex to 
determine the one-parameter subgroups of other matrix groups, for exam- 
ple, O(n) ,  S / (n ,  R )  (see Exercise 6). and so on. 

(6.5) Theorem I f '  H is u Lie srrhgroup ?f G, then the one-paraineter sub- 
groups of H (ire e s c i c t l ~ ~  tho.sr one-purumeter subgroups t -+ F (  t )  uf G such that 
F'(0) E 7J H )  considrrrrl us a subspuce qf 7;,(G). 
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Proof Let F :  R + H be any one-parameter subgroup of H .  Since 
H c G and the inclusion is an immersion, in particular is C", the map F 
followed by inclusion is a one-parameter subgroup of G. Its tangent vector at 
any point is tangent to H .  In particular, ~ ( O ) E  T,(H) a subspace of T,(G). 
Conversely, if F :  R + G is a one-parameter subgroup such that P(0) E T,(H) ,  
then p(0) determines a one-parameter subgroup of H ,  F , :  R -+ H ,  with 
pI(O) = p(0). As we have just seen, F ,  can be considered a one-parameter 
subgroup of G,  but since F and F ,  have the same tangent vector at e, they 
must agree. Therefore the correspondence is one-to-one as claimed, which 
completes the proof. I 

Suppose that G = Gl(n, R )  in the discussion above, then we have the 
following application. 

(6.6) Corollary The one-parameter subgroups of a subgroup H c Gl(n, R )  
are all of the form t -+ elA, where A = (a i j )  are the components of a vector xi. aij(d/dxij)e E T,(G) which is tangent to  H at e, that is, is in T , ( H )  c TJG). 

This is an immediate consequence of the theorem and the fact that every 
one-parameter subgroup of G = Gl(n, R )  is of the form F( t )  = e'". 

(6.7) Example Let H = O(n),  G = Gl(n, R) ,  and determine the one- 
parameter subgroups of H .  If e'" E H for all t, then (e'")(e'")' = I ,  where the 
prime indicates the transpose. It is an immediate consequence of 
Definition 6.1 that (e'")' = e'"'; and, by Theorem 6.2, (e'")-' = e-'" . From 
these facts we conclude that e'" E H implies e'"' = e-'". Moreover, X + ex 
maps the (linear) submanifold of A,,@) of skew symmetric matrices to the 
submanifold O ( n )  of G ;  both manifolds have the same dimension and the 
Jacobian of the mapping is nonsingular at X = 0 by Theorem 6.2. Hence 
some neighborhood of the 0 matrix, X -+ ex is a diffeomorphism. Therefore 
there is a 6 such that if 1 t I < S, then tA' = - t A .  It follows that A is skew 

which means that e'" is an orthogonal matrix. This proves the following: 

The homomorphism t + e'" is a one-parameter subgroup o fO(n)  if'and only 
if A' = - A ,  which is the necessary and suficient condition on A = (a i j )  in 
order that the tangent uector xi. j a i j ( a / a x i j ) ,  to Gl(n, R )  at the identity be 
tangent ro the subgroup O(n).  

Finally we recall that if G is a Lie group and Z E T,(G), then Z determines 
uniquely a one-parameter subgroup which we denoted earlier by F ( t ,  Z ) .  We 
use this to define an exponential mapping on an arbitrary Lie group. 

(6.8) Definition 
the formula exp Z = F (  1, Z ) .  

symmetric. Conversely, if A = - A ,  then e'"(e'"), = e'"erA' = e'"e-'" = 1, 

The exponential mapping, exp: T,(G) -+ G,  is defined by 
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According to Theorem 5.13 we have the following properties: 

(6.9) Theorem For anjl Lie group G the mapping exp: TJG)  --t G is C"' and 
F ( t )  = exp tZ is the unique one-paranrefer subgroup such that F(0) = Z. The 
Jacobian matrix lit 0 ofexp i s  the identity, that is, at e, exp, is the identity.? 
Find! , :  if G is a subgroup of Gl(n, R) ,  then .for each Z E T,(G) there is an 
A = ( u i j )  E . K,(R) such that Z = ~ ~ ~ ( i i / i ) x ~ ~ ) ~ ,  and for this Z,  exp tZ = e'". 

Exercises 

1. Complete the proof that when A, B are commuting n x n matrices, then 
e . 4 + B  = eAeB. [Hint: first prove this for the exponential function on R, 
using multiplication of power series; then try a similar proof.] 

2.  Check directly that the mapping t + elA of Example 6.4 is a group 
homomorphism. 

3. Let A = (a i j )  be an ti x n matrix such that aij = 0 i f j  I i .  Prove that the 
one-parameter subgroup erA is not a circle group in Gl(n, R).  

4. Find the one-parameter subgroups of G1(2, R )  corresponding to A and B 
with 

A = ( O I ) ,  
B =  (; A) - I  0 

Find the corresponding actions on RZ and their infinitesimal generators, 
starting from the natural action of G1(2, R )  on R2. 

5. Show that for any Lie group G,  the rank of exp: K,(G) + G at 0 (the 
0 vector) is I I  = dim G .  

6 .  Prove that if A is a nonsingular n x I I  matrix and X € A , , ( R ) ,  then 
. From this deduce that det ex = ,Irx. Use this to 

determine those matrices A such that elA is a one-parameter subgroup of 
Sl(n, R ) .  

7. Using the coordinate frames d / d x i j ,  i I i , . j  I n on Gl(n, R),  show that 
the vector field Z on Gl(n, R )  whose matrix of components at the iden- 
ti ty is A = ( a i j )  and X - ' A  at the element X = ( x i j )  of Gf(n,  R )  is a 
left-invariant vector field. 

A ~ X A  - 1 = e A X  A -  1 

7 The Lie Algebra of Vector Fields on a Manifold 

We denote by X ( M )  the set of all C"-vector fields defined on the C"' 
manifold M. I t  is itself a vector space over R since if X and Y are C"-vector 
fields on M so is any linear combination of them with constant coefficients. 

t This requires that we identify the tangent space to T,,(G) at Z = 0 with TJG) itself. a 
common practice when working with vector spaces; exp, is the mapping of tangent spaces 
induced by rxp. 
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In fact any linear combination with coefficients which are C" functions on 
M is again a C"-vector field. For X, Y E  X ( M )  andf, g E C m ( M )  implies that 
the vector field 2 = fl + gY,  with the obvious definition 2, = f ( p ) X ,  + 
g(p)Y, for each P E  M is a Cm-vector field. We may express this as follows: 

X ( M )  is a vector space over R and a module over Cm(M). 
As a vector spaceX(M) is not finite-dimensional over R (Exercise 1). In fact 
X ( M )  is something more than just a vector field as we shall see. 

(7.1) Definition We shall say that a vector space 64 over R is a (real) Lie 
algebra if in addition to its vector space structure it possesses a product, that 
is, a map 64 x Y + 64, taking the pair (X, Y )  to the element [X, Y ]  of 9, 
which has the following properties: 

(1) it is bilinear over R :  

[alxz + a 2 x z ,  y ]  = al[Xl, y ]  + a 2 [ X 2 ,  Y ] .  

[X, a1 Yl + a2 Y2] = al[X, Y1] + az[X, Y2];  

[X, Y ]  = - [ X ,  Y ] ;  

[X, [ y, Z ] ]  + [ y ,  [ Z ,  XI1 + [ Z ,  I", Y ] ]  = 0. 

(2) it is skew commutative: 

(3) it satisfies the Jacobi identity: 

(7.2) Example A vector space V3, of dimension 3 over R with the usual 
vector product of vector calculus is a Lie algebra. 

(7.3) Example Let A n ( R )  denote the algebra of n x n matrices over R 
with X Y  denoting the usual ma+ .ix product of X and Y. Then [X, Y] = 
X Y  - Y X ,  the "commutator" of X and Y ,  defines a Lie algebra structure 
on &"(R) as is easily verified. 

Now suppose that X and Y denote Cm-vector fields on a manifold M ,  
that is, X, Y E  X(M). Then, in general, the operator f+ X,( Y f )  defined on 
C " ( p k f  being a C" function on a neighborhood of p-does not define a 
vector at p .  Thus X Y, considered as an operator on C" functions on M ,  does 
not in general determine a C"-vector field. However, oddly enough, 
XY - YX does; it defines a vector field Z E X ( M )  according to the 
prescription 

Z , f =  (XU - Y X ) , f =  X , ( Y f )  - Y,(Xf),  f€Crn(P). 

For iff€ Cm(p), then Xfand Yfare C" on a neighborhood of p ,  and this 
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prescription determines a linear map of Cm(p) --t R .  Therefore if the Leibniz 
rule holds for Z,, then Z p  is an element of T p ( M )  at each p E M .  Consider 
f, g E C"(p).  Then J g E Cm( V) for some open set U containing p .  We have 
the relations: 

( X  y - YX) , ( fg )  = Xp( Y fg )  - Yp(Xfg) 

= X p ( f y S  - g Y f )  - Yp(fX9 - S X f )  

= ( X p  f)( Y g ) ,  + f (P )XP(  Y g )  - (X ,g ) (  W P  

- g(p)Xp( Y f )  - ( Y p f ) ( X d p  - f(P)YP(XII) 

+ (YpS) (X f )p  + Cl(P)(YpXf)9 

so that 

Z P ( f S )  = ( X Y  - W p ( f s )  = f ( p ) ( X Y  - YX)PS  - Y ( P ) ( X Y  - Y X ) P f  

= f ( p ) Z , g  + g(p)Zp1: 

Finally, if ,f is C" on any open set U c M ,  then so is ( X U  - Y X ) f ,  and 
therefore Z is a Ca'-vector field on M as claimed. 

We may define a product on X(M) using this fact; namely, define the 
product of X and Y by [ X ,  Y ]  = X Y  - Y X .  

(7.4) Theorem 3€ (M) with the product [ X ,  Y ]  is a Lie algebra. 

forward to verify that 
Proof If a, P E  R and X I ,  X 2  , Y are C"-vector fields, then it is straight- 

[ a x ,  + fix2 7 Y l f =  " X I 7  Y l f +  P[X2 9 y11: 

Thus [ X ,  Y ]  is linear in the first variable. Since the skew commutativity 
[X, Y ]  = - [ Y ,  X I  is immediate from the definition, we see that linearity in 
the first variable implies linearity in the second. Therefore [ X ,  Y ]  is bilinear 
and skew-commutative, There remains the Jacobi identity which follows 
immediately if we evaluate [X, [ X  Z ] ]  + [ Y  [ Z ,  X I ]  + [Z ,  [ X ,  Y ] ]  applied 
to a C"-functionfi Using the definition, we obtain 

[ X ,  y ,  Z1l.f = X ( ( [  y ,  Z 1 ) f )  - [ y ,  ZI (Xf ) 

= X (  Y ( Z f ) )  - X ( Z ( Y f ) )  - Y ( Z ( X f ) )  + z( Y ( X f ) ) .  

Permuting cyclically and adding establishes the identity. 

(7.5) [ X ,  Y ]  is not CaJ(M) bilinear. In fact for f € C " ( M ) ,  
[ X , , f y ]  = j [ X ,  Y ]  + ( X f ) Y  as is shown in Exercise 2. This may be used to 
derive a formula for the components of [ X ,  Y ]  in local coordinates 
(Exercise 3). 

Remark 
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We now make use of a vector field X on M to define a method of 
differentiation which has many applications in manifold theory. We have 
already defined the derivative of a function fg C " ( M )  at a point p in the 
direction of X;  it is just X,,f This generalizes from R" to an arbitrary 
manifold the notion of directional derivative of a function. However, if we 
wish to determine the rate of change of a vector field Y at P E  M in some 
direction X,, we have trouble as soon as we leave R", for it is only in R" that 
we are able to compare the value of Y at p with its value at nearby points, 
which we must do to compute a rate of change. Now, given a vector field X 
on M ,  there is an associated one-parameter group 0: W -+ M generated by 
X. For each t E R we know (Theorem 3.12) that 0,: V ,  + V-f is a diffeomor- 
phism (with inverse 0-,) of the open set v ,  provided V ,  is not empty. In 
particular for each P E  M there is a neighborhood V and a 6 > 0 such that 
V c V ,  for I t I < 6. The isomorphism O,*: T,(M) + G,(,,,(M) and its inverse 
allow us to compare the values of vector fields at these two points. 

Indeed, suppose Y is a second Cm-vector field on M .  We may use this 
idea to compute for each p the rate of change of Y in the direction of X, that 
is, along the integral curve of the vector field X passing through p .  We shall 
denote this rate of change by L,  Y ;  it is itself a C"-vector field. 

(7.6) Definition The vector field L, Y ,  called the Lie derivative of X with 
respect to Y is defined at each P E  M by either of the following limits. 

The second definition is obtained from the first by replacing t by - r .  We 
interpret the first expression as follows: Apply to I&,, ,) E G(,. ,)(M) the iso- 
morphism O - f * ,  taking Gcf. ,,)(M) to T,(M). Then in T',(M) take the differ- 
ence of this vector and Y,, multiply by the scalar l/r, and pass to the limit as 
t + 0. This limit is a vector (L ,  Y), E T , ( M ) ;  if it exists at all, that is! The 
existence as well as the fact that the vector field so defined is C" may be 
verified by writing the formula above in local coordinates (Exercise 6). We 
shall give another characterization of L,  Y which requires a modification of 
Lemma 11.4.3, following Kobayashi and Nomizu [l, p. 151. 

(7.7) Let X be a C"-vectorjeld on M and 14 be rhe corresponding 
map of W c R x M onto M .  Given p E M and f c  C"(U),  U an open set 
containing p, we choose 6 > 0 and a neighborhood V of p in U such that 

Lemma 
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B(1 ,  x V )  c U .  The11 there is u C" fiirictiori g(q ,  t )  drjinnl on V x I ,  such 
that .for q E V arid t E I, wr haw 

. r (~,(q))  =.rm + ~ ( 4 ,  r) ~~1~~ x,f= g(q,o). 

Proof There is a neighborhood V of p and a 6 > 0 such that 8 , (p )  = 
O(r, p )  is defined and C" on I ,  x V and maps 1, x V into U according to 
Theorem 4.2. The function r ( t ,  y)  = f(B,(y)) - f ( q )  is C" on I, x V and 
r(0, q )  = 0. We denote by r(f, q )  its derivative with respect to t .  We define 
g(q, t)-for each fixed q-by the formula 

1 

g(q, t )  = 1 i.(fS, y) ds. 
'0 

This function is also C' on I ,  x V (verified by use of local coordinates and 
properties of the integral). By the fundamental theorem of calculus, 

1 

tS(q, t )  = 1 i ( r s ,  q)t  ( is  = r ( t ,  q )  - r ( ~ ,  q) = r(t ,  4). 
'0 

Using the definition of r,  this becomes 

.r(0,cq)) = (Y) + Q A ~ ,  t ) .  

On the other hand, by the definition ( 3 . 2 )  of the infinitesimal generator of 8, 

I 1 
g(q, 0 )  = lim g(q ,  r )  = lim r(i, q )  = lim [.f(Wq)) -f(q)] = X , . f  I 

r-0 r-0 r-0 

We use the lemma to prove the following theorem: 

(7.8) Theorem I f X  uiid Y are C'-wcror,field.s on M ,  then 

Lx Y = [X. Y ] .  

Proof By definition 

This differential quotient and that of the following expression, whose limit is 
the derivative of a C' function of t, are equal for all 0 < 1 t I < 6;  hence 
equal in the limit 

1 
(Lx V , f =  lim P J - -  &-,cp,(.f0 & ) I .  

r-0 

Using Lemma 7.7 and denoting y(q, t )  by gr, we have 
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Then replace t by -t and rearrange terms giving 

1 
(Lx Y)p  = lim j [(Yf)(4(P)) - (Yf)(P)l - lim Kdp)gr . 

1-0 1-0 

Now, using both the formula (3.2) withfreplaced by Yfand At by t, and the 
fact that go = g(q, 0) = Xf(q), we obtain in the limit 

(L, V,f= X,(Yf) - Y,(Xf) = [X, YIP& 

This completes the proof of the theorem; it also shows that L, Y is C". I 

(7.9) Theorem Let F: N --f M be a C" mapping and suppose that X1, X2 
and Y,, Y, are vector fields on N, M, respectively, which are F-related, that is, 
for i = 1, 2, F,(X,) = y i .  Then [X,, X,] and [Y,, Y2] are F-related, that is, 

Proof Before proving the theorem we note the following necessary and 
sufficient condition for X on N and Y on M to be F-related: for any g which 
is C" on some open set I/ c M, 

(* 1 (YJo F = X(g0 F) 
on F-'(V). This is essentially a restatement of the definition of F-related, for 
if q E  F-'(I/), then F,(X,)g = X,(g 0 F) = X(g 0 F)(q); and Y,,,)g is the 
value of the C" function Yg at F(q), that is, (( Yg) 0 F)(q). Thus the condition 
holds if and only if FJX,) = YF,,) for all q E M. 

Returning to the proof we considerfe Cm(V) ,  V c M, so that Y,fand 
Y2fe C m ( V )  also. Apply (*), first with g = Y,fand then with g = fgiving 
the equalities 

F*[Xl, X2l = [F*(Xl), F*(X2)1* 

[yl(y,f)l O F = Xl((Y2f) O F) = Xl[X,(fO F)1. 

([Yl, Y2 l f )  O F = [Xl, X2l(fO F ) ,  

Interchanging the roles of Y,, Y, and X,, X2 and subtracting, we obtain 

which according to (*) is equivalent to [X,, X,] and [ Y,, Y,] being F-related. 
I 

We now define the Lie algebra g of a Lie group G. 

(7.10) Corollary If G is a Lie group, then the lejl-invariant vectorjields on 
G form a Lie algebra g with the product [X, Y] and dim g = dim G. If 
F: G ,  -+ G2 is a homomorphism of Lie groups, F,: g1 -+ g, is a homomorphism 
of Lie algebras. 
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Proof Let a E G, and let X and Y be left-invariant vector fields. L, (left 
translation) is a diffeomorphism and La, X = X ,  L,, Y = Y .  Therefore 
L,,[X, Y] = [X, Y ]  by the theorem, so [X, Y] is Lainvariant for any a. 
Hence the subspace g of left-invariant vector fields is closed with respect to 
[ X ,  Y ] .  Since each X E g is uniquely determined by X,, the mapping X .--i X, 
is an isomorphism of g and T,(G) as vector spaces. The last statement follows 
from Corollary 2.10 and Theorem 7.9. 1 

(7.11) Remark If H c G is a Lie subgroup, then Corollary 7.10 implies 
that i,&) is a subalgebra of 8. It consists of the elements of g tangent to W 
and its cosets g H ,  

(7.12) Theorem Let X and Y be complete C"'-vectorfields on a manifold M 
and let 0, a denote the corresponding actions of R on M .  Then 8,o a, = a, 0 8, 
for all s, t E R if and only if [ X ,  Y ]  = 0. 

Proof We first suppose that 8, G a, = a, 0 0, for all s, t E R .  Applying 
Theorem 5.7 to the diffeomorphism 8,: M -+ M ,  we see that Y is 
$,-invariant; in particular Of, Y = Y. This implies that 

[X, Y J  = L,Y = lim[Y - 0-,,Y] = 0. 

Next assume [X, Y] = 0, then from the previous theorem 
A i d 0  

0 = O,,[X, Y ]  = [@,,X, 01, Y] = [X, 81, Y]. 
From this we conclude that for any p E M and any f~ C"'(p) we have 

f 
= y ) ) p . f =  lim [(Of, Y ) p f -  Y ) p f l  

A 1 4 0  At 

so that d(O,, Y),fldt = 0 for every t ,  that is, (8$, Y ) p f i ~  constant. When 
t = 0 this constant function has the value YpfI therefore (Or, Y)J= Y,J 
Since p and , f ~  P ( p )  were arbitrary, it follows that $,, Y = Y and from 
Theorem 5.7 we conclude that for each t E R 

0, Q, = a, 0 8, . 1 

Exercises 

1. Show that X(M) is infinite-dimensional over R but locally finitely gen- 
erated over C"(M), that is, each p E M has a neighborhood V on which 
there is a finite set of vector fields which generate X(M) as a Cm(V) 
module. 

2. Let X, Y EX(M) andj; . q ~  C"(M)  and prove that 

[ . r x t  gy1 = M X ,  YI + f f X @ ) Y  - @fYf)X. 



156 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 
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Suppose U ,  cp is a coordinate neighborhood on M ,  X ,  Y E X ( M ) ,  and 
E l ,  ..., En the coordinate frames, and note that [ E i ,  Ej] = 0 on U .  If 
X = xi aiEi and Y = cj P'Ej on U ,  then show that 

[We are using the same letters a, f i  for functions on U c M and their 
expressions in local coordinates.] 
Given the vector fields in R3 (with coordinates x, y ,  z )  

compute the components of the three pairs of products. 
Show that ( L ,  Y ) ,  depends on the fact that we have vector fields, that 
is, if X ,  X '  agree at p but are not the same as vector fields, then ( L ,  Y ) ,  
may differ from (L,, Y ) p .  
Write the expressions defining ( L ,  Y ) ,  (Definition 7.6) in local coordin- 
ates of a coordinate neighborhood U ,  cp and show that L, Y is a 
C"-vector field on U .  
Let G = Gl(n, R )  with matrix entries as local coordinates. To each 
X E g we assign the n x n matrix A = (aij) of components of X , ,  
X e  = xi. j  aij(il/dxij),. Denote this mapping of g onto A , , ( R )  by p. 
Show that is an isomorphism and that 

PU[X YI = P ( X ) P ( Y )  - P ( Y ) P ( X ) .  

Show that whenever H is a (Lie) subgroup of the Lie group G ,  then the 
Lie algebra of H may be naturally identified with a subalgebra of g, 
thus verifying Remark 7.1 1. 
Show that two one-parameter subgroups F ( t )  and G ( t )  commute 
elementwise if and only if their Lie algebras, in the sense of Exercise 8, 
satisfy [X, Y] = 0 for each X ,  Y in the algebra of F ( t ) ,  G( t ) ,  
respectively. 
If F :  M + N is a diffeomorphism of M onto N and X ,  Y are C"-vector 
fields on M, then prove that F,(L, Y )  = F,( Y ) ,  that is, L, Y is 
F-related to F,(Y). 

8 Frobenius' Theorem 

The concept of vector fields on a manifold can be used to give a 
coordinate-free treatment of certain first-order linear partial differential 
equations which is useful even for local questions in R" and indispensable in 
many global questions. First consider an example. 



8 F R O B E N I U S '  T H E O R E M  157 

(8.1) Example Let 

F%(.Y', x', x3; yl, J'', pf) = 0, ~1 = 1, . . ., 6, 

be a system of six partial differential equations involving two unknown 
functions y'  and y2 of three variables xl, x2, x3 and their first derivatives 
pf = ?yk/?x'. To simplify matters we assume that these equations can be 
solved for p:  and written equivalently 

?yk 
~~ = Gf(x; y ) ,  k = 1, 2 and 1 = 1, 2, 3, 

in some neighborhood U of a point (u ;  b )  = (a', a,, a 3 ;  b', b'). A solution 
consists of functions yk = f k ( x ' ,  x2, x3), k = 1, 2, which satisfy the system of 
equations 

i l f 'k  
= G: ( .~ ; , f ' ( x ) ,d '~ ( .~ ) )  

6.Y' 
- in a neighborhood of x = a 

and for whichf(a) = h, this last being " initial conditions." This is equivalent 
to defining a three-dimensional submanifold of R5 = R3 x R2 given by 
(x', x2, x3) + (x', x2, x3; f'(x), f 2 ( x ) )  whose tangent plane at the point 
(x; y) is spanned by three vectors X , ,  X , ,  X 3  with components given by 

Xi = 0, G!(x, y), G:(x, y)), 

x, = (0, 1, 0, G:(x, JJ), Gl(x, y)), 

X 3  = (0, 0, 1, G!(.x, J J ) ,  G:(x, J J ) ) .  

Any such surface gives a solution, the initial conditions add the requirement 
that i t  pass through ( a ;  b). 

Such solutions may not exist ; the equations must satisfy certain neces- 
sary conditions on the functions C: which reflect the fact that if there is a 
solution, then one can interchange the order of differentiation off' andf2. 
These conditions can be written as relations among X i  and [ X i ,  X,], 
i , j  = 1, 2, 3. 

The vector fields X , ,  X , ,  X 3  are determined by the system and define at 
each point y of U a three-dimensional subspace Aq c T,(R5),  at least if they 
are linearly independent, which we will assume. Thus a system of equations 
of the type we are considering determines in some domain of R5 three 
linearly independent vector fields X , ,  X , ,  X 3  at each point and a solution is 
a three-dimensional submanifold whose tangent space at each of its points q 
is spanned by X , ,  X , ,  X 3 .  Two systems of differential equations will be 
equiuulent if they determine at each q of this domain the same three- 
dimensional subspace Aq of T& R 5 )  in which case they would-if some sort of 
uniqueness prevailed-have the same solutions. A system of equations is 
complete/y integrable. roughly speaking, if there is a single such solution 
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manifold through each point of some domain of R5, that is, if the domain, up 
to diffeomorphism, is like an open subspace of R5 presented as a union of 
disjoint " surfaces," like the surfaces obtained by holding two coordinates 
fixed and letting the other three vary. With this as background one can 
motivate the following definitions: 

(8.2) Some Definitions Let M be a manifold of dimension m = n + k and 
let us suppose that to each p E A4 is assigned an n-dimensional subspace A p  
of T,(M). Suppose moreover that in a neighborhood U of each p E M there 
are n linearly independent Cm-vector fields X , ,  . . . , X ,  which form a basis of 
A, for every q E U. Then we shall say that A is a C" distribution of dimension 
n on M and X1, . . . , X ,  is a local basis of A. 

We shall say that the distribution A is inuolutiue if there exists a local 
basis X , ,  . . . , X ,  in a neighborhood of each point such that 

[The 4j will not in general be constants, but will be C" functions on the 
neighborhood.] 

Finally, if A is a C" distribution on M ,  N is a connected C" manifold, 
and F :  N --t M is a one-to-one immersion such that for each q E N we have 
F ,  (T , (N) )  c AF(,),  then we shall say that the immersed submanifold is an 
integral manifold of A. Note that an integral manifold may be of lower 
dimension than A. 

An example of a system in involution is the following: Let M = R" x Rk  
and X i  = d/axi,i = 1, . . . , n. Then the distribution is the subspace of dimen- 
sion n consisting of all those vectors parallel to R" at each point q of M .  We 
shall see that this apparently rather special example is actually typical, 
locally, of involutive distributions. 

Let A be a C" distribution on M of dimension n, the dimension of M 
being m = n + k.  We shall say that A is completely integrable if each point 
p E M has a coordinate neighborhood U ,  cp such that if x',  . . . , xm denote the 
local coordinates, then the n vectors Ei = (q; ' (a /dxi ) ,  i = 1, . . . , n, are a local 
basis on U for A. Note that in this case there is an n-dimensional integral 
manifold N through each point q of U such that T , ( N )  = A,, that is, the 
tangent space to N is exactly A. In fact, if (a', . . . , am) denote the coordinates 
of q, then an integral manifold through q is the set of all points whose 
coordinates satisfy x"" = a"" , ..., xm = am, that is, N = c p - ' ( x ~ c p ( U ) (  
xj = a', j = n + 1,. . . , m}, a slice of U .  Of course, in this case the distribution 
is involutive for 
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Thus any completely integrable distribution is involutive. However, most 
distributions are not involutive, for example, on R3 the distribution 

is not involutive since [XI, X,] = -a/dx' ,  which is not a linear combina- 
tion of X I  and X,.  This means, in particular, that X1, X, could not be 
tangent vectors to a surface x3 = f ' ( x ' ,  x') (see Exercise 1). 

An important and instructive example of an involutive distribution is 
furnished by the Lie algebra t, of a subgroup H of a Lie group G;  t, consists 
of left-invariant vector fields on G which are tangent to H at the identity. As 
we have seen (Remark 7.1 l) ,  this determines a subalgebra, the image of the 
Lie algebra of H under the inclusion mapping. These give a (left-invariant) 
distribution A on G such that A,, = T,,(H) for every h E H .  The cosets gH are 
the integral manifolds of this distribution-which is evidently involutive 
since t, is a subalgebra of 9. 

A distribution A of dimension 1 is just a field of line elements, that is, 
onedimensional subspaces. A local basis is given by any nonvanishing 
vector field X which belongs to A at each point and, of course, an integral 
curve of X is an integral manifold. We know from the existence theorem that 
such integral manifolds passing through any given point exist and are 
unique. In fact, Theorem 3.14 says precisely that any such distribution is 
completely integrable, It is also involutive since [X, XI = 0. In the light of 
these remarks, the following theorem may be considered a generalization of 
the existence theorem (Theorem 4.1) to certain types of partial differential 
equations. In the general case, however, there is a necessary condition which 
is not automatic-as it is in the case of a one-dimensional distribution. This 
condition is the involutivity of A. 

(8.3) Theorem (Frobenius) A disrribution A on a manifold M is com- 
pletely integrable if uarirf only if i t  is  involutive. 

Proof We showed above that a completely integrable distribution is 
involutive. This is an easy consequence of the definitions. We shall prove 
that involutive distributions are completely integrable by induction on their 
dimensions, which we denote by 11. We let m = dim M .  

When n = 1 we have seen that we may introduce local coordinates V ,  $ 
such that El. = $J ' ( d l d y ' )  is a local basis for A (Theorems 4.6 and 3.14), 
which establishes complete integrability when n = 1. 

Suppose that the theorem is true for involutive distributions of dimen- 
sions 1, 2, . . . , n - 1, and let A be of dimension n and in involution. Around 
any p E M we may find (using Theorem 3.14 again) local coordinates V ,  i+b 
and a local basis XI, ..., X, of A on V such that X I  = El. By assumption, 
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[ X i ,  X j ]  = c i j X ,  and letting y', .. ., y" denote the local coordinates, 
we may suppose that $ ( p )  = 0. We know that the components of X j  relative 
to the coordinate frames El ,  . . ., &, are X i $ ,  . . . , X j P ,  which are C" func- 
tions on V .  Define a new basis of A on V by 

Y' = X' ( = E l ) ,  
Y, = x2 - (X2Y1)X1, 

y, = x, - (X,y')X1. 

By involutivity [ y i ,  53 = I;= d f j  y ,  but we have arranged that Y2, . . . , 
are linear combinations of E2, .. ., Em at each point and do not involve 
El (= Yl). Therefore they are tangent to the manifolds y'  = constant and it 
follows that [Y , ,  TI, 2 I i, j I n, must be tangent to the submanifolds 
y' =constant also. Hence d t  = 0, and the distribution on I/ defined by 
Y, , . . . , Y, is in involution on V and on each submanifold y' = constant of 
V including N o  c U defined by y' = 0. The functions (y2, . . . , y") restricted 
to N o  give coordinates on V n N o .  By the induction hypothesis we may 
change coordinates on N o  in a neighborhood of p by, say, functions 

y' = f i ( x 2 ,  ..., x"), i = 2, ..., in, 

defined on a neighborhood of the origin of R"- ', so that the image on N o  of 
d/dx2, ..., d/dxn is a basis at each point of the subspace spanned by 
Y,, . . ., Y, and so that we havef'(0,. .. , 0) = 0, i = 2,. . ., m. 

We extend this to a change of coordinates in a neighborhood U c V of p 
by adding the functionf'(x) = XI giving 

y' = x', y' =f'(x2, ..., x"), i = 2, ..., m. 

This is a valid change of coordinates since the Jacobian matrix is nonsingu- 
lar at the origin. We may suppose with no loss of generality that the image of 
U in the (x' ,  . . . , x") space is the cube Cr(0). Let cp denote the coordinate 
map. Then cp = $ 0 F - I  with F(x' ,  ..., x") = ( f ' ( x ) ,  ..., ,f"(x)), then 
~ ( p )  = (0, . . . , 0) and in terms of the new coordinates we have the following 
three facts: 

(i) Yl = cp; '(d/dx'); 
(ii) N o  n U consists of those points for which x' = 0, so (x', . . . , x") 

are coordinates on this submanifold; 
(iii) at each point of N o  n U ,  Y,, . . ., Y, are linear combinations of 

E2 = cp,(d/dx2), ..., En = cp,(d/d.x"), or equivalently, when x' = 0, 
Y2x' = ...  = xx' = 0 for I = n + 1, ..., m, that is, the last m - n compon- 
ents vanish. 
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We shall now prove that ( i i i )  holds throughout U ,  without restriction on 
XI. We consider Yl( ?XI) for/ = 2, . . . , n and each 1 > n. We have, using the 
definition of brackets, 

Y,(  5x1) = q( Y, x') + [ Y, ,  51x1. 
But Y,  x' = i~.u'/C:x' = 0 and [ Y , ,  51 = C:= , c l i j  K ,  so that 

n 

Yl ( 5x1) = rl", j (  y, 2). 
s = 2  

If we write (4 and q x f  as functions of (XI, . . . , -urn), passing from functions 
on U to the corresponding functions in local coordinates, then we see that 
Y2.u1, .. ., Yk,uf, for fixed 1 > n and fixed .uZ, . . ., x"', are solutions of the 
system of ordinary differential equations 

satisfying initial conditions z j  = 0, j = 2, . . . , 11, when x1 = 0. However, the 
functions z j  = 0 also satisfy the system and these same initial conditions, so 
by the uniqueness of solutions, whenever 1 > n, 

Y,.Y' = ... = ykx1 = 0 for all values of XI. 

This shows that the vectors Y,,  . . . , Y, are linear combinations of the vectors 
E , ,  . . ., En (of the coordinate frames) throughout U .  Since El = Y , ,  it fol- 
lows that Ei = ( p i  '(J/dxi), i = 1, . . . , n, is a local basis for A and this com- 
pletes the proof. I 

Theorem 8.3 implies the following corollary which is essentially a local 
uniqueness statement for integral manifolds of an involutive n-dimensional 
distribution A in a manifold M of dimension m. 

(8.4) Corollary Let U ,  cp be a cubical coordinate neighborhood of P E  M ,  
relatitie to the involutire distribution A, whose slices-corresponding to x"+ I ,  

. . . , .Y"' jiseil-are inteyrul manifolds in  U .  Then any connected integral mani- 
jdd V c U lies on such a slice, that is, there are constunts a"+ . . . , am such 
that 

v c ( q E  u I .x""(q) = a n + , ,  ..., x"(q) = a m ) .  

Proof Since V is an integral manifold, its tangent space at each point 
lies in the space spanned by the first 11 vectors El ,  . . . , En of the coordinate 
frames. I f  .xj is a coordinate function of U with j > n, p is any point of V ,  and 
X ,  is any vector at p tangent to V ,  then X ,  = , ai Ei ,  and 
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Since xj is defined on all of V and V is connected, this means that xj = aj, a 
constant, on I/. I 

The following result should be compared with Lemma 111.6.7. 

(8.5) Theorem Let N c M be an integral manifold of an inuolutive distribu- 
tion A with dim N = dim A and suppose F :  A + M is a C" mapping of a 
manifold A into M .  I f  F(A) c N, then F is C" as a mapping into N. 

Proof Let p E A and let q = F(p) be its image. Choose a cubical coor- 
dinate neighborhood U ,  cp of q with q ( q )  = (0, . . . , 0) and cp(U) = Cr(0) 
such that its slices x"+' = a"" , ..., x"' = a"' are integral manifolds, 
n = dim A, and m = dim M .  Since the inclusion i :  N --t M is an immersion, 
i - ' ( U )  = N n U is an open set in N, and therefore an open submanifold. 
Manifolds are locally connected so that the components of N n U are open 
sets of N and countable in number. Each is itself a (connected) integral 
manifold and thus lies on a slice by Corollary 8.4. It follows that ifxj,j > n, 
is a coordinate function on U ,  it can have only a countable number of values 
on N n U .  The function xj maps any connected set C c N n U contin- 
uously into this countable subset of R, and hence must be constant on C. 
[The only connected, countable subset of R is a single point.] 

Now, using the continuity of F :  A + M, choose a connected coordinate 
neighborhood W ,  (I/ of p such that F( W )  c U.  Since F( W )  is a connected 
subset of U and lies in N n U ,  it lies on a single slice. Because q E F( W ) ,  this 
is the slice x"' = = x"' = 0. Let 0 be the subset of N which lies on this 
slice. It must, by what we have seen, be a union of components of 
i -  '( U )  = N n U and so it is an open subset of N-in the topology of N .  The 
coordinate functions xl, . . . , x" restricted to 0 are coordinates on 0, that is, 
they define a mapping @: 0 -, R" such that 0, @ is a coordinate neighbor- 
hood of q on N (compare Remark 111.5.6). Let yl, . . . , y' be the local coordin- 
ates on W ,  (I/ and suppose F :  A + M is given on W by C" functions 

xi  =fj(y', ..., y'), j = 1, .. . , m. 

Then f J ( y )  = 0, j = n + 1,. . ., m, and as a mapping into N, F is given (in 
local coordinates) on W by the same functions fj(y), 1 I j I m, so it must be 
C" as claimed. I 

(8.6) Definition A maximal integral manifold N of an involutive distribu- 
tion A is a connected integral manifold which contains every connected 
integral manifold which has a point in common with it. 

It is immediate from Corollary 8.4 that a maximal integral manifold has 
the same dimension as A. It is also clear that a t  most one maximal integral 
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manifold can pass through a point p of M .  I t  is true but more difficult to 
prove that there is a maximal integral manifold through every point of M. 
The idea is to piece together local slices using Corollary 8.4 and build up an 
immersed submanifold. The difficulty is in showing that there are not too 
many such slices, that is, in proving that we have a countable basis of open 
sets. We shall not prove this here. Proofs are given by Chevalley [ I ]  and 
Warner [ 13, for example. We shall state one theorem whose proof requires 
this fact and show how it is used. 

(8.7) Theorem Let G be a Lie group, g its Lie algebra, and b a subalgebra of 
g .  Then there is a connected subgroup H of G whose Lie algebra is b. 

Proof Let the left-invariant vector fields XI ,  . . . , X ,  on g be a basis of 5. 
They define a distribution A which is invariant under left translations, hence 
each integral manifold N is carried by any left translation L, diffeomor- 
phically to an integral manifold L,(N). Let H be the maximal integral mani- 
fold through the identity element e .  If h E H ,  then Lh-,(h)  = e so that both H 
and Lh- , ( H )  have e in common. Since H is maximal, Lh- , ( H )  = H .  It follows 
that if h l ,  h2 E H ,  then h;  ' h ,  E H and H is thus a subgroup as well as an 
immersed submanifold. The product mapping H x H + H is a composition 
of inclusion i :  H x H + G x G and the product mapping 8: G x G + G. 
Both are C" so that 8 o i is C" as a mapping into G.  Its image is in H 
because H is a subgroup; and by Theorem 8.5 we see that the product 
mapping H x H + H is also C". A similar argument shows that the map- 
ping taking each h E H to its inverse h-' is also C". This completes the 
proof, subject to the unproved assertion concerning integral manifolds. 

Exercises 

1. Consider a system of two partial differential equations (analogous to 
Example 8.1 but in fewer variables): 

Let X = d/Jx + ha/dz and Y = d/dy + gd /az  and show: (a) if z = f ( x ,  y )  
is a solution, then X and Y span the tangent space at each point of 
the surface z = f(x, y) in R 3 ;  (b) interchangeability of the order of 
differentiation for f is equivalent to the distribution given by X ,  Y 
being in involution. 
Show that if a distribution is involutive with respect to one choice of 
local basis on an open set U ,  the same will be true for any local basis 
whose domain is in U .  

2. 
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3. A vector field X is said to belong to a distribution A if for each p E M we 
have X ,  E A p .  Show that a C" distribution is involutive if and only if for 
every pair of C"-vector fields X, Y on M which belong to A the vector 
field [X, Y] belongs to A. 

4. Let U be an open subset of R3 and X a nonvanishing C"-vector field on 
U .  Show that the distribution A of dimension2 defined for each 
p = ( x ,  y, z )  of U by A, = { Y E T'(R3) I (X, Y) = 0) is involutive given 
that curl X = 0. In this case show that there is, locally at least, a 
functionfsuch that gradf= X and using this prove that A is completely 
integrable. (For definitions of curl and gradient, consult any advanced 
calculus book, for example, Apostol [ 13.) 

5. Let N be a connected, immersed submanifold of M and suppose that it is 
an integral manifold of a distribution A on M with dim N = dim A. 
Show that if N is closed (as a subset), then it is a submanifold of M .  

9 Homogeneous Spaces 

In this section we consider the action of a Lie group on a manifold in a 
special but very important case, transitive action. Let 0: G x M + M 
denote such an action. Then we recall that it is transitive if for every pair 
p, q E M ,  there is a g E G such that 8,(p) = q. This means that as far as 
properties preserved by G are concerned, any two points of the manifold are 
alike. 

(9.1) Definition A manifold M is said to be a horiiogeneous space of the 
Lie group G if there is a transitive C" action of G on M .  

Many examples of group action have this property: O(n)  acts transitively 
on Sn-l ,  Gl(n, R )  acts transitively on R" - (0) and so on; these were discussed 
in Section 111.7. But one of the most important examples remains to be 
treated, since until this moment we have lacked an essential tool: Frobenius' 
theorem. This example, viewed first from a purely set theoretic standpoint, 
is the following: Let G be a group, H any subgroup, and G / H  the set of left 
cosets. We define a left action A: G x G / H  + G / H  by l(g, x H )  = g x H ;  it is 
a left action since 

(i) A(e. x H )  = x H ,  and 
(4 n ( g l ? 4 9 2 .  k)) = 9 2  x H )  = (S l92 )XH = 4 9 ,  9 2  1 XH).  

Moreover, if x :  G + G / H  is the natural mapping of each gE G to the 
coset which contains it, n(g) = gH and if L,: G + G denotes left translation, 
then we have the property: 

The transitivity is apparent: A Y x - , ( x H )  = y H  for all x ,  y c  G.  
(iii) K 0 L, = A, 0 x (for all gE G). 
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Of course, we are far from being able to assert that when G is a Lie group, 
then G / H  is a manifold and the mappings I and defined by G and H are 
C".  We did see, however, that if H is closed in G (a Lie group), then the 
quotient topology on G/H makes it a Hausdorff space and n an open-as 
well as continuous-mapping (Theorem 111.7.12). We left it as an exercise to 
the reader to show that with this topology on GIH, A is a continuous group 
action. In this section we shall go further and show that G / H  is a manifold 
and A is a C" action. Aside from the fact that this will give us many new 
examples of manifolds and group action, this is important for another 
reason: the manifolds GIH with G acting by left translation form a universal 
model for all transitive actions, that is, for all homogeneous spaces. 

First, consider this last statement from the set-theoretic viewpoint- 
without topology or differentiable structure. Let X be a set on which a group 
G acts transitively by the rule ( I :  G x X + X .  Choose, arbitrarily, a point 
a E X and let the isotropy subgroup (or stability group) of a be H ,  

H = ( g  E G I O,(U) = u) .  

We then define a mapping F: G -+ X by F(g) = O,(a). Since 0 is transitive, F 
is onto; moreover for any x E X ,  P -  '(x) = g H ,  where g is any element of G 
such that F ( g )  = x. I t  is then easily verified that F induces a one-to-one onto 
mapping F :  GIH -+ X by F ( g h )  = F ( g ) .  For these mappings we have the 
relation F n = F, Finally F carries the natural action of G on G / H ,  which 
we denoted by I above, to the action 0, that is, 

for every g E G .  Thus from the set-theoretic and abstract group viewpoint, 
A: G x GIH -+ G / H  is equivalent as an action to 0: G x X + X .  

Of course, it is very interesting and important to see to just what extent 
this still holds in the case of the transitive action of a Lie group on a 
manifold. Recall that by Definition 111.6.17 a Lie subgroup H of a Lie group 
G is an immersed submanifold which is a Lie group with respect to the group 
operations of G .  Since we shall use the quotient topology on GIH, we must 
restrict our attention to those Lie subgroups that are closed subsets if GIH is 
to be a Hausdorff space (Theorem 111.7.12). Therefore H will be assumed to 
be a closed Lie subgroup. [We prove later that this implies that H is a 
submanifold of G (compare Remark III.6.19).] A section V ,  D on G/H will 
mean a continuous mapping D of an open subset V of G / H  into G,  D :  V + G,  
satisfying n D as the identity on V .  We then have the following basic fact. 

(9.2) Theorem Let G be a Lie group and H a closed, Lie subgroup. Then 
there exists a unique C' -inunfold structure on the space GIH with the proper- 
ties: ( i )  n is C' unrl (ii) each g E G i s  in the image D( V )  oj'a C" section V ,  D on 
GIH. The nuturul uction A: G x GIH + G / H  described above i s  a C" uction 
q fG on GIH with rhis structure. The dimension of GIH is dim G - dim H .  
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Now suppose that a Lie group G acts transitively on a manifold M, the 
action being given by the C"-mapping 8: G x M + M. Using the notation 
above, with X replaced by M, we suppose a E M and that H is the isotropy 
subgroup of a. We then have the following closely related theorem to com- 
plete the picture. 

(9.3) Theorem The mapping P: G --f M ,  defined by F(g) = 8(g, a),  is c" 
and has rank equal to dim M everywhere on G .  The isotropy group H is a 
closed Lie subgroup so that G / H  is a C" manifold. The mapping F :  G/H --f M 
defined by F(gH)  = F ( g )  is a dgeomorphism and F 0 I ,  = 8, 0 F for every 
g E  G .  

Before proving these theorems we give some examples of their use. First 
consider briefly some of the spaces associated with classical geometries: 
E"-Euclidean space, P( R)-the space of real projective geometry, and 
Hz-the space of plane non-Euclidean geometry. All of these were dis- 
covered and studied before Lie groups (or groups of any kind) were in- 
vented. However, in each case there is an underlying group, the group of 
automorphisms of the geometry; it is the group by which we can bring 
congruent figures into congruence. In fact each geometry studies precisely 
the objects and properties which are invariant under the transformations of 
this group acting on the space. For E", or R", the group consists of all 
isometries (rigid motions): translations, rotations, and reflections; for P"(R) 
it is the projective transformations; and for H2 it is the group which leaves 
non-Euclidean distances unchanged (" rigid" motions again!) In each case 
the group is a Lie group and in each case it is transitive. This means that the 
theorems above can be used as a sort of underlying unifying principle of all 
these geometries, a fact which was recognized by F. Klein [ 13 and resulted in 
a famous approach to geometry called the "Erlangen Program" (1872). 
Thus the study of any of these classical geometries can be reduced to a study 
of Lie groups G and their subgroups H .  This point of view pervades much of 
modern geometry. Consider now what G and H are for the cases above. 

(9.4) Example We have seen in Example 111.7.6, that the group of rigid 
motions of E", identified with R", is a group G which is O(n)  x Y" as a 
manifold, but whose group product was defined by ( A ,  u)(B,  w )  
= (AB,  Bv + w )  and whose action on R" is given by (A ,  u )  . x = Ax + u 
(see Exercise 111.7.6). Another approach is the following: we identify G with 
the (n + 1) x (n + 1) matrices of the form 

9 =  
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and points .Y = (x', . . . , x") of R" with the column vector k = '(XI, . . . , x", 1). 
Then O(g, x) = gk, the product of the matrices g and 5. The subgroup H 
leaving the origin x = (0, . . . , 0) fixed is the set of all of these matrices for 
which u ,  = = v,, = 0; hence it  is a closed Lie subgroup isomorphic to 

(9.5) Example The group G = S/ (n  + 1, R )  acts transitively on P ( R )  as 
follows: let [XI E P"( R ) .  Then [x] is an equivalence class of nonzero elements 
x = (x'. . . . . sn+ ' ) of R"+ I .  Given any g E Sl(n + 1, R),  we define O(g, [XI) by 

where gx is the matrix product of g with x written as a column vector 
((n + 1) x 1 matrix). This is a C" action and is transitive; the proof is left to 
the exercises. The isotropy subgroup H of [( 1, 0, . . . , O)] is the set of elements 
(aij) of S / ( n  + 1, R) with a,,  # 0 and all other entries of the first column 
equal to zero. It is easily seen that H is a closed, Lie subgroup of G. 

The non-Euclidean (or hyperbolic) plane HZ will be discussed in the last 
chapter. It is equivalent to S1(2, R ) / 0 ( 2 )  in the sense of Theorem 9.3. 

One of the more important uses of these ideas and of Theorem 9.2 is the 
relatively simple way it provides for establishing that certain sets are C" 
manifolds in a natural way. The best illustrations are the Grassman mani- 
folds G ( k , n )  of k-planes through the origin in R". It was proved in 
Section 111.2 that these were manifolds, but the proof was quite complicated 
and only sketched at  some points. This same result may be shown as follows. 
The group G/(n,  R)  acting in the natural manner on R" is transitive on 
k-planes through the origin. This is an immediate consequence of the fact 
that it is transitive on n-frames: given {v,, . . . , v,} any linearly independent 
set of vectors, then there is a uniquely determined, nonsingular, linear trans- 
formation taking it to any second linearly independent set {wl, . . . , w,,}. 
However, if Gl(n, R) is transitive on n-frames, it is necessarily transitive on 
k-frames since each set of k linearly independent vectors can be completed to 
a basis. It follows that Gl(n, R )  acts transitively on the set M = G(k, n) of 
k-planes through 0. If the isotropy subgroup H of some point of M, that is, a 
k-plane through 0, is a closed Lie subgroup, then Gl(n, R ) / H  is a C" mani- 
fold by Theorem 9.2 and is in natural one-to-one correspondence with M. 
Thus we may take on M the topology and C" structure which makes this 
correspondence a diffeomorphism. However, *H is such a subgroup, for the 
k-plane of R" spanned by the vectors el = (1,0, ..., 0), ..., 
ek = (0, ..., 1,0, ..., 0) is carried onto itself by the subgroup H c Gl(n, R) 
consisting of matrices of the form 

h = ("1") 0 B '  
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where A E Gl(k, R ) ,  BE Gl(n - k ,  R ) ,  and C is an arbitrary k x ( 1 1  - k )  
matrix. Therefore the Grassmann manifold G(k ,  n )  is indeed a C' manifold. 
This method is frequently used in practice to show that some rather com- 
plicated objects can be endowed with the structure of a diffcrcntiable mani- 
fold (uniquely, according to Theorem 9.3). It  may be sumniarizcd as follows: 

(9.6) I f G  i s  a Lie group arid G acts 011 u set X ti-artsitirely in scrclt a way fltut 
the isotropji srrbgroirp ofsorw point a of X i s  a clo~erl Lie subyro1rp, tltert there 
exists u (urtiqire) C' structure 0 1 1  X such that the actioit is C " .  

This principle as well as other results of this section are susceptible to 
further refinements and weakening of hypotheses (see, for example. Helga- 
son [ l ,  Chapter 11, Sections 3 and 41). Of course, our treatment above of 
G(rt, k )  depends on Theorem 9.2, which we are now ready to prove. 

Proof' of' Theorem 9.2 The topology on G/H is given: i t  is uniquely 
determined by the requirement that n: G + G/H be open and continuous. 
Moreover i :  G x G/H + G/H is a continuous action. For let U be an open 
set of G / H ,  then we will show that i - ' ( U )  is open. Let W be the subset of 
G x G such that every pair (cg,, g2)e  W has its product g1 g2 in n - ' ( U ) ,  
which is an open subset of G. W is open since it is the inverse image of 
n - ' ( U )  under the continuous mapping (cjl, yz)  + g1 y z .  The natural map- 
ping of G x G + G x G/H given by (y l ,  g2) -+ (gl ,  n ( g 2 ) )  is open so it car- 
ries W onto an open set which is exactly Z.-'(U). 

We now need to use Frobenius' theorem, which we apply to the left- 
invariant distribution A determined by A', = T,.(H). As a basis A has any 
basis of left-invariant vector fields in I), the Lie algebra of H viewed as a 
subalgebra of 9; and the integral manifolds of A are exactly the left cosets 
yH-as remarked in the previous section. I t  follows that there is a cubical 
neighborhood of 1' whose intersections with the cosets yH are a union of 
slices. To complete the proof we need a sharper result given by the following 
lemma. 

(9.7) Lemma l f  H i s  LI Lie subgroup of' G d i i c h  i s  closed a s  CI sirhset, thert 
c~rrch coset g H  is (I . ~ f l h i i t ~ l l l i j h / ,  r r i u l  there i s  N ciihical neighborhootl U .  cp qfur~j -  
g E G sirch thot jor  cuch coset s H  eitkrr .uH n U i s  ernpt j '  or u siri~qle (coit- 

Proof That H and each of its cosets is a submanifold is an immediate 
consequence of the second part of the statement, which asserts, in particular, 
that H and its c o ~ c t s  have the submanifold property (Definition 111.5.1). 
Since each coset ih  ; i n  integral manifold of the distribution A, as we saw in 
the previous section. c\cry E G has a cubical coordinate neighborhood 
with cp(y) = CT(0). 1 1 1  = dim G ,  whose slices-determined by fixing the last 

nect Ptl)  slicc. 
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m - n coordinates (n  = dim H = dim A)-are integral manifolds, each an 
open set of a coset x H  of H .  We must now verify that U may be taken 
sufficiently small that each coset .uH n U is empty or is a single slice. Since A, 
integral manifolds, and so on, are invariant under left translation by ele- 
ments of G it is enough to check this for the special case g = e. Moreover, if 
U', cp' is a cubical neighborhood of e whose slices are cosets of H ,  and if 
U' n H consists of a single slice, then we need only choose U c U' small 
enough that U -  ' U  c U' and so that U ,  cp = cp' I U is also a cube in order to 
complete the proof. Thus if x, Y E  U are on distinct slices of U but belong to 
the same coset, that is, x H  = y H ,  then y - l x  and e are elements of U' A H 
but lie on distinct slices (because L,- is a diffeomorphism and carries slices 
into slices). Since this contradicts our assumption about U', it cannot 
happen. I t  remains to show the existence of U', cp'. We begin with an arbi- 
trary cubical neighborhood V ,  $ of e, $ ( V )  = Cr(0) whose slices 
S(u"+ I ,  ..., am) = ( q ~  V 1 x j (q )  = uj, j = n + 1, .. ., m) are integral mani- 
folds. We saw in the proof of Theorem 8.5 that the collection of distinct slices 
on H ,  that is, V n H ,  is countable and hence corresponds to a countable set 
of points ((u"' I ,  . . . , am)) of the cube Cy-"(O). Restricting slightly to a closed 
cube V' = I,- '(cT(O)), 6 > 6' > 0, we may suppose this countable set is 
closed, for H is closed and V' n H is closed. Since a closed countable subset 
of Rm-"  must contain an isolated point (Exercise 8)  it follows that H n V' 
contains an isolated slice. By translation invariance we may suppose this to 
be the slice through e .  Then it is possible to choose E',  6' > E' > 0, so that 
I,-'(C;(O)) = U' and cp' = I, I U' have exactly the property we have seen is 
needed: H n U' is a single slice and contains the identity e. This U' ,  cp' as we 
have seen enables us to complete the proof of the lemma.? I 

Resuming the proof of Theorem 9.2, we restrict our discussion entirely to 
cubical neighborhoods U ,  cp of the type described above with cp( U )  = Cr(0) 
and suppose that in the local coordinates XI, . . . , x", x"", . .. , x", the slices 
obtained by holding .u"+ ', . . . , .urn fixed are the intersections of cosets g H  
with U .  Let A = ( 4 ~  U I.uI(4) = ... = x"(q) = 0) and 

$': A + Cr-"(O) c R"-" 

be defined by I,'(q) = ( ~ " " ( q ) ,  . . . , x m ( q ) ) ;  A is a C" submanifold of G, 
contained in U ,  and $ is a diffeomorphism. By our choice of U ,  cp we see that 
A meets each coset of H which intersects U in exactly one point. Therefore, n 
maps A homeomorphically onto an open subset I/ of G / H .  We denote the 
inverse by 0; thus 0: V + G is a continuous section with o( V )  = A. Suppose 
that U ,  cp and 0, S, as just chosen are such that P = n(A) and V = n ( A )  

t As remarked earlier (compare Remark 111.6.19). the conclusion follows from the much 
weaker hypothesis: H is an algebraic subgroup and a closed subset of G. 
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have common points. The set V n t is open and it is not difficult to verify 
that the corresponding subsets W = a ( V  n t) and w = 5(V n V) are dif- 
feomorphic with respect to the natural correspondences 5 0 n: W + w and 
a 0 x :  w -+ W (Exercise 4). It follows that the collection of open sets 
V = n ( A )  over all U ,  cp of the type above together with the homeomor- 
phisms II/ = $' 0 Q: V + C:-"(O) determine a C" structure of the type 
required by the conclusions of the theorem. The uniqueness follows from 
requirements (i) and (ii). For if we have two differentiable structures on G / H ,  
we see that the identity is a diffeomorphism as follows: factor it locally into a 
section a: V -, G of the first structure followed by projection x ,  which is C" 
onto the second structure. Thus the identity is a C" mapping of G/H with 
structure one to G / H  with structure two since this holds on each domain V .  
But the converse is also true, so the structures agree. Finally I : G  x G/H 
-+ G / H  is C" since it may be written on the domain V of a section as 
A(g, x H )  = n(go(x)).  This completes the proof of Theorem 9.2. I 

We now prove the second principal result. 

Proof of Theorem 9 3  F: G + M is C" since F(g) = O(g, a) and 0 is C" 
by assumption. From 

F L ~ ( x )  = F(gx)  = 8, F(x), 

from the chain rule, and from the fact that both L, and 0, are diffeomor- 
phisms we see that the rank of F is the same a t  every gE G. It follows that 
F-'(a) = H is a closed submanifold (Theorem 111.5.8) and satisfies the 
hypotheses of Theorem 9.2. At e we have F,: T,(G) + T , ( M ) ;  but each 
X,E T , ( G )  is the tangent vector at t = 0 to the curve g( t )  = exp t X  so that 
the vector F,(X,) is the tangent vector to F(exp t X )  = O(exp t X ,  a) at  a 
(which corresponds to t = 0). Since O restricted to g( t )  = exp t X  is an action 
of R on M ,  then by Theorem 3.6 F , ( X e )  is zero if and only if 
O(exp t X ,  a) = a for all t ,  that is, exp t X  c H ,  or X E T , ( H )  the subspace of 
T, (G)  corresponding to the subgroup H .  Hence ker F,, = T,(H) = ker x,, 
and, as noted, dim ker F, is constant on G as is dim ker x ,  . Since F is onto, 
it follows from Theorem 11.7.1 that dim M = dim G - dim H = dim G / H .  

Now consider F :  G / H  + M .  Let q E G / H  and V ,  Q a section defined on a 
neighborhood V of q. Since a is C" and F I V = F 0 a, we see that F is C" in 
a neighborhood of every point, hence C" on G / H .  We know that F is 
one-to-one and onto from set-theoretic considerations and if ker F ,  = {0}, 
that is, rank F = dim G/H = dim M everywhere, then F must be a diffeo- 
morphism. Let q be any point of G / H  and suppose q = x(g ) .  Then using 
F = F 0 n and the chain rule we see that F,: T,(G) + Tp(,)(M) is given also 
by F ,  0 n,. Since dim ker F, = dim ker x , ,  we must have dim ker F ,  = 0, 
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as we wished to prove. The fact that F i,, = 0 ,  F was already noted: both 
R,, and 0 ,  are diffeomorphisms. tlic former by Theorem 9.2 and the latter by 
hypothesis. This completes thc prool' of Theorem 9.3. I 

1 .  

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Exercises 

Vcrir! i n  detnil statements ( i ) - ( i i i )  at the beginning of the section con- 
cerning the action o f G  on G/H; and that ifG acts transitively on a set X. 
then the mapping F :  G/H -+ X defined above is in fact one-to-one, onto, 
and satisfies F i, = ( I g  F a s  claimed. 
Check that the isotropy subgroup H c Gl(rt, R )  defined in discussing 
G ( I L  k )  is, in fact. closed and a Lie subgroup. 
A sequence of I I  subspaces of R", V,  = R" 3 V,- 3 . . .  3 Vl, with 
dim V,  = j ,  , j  = I ,  ..., 1 1 ,  is called a ,jhg of R". Verify that the natural 
action of G/(n, R )  on R" is transitive on the set offlags M and use this to 
obtain the structure of a C' manifold on M .  What is dim M'? 
Verify that the sets W ,  r;i/ corresponding to the overlapping part V n P 
of the domains of two sections I/. 0 and V, 6 as defined in the proof of 
Theorem 9.2 are diffeomorphic. [Note that translations on G by ele- 
ments of H are dirfeomorphisms and have the property that R R,, = R.  

They may be used to bring a pair of corresponding points p.  f i  of W .  l$ 
into coincidence.] 
Let G be a Lie group and H a  closed Lie subgroup which is normal in G. 
Then show that G/H is a Lie group with the C' structure of 
Theorem 9.2 and R :  G + G/H is a Lie group homomorphism. 
Let G ,  and G, be a Lie group and F :  G ,  + G, a Lie group homomor- 
phism. Then show that the kernel of F is a closed Lie subgroup and if F 
is onto, then G, 2 G,/ker F .  
Show that the subgroup O(ii)  of G/(n, R )  acts transitively on the Grass- 
mann manifold G ( k .  1 1 )  and find the isotropy subgroup of the k-plane in 
R" spanned by e l .  . . . , e , ,  the first k vectors of the standard orthonormal 
basis (compare the remarks preceding Example 111.7.4). 
Prove that a closed countable subset of a Euclidean space Rh has an 
isolated point. 

Notes 

f o r  those renders who wish to delve somewhat ftirther into some of the important topics 
tahen up in this chapter and. cspecially. to find complete proofs of the basic existence theorem 
for s!htc'ms of ordinark differential equations. tlie existence o f  maximal integral moniblds for 
iii\olutivc distributions. and more details on hoiiiogeneaus manifolds, a comment on some of 
tlie refcrenccs may he helpful. 

Theorem 4. I atid the material of Sections 3 5 may be found in many places. A concise and 
very straightforward treatment of this theorem and related material is to be found in the hook 
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of Hurewicz [I]. I t  is also very elegantly treated (as is Frobenius' theorem and the inverse 
function theorem) in Dieudonne [ I ,  Chapter XI. Although it is well along in the book, the basic 
ideas can be followed without reading through all of the previous chapters. For a treatment 
which is specially adapted to differentiable manifolds (including local one-parameter group 
action) and is beautifully done see Lang [ I ] ;  the author found all of these sources very helpful. 
Both Dieudonne and Lang treat the subject from a very general point of view. that of Banach 
spaces and manifolds modeled on them. Although this may disturb some readers, i t  will appeal 
to others. I n  any event, i t  is not difficult to reduce the level of generality-the ideas and proofs 
are very clear. Another, recent source is Hirsch and Smale [I]. 

For Frobenius' theorem, particularly from the global point of view, as well as other topics 
such as Lie groups and the fundamentals of homogeneous spaces, every reader should be 
acquainted with the classical book by Chevalley [I], which greatly influenced all subsequent 
treatments. The recent book by Warner [ I ]  and notes of Spivak [2] should also be helpful to the 
reader who wants to fill in gaps or just to read another (and more complete) treatment of the 
material of Sections 8 and 9. Finally, the books by Helgason [ I ]  and Kobayashi and 
Nomizu [ I ]  go much further into the ramifications of subjects treated here (especially 
Section 9). Many of these books have rather complete bibliographies from which the reader can 
search ou t  further sources. The theorem of Cartan on closed subgroups is given by 
Chevalley [I], Helgason [I], and Hochschild [I]. 

Appendix 

Proof (Part (I) of the existence theorem (Theorem 4.1) for ordinary 
differential equations) We are given n functionsf'(t, x )  defined and of class 
C' on an open subset I ,  x U t R x R", I ,  = { - E  < t < E, E > 0). We must 
show that for each x E U there is a neighborhood I/ and a 6 > 0 such that for 
each a E V there exist unique functions ~ ' ( t ) ,  -S < t < S satisfying 

Partial Proof of Theorem 4.1 

and 

(**I 

1 t 1 < 6 and they satisfy 

x i ( 0 )  = ai, i = 1, . . . , n. 

First note that if xi(r) ,  i = 1, . . . , n, are continuous functions defined for 

I 

X ' ( f )  = a' + I f i ( T ,  X ( T ) )  dT, 
0 

then by the fundamental theorem of calculus they are of class C' at least and 
satisfy both (*) and (**). From (*) it then follows that they must be of class 
Cr+  ' at least, since their derivatives are of class C". 

We may write this set of integral equations for XI(?), . . . , x"(t)  as an 
equation in n-tuples 

x ( t )  = a + j ' f ( t ,  x( t ) )  dt .  
0 
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For a given xo E U we choose r. 0 < I' < 1 such that B 3 , ( ~ 0 )  c U and an E' 
satisfying c: > c' > 0, so that re, c I , .  Thusf'(t, x) are of class C', r 2 1, on 
the compact set T,, x B 3 , ( ~ 0 ) ;  therefore both the given functionsf' and their 
derivatives are bounded on this set. It follows that we may choose M > 1 
such that both M 2 sup l l f ( t ,  x)l/ and Mllx - yl/ 2 I l f ( t ,  x) - f ( t ,  y)II for 
all t E I , ,  and x, y E B3JxO) .  The last inequality results from the mean value 
theorem and the continuity of the derivatives. Choose a positive 6 such that 
6 < r / M 2 .  

We shall prove the theorem with this S and with V = B,(x0)4enoted B, 
in what follows. Let u E B, and let .F be the collection of all continuous maps 
cp(t) = (cp'(t), . . . , cp"(t)) of T, into B2,(a) satisfying x(0) = a. By virtue of the 
preceding comments it is enough to show that there is a unique member of 
this collection satisfying 

. (  

cp = L(cp) = a + f ( t ,  cp(T) )  d T  J, 
in order to finish the proof. This will be done by proving that L :  3 + 9 is a 
contracting mapping on a complete metric space and applying 
Theorem 11.6.5; we have: 

(1) .P is a complete metric space with tl(cp, $) = supIEid IIcp(r) - $(t)ll 
since this is the topology of uniform convergence of continuous functions on 
a compact space. 

I f  cp E 3, then L(cp) E 3 so that L maps .F to 9. It is clear that 
L(cp) is continuous; in fact, it is at least C' ,  and when t = 0 the function 
L(cp) has the value a. I t  is only necessary to check that if I t (  s 6, then 
IIL(cp)(r) - C I J /  5 2 1 ' .  This results from 

(2) 

(3) Finally, L is contracting. Let cp, $ E 3, 

llL(cp) - L('i!')ll [ f l l f ( T ~  d T ) )  - . f ( T q  $(T))ll  d T  
'0 

SMsupllcp(0 - W)lI 
r € i n  

I' 
I fiM 4cp9 $1 = Md(cp, $). 

But r < 1 and M > 1 so that we have 

IIL(cp) - L($)ll k d(cp, $), where 0 < k < 1. 
By the contracting mapping theorem there is a unique cp(t) satisfying the 
conditions. This completes the proof. I 



v TENSORS AND TENSOR FIELDS ON MANIFOLDS 

With some minor exceptions this chapter contains all of the basic material on tensor fields 
on manifolds which is used in the succeeding chapters. We limit ourselves to discussing covar- 
iant tensors since we will rarely need any other type-except vector fields; any other cases will 
be developed as needed. 

A covariant tensor on a vector space V is simply a real-valued function @(v,, . . . , v,) of 
several vector variables v,. . . . , v, of V. linear in each separately (that is, multilinear). The 
number of variables is called the order of the tensor. A tensor field @ of order r on a manifold M 
is an assignment to each point PE M of a tensor QP on the vector space Tp(M) which satisfies a 
suitable regularity condition (C". C', or, C") as p varies on M. Sections 1 and 2 discuss the two 
simplest examples: r = 1 corresponding to functionals on a vector space and r = 2 correspond- 
ing to bilinear forms on a vector space. The latter includes the important case of a Riemannian 
metric, which is a covariant tensor field @ of order 2 with the property that mP is an inner 
product on Tp(M) for every P E  M. It is the added structure given by such a tensor which enables 
us to measure distances, angles, volumes, and so on, on a manifold M and thus to carry over 
large portions of Euclidean geometry to abstract manifolds. This concept was foreshadowed in 
the work of Gauss for surfaces, but was discovered and expounded by Riemann for whom the 
metric tensor was named. Many of the consequences of Riemann's discovery are treated in 
Chapters VII and VIII; only one or two of them here. In particular, in Section 3 we show that a 
Riemannian metric gives rise to a metricd(p, q )  on M ;  and in Section 7 we show that i t  defines a 
volume element on M. 

In  Section 4 the basic notion of partition of unity is introduced. This is an indispensable 
tool used to piece together functions. mappings. forms. vector and tensor fields and ether 
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objects, which can be defined locally on a coordinate neighborhood (that is, on an open subset 
of R"), to obtain a globally defined objects on M. The first application is to prove the existence 
of a Riemannian metric on any C" manifold. Several other applications are given here and in 
the remainder of the chapter. 

In Section 5 covariant tensor fields are discussed in more generality and in particular we 
treat the case of symmetric and alternating tensors-tensors which are unchanged (respectively, 
change sign) when two variables are interchanged. Of these two, the alternating are the most 
important to us since they correspond to exterior differential forms which we use frequently in 
the next chapters. In Section 6 we see that tensors can be added and multiplied (like any 
functions to the real numbers) resulting in an algebra of tensors. A slight modification of the 
product gives the exterior product ofalternating forms. When we add to this the basic notion of 
derivatives of such forms, which is defined in the last section, we have all of the basic ingredients 
for the calculus of exterior differential forms on M. The exterior forms on M form an algebra 
A(M) on which differentiation is a linear operator. As we shall see, this algebra plays a basic role 
in the geometry of manifolds. 

(Sections 6-8 are used in an essential way in Chapter VI, but much of Chapter VII and 
parts of Chapter VllI  may be read without knowledge of differential forms.) 

1 Tangent Covectors 

In this chapter we suppose that V is a finite-dimensional vector space 
over R and let Y* denote its dual space. Then Y* is the space whose elements 
are linear functions from V to R ;  we shall call them couectors. If a E V*, then 
a: V -+ R,  and for any V E  V, we denote the value of a on v by cr(v) or by 
(v, a). Both notations are useful. Recall that addition and multiplication by 
scalars in V* are defined by the equations 

((71 + g 2 ) ( v )  = b l ( V )  + a2(v ) ,  (aa)(v) = . ( 4 V ) ) ,  

giving the values of a1 + a2 and aa, a €  R,  on an arbitrary V E  V, the right- 
hand operations taking place in R.  

Knowledge of linear algebra is assumed, but by way of review we men- 
tion three frequently used facts. 

(i) If  F,: V -  W is a linear map of vector spaces, then it uniquely 
determines a dual linear map F*: W* + V* by the prescription 

(F*o)(v) = a(F,(v)) or (v, F*(a)) = (F,(v), 0). 

When F ,  is injective (surjective), then F* is surjective (injective). 

(ii) I f  el,  . . . , en is a basis of V,  then there exists a unique dual basis 
wl, . . . , [on of V* such that wi(vj) = Si. (The symbol Sj is zero if i # j and + 1 
if i = j . )  

If v E V,  then m1 (v), . . . , d ( v )  are exactly the components of u in the basis 
el, . . . , en.  In other words v = wj(v)ej. This is a consequence of the 
preceding definitions (see Exercise 1). 
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Observe that in property (i), the definition of F* does not require the 
choice of a basis; therefore F* is naturally or canonically determined by F ,  . 
According to (ii), the vector spaces V, V* have the same dimension, thus 
they must be isomorphic. There is no natural isomorphism; however, we do 
have the following property: 

(iii) There is a natural isomorphism of V onto (V*)* given by 
v -+ (v, .), that is, v is mapped to the linear function on V* whose value on 
any O E  V* is (v, a). Note that (v, a) is linear in each variable separately 
(with the other fixed). 

This shows that the dual of V* is V itself, accounts for the name “dual” 
space, and validates the use of the symmetric notation (v, a) in preference to 
the functional notation a(v). We shall see in the next section that when 
further structure is assumed, for example, an inner product on V,  then there 
is an associated natural isomorphism of V and V*;  thus V,  V*, and v** can 
all be identified in this case. This is apt to be more a source of confusion than 
joy. 

Covectors on Manifolds 

Let M be a C” manifold and assume P E  M .  We denote by T,*(M) the 
dual space to T’(M), thus O,E T,*(M) is a linear mapping a,,: T,*(M) -+ R 
and its value on X,,E T’(M) is denoted by o,,(X,,) or (X,,, a,,). Given a basis 
El, ,  .. . , E,,p of T,(M), there is a uniquely determined dual basis co;, . . ., 05 
satisfying, by definition, cob(Ejp) = 6:. The components of a,, relative to this 
basis are equal to the values of a,, on the basis vectors El,,,  . . . , En,,, thus 

n 

o p  = 1 ap( Eip)wb; 
i= 1 

this is the dual statement to property (ii) above. 
Just as we defined a vector field on M ,  so may we define a covector field: 

It is a (regular) function a, assigning to each P E  M an element a,, of T,*(M). 
As with vector fields, we denote such a function by a, A, . . . and we denote by 
u p ,  A,,, . . . its value at p, that is, the element of T,*(M) assigned to p. If o is a 
covector field and X is a vector field on an open subset U of M ,  then o ( X )  
defines a function on U :  to each p~ U we assign the number u ( X ) ( p )  
= ap(X,). [Note: We often write a(X,) for a,(X,)’ if a is a covector field]. 
These remarks enable us to state the formal definition. 

(1.1) Definition A C‘-courctor field (T on M ,  r 2 0, is a function which 
assigns to each p E M a covector op E T,* (M)  in such a manner that for any 
coordinate neighborhood U ,  cp with coordinate frames El ,  . . . , En, the func- 
tions a(E,), i = 1, . . . , it ,  are of class c‘ on U .  For convenience, “covector 
field” will mean C“-covector field. 
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We remark that the following (apparently stronger) regularity condition 
could be used to replace the requirement of the definition-thereby avoiding 
the use of local coordinates. 

(1.2) S I I ~ ~ O S L ~  flint o m i g n s  to cwch p E M an elrrnent op of T,*(M). l j o  is of 
clu.s,s C'. tlieri,for any C"-vector,fielrl X on an open subset W of M tlie.function 
o ( X )  i s  uf'c1~1.s.s Cr on W ,  untl conurrsely. 

To see this we take a covering of W by coordinate neighborhoods of M 
(whose domains are in W ) ;  let U ,  cp be such a neighborhood. Then 
X = %'El 011 U ,  where a' are C' on U .  Thus o ( X )  = 1 a'@) on U and is 
C' if a(E,) ,  . . . , o(E,) are. Hence the condition just given implies o ( X )  is of 
class Cr on a collection of open sets covering W and so on W itself. The 
converse is obvious. 

Note that if  E , ,  . . . , En is a field of (C") frames on an open set U c M ,  
then the dual basis at each point of U defines a field ofdual bases a', . . . , (0" 

on U satisfying tn'(E,) = 8;. We call this a field of coframes-coordinatr 
coframes if E l ,  . . ., En are coordinate frames. The w1, . . . , W" are of class C" 
by the criterion just stated, and covector field o is ofclass C' if and only if for 
each coordinate neighborhood U ,  cp the components of o relative to the 
coordinate coframes are functions of class C' on U .  

(1.3) Remark It is important to note that a C'-covector field defines a 
map of X(M) -+ C ' ( M )  which is not only R-linear but even C'(M)-linear. 
More precisely. i f j ;  g E C ' ( M )  and X and Y are vector fields on M ,  then 

4.rx + S Y )  =fw4 + W ( Y ) ?  

for these functions are equal at each P E  M (as the reader should verify). 

(1.4) Example If,f'is a C' function on M ,  then it defines a C'-covector 
field, which we shall denote ilf; by the formula 

( X , ,  , t&> = X , , f  or t&(Xp) = X,.f 

For a vector field X on M this gives d f ( X )  = X j  a C" function on M .  This 
covector field t / f  is called the i/i~fiereiiriu/ UlJ'fand df,, its value at p ,  the 
di~j~rentirrl Clf'j'ut p .  In the case of an open set U c R", we verify that it 
coincides with the usual notion of differential of a function in advanced 
calculus, and, in fact, makes it more precise. In this case the coordinates xi of 
a point of U are functions on U and, by our definition, dx' assigns to each 
vector X at PE U a number X , s ' ,  its ith component in the natural basis of 
R". In  particular (?/?.xJ, d x ' )  = ?x'/?xj = 8: so we see that d x ' ,  . . . , dx" is 
exactly the field of coframes dual to ?/ax', , .., d/dx". Now i f f  is a C" 
function on U ,  then we may express df' as a linear combination of 
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dx' ,  . . . , dx". We know that the coefficients in this combination, that is the 
components of dJ are given by df(a/dx')  = df/dx'. Thus we have 

Suppose a E U and X, E T,(R"). Then X, has components, say, h', . . . , h" 
and geometrically X ,  is the vector from a to a + h. We have 

in particular, dx'(X,)  = hi, that is, dx' measures the change in the ith coor- 
dinate of a point which moves from the initial to the terminal point of X , .  
The preceding formula may thus be written 

This gives us a very good definition of the differential of a function f on 
U c R": dfis a field of linear functions which at  each point a of the domain 
off assigns to the vector X ,  a number. Then X, can be interpreted as the 
displacement of the n independent variables from a, that is, it has a as initial 
point and a + h as terminal point, and d f ( X , )  approximates (linearly) the 
change inf between these points. [Compare this with our earlier discussion in 
Section 11.1 of differentiability of a function; the expression above has mean- 
ing even iffis not C", in fact exactly when f is differentiable in the (weak) 
sense of Section 11.1.1 

Covector Fields and Mappings 

We shall give further examples of covector fields presently. First, 
however, we must study what happens when we map one manifold to an- 
other. Let F: M -, N be a smooth mapping and suppose p E M. Then, as we 
know, there is induced a linear map F,: Tp(M)  -, TF(&V). As we have 
pointed out in (i) at the beginning of this section, F ,  determines a linear map 
F*: T,*(,,(N) -, T,*(M),  given by the formula 

In general, F ,  does not map vectorfields on M to vector fields on N. It is 
surprising, then, that given any C'-couector field on N, F* determines 
(uniquely) a covector field of the same class C' on M by this formula. We 
state this as a theorem. 
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(1.6) Theorem Lef F :  M --* N be C" and let D be a covectorfield of class 
C' on N .  Tkeitforrnula (1.5) defines a C-covectorfield on M .  

Proof I f  t~ is the covector field on N, then for any p E M ,  there is exactly 
one image point F ( p )  by definition of mapping. It is thus clear that F*(a) is 
defined uniquely at each point of M .  Now suppose that for a point p o  E M we 
take coordinate neighborhoods U ,  q of p o  and V ,  $ of F ( p o )  so chosen that 
F ( U )  c V .  If we denote the coordinate on U by (x', . . . , x") and those on V 
by ( y ' ,  . . . , y"), then we may suppose the mapping F to be given in local 
coordinates by 

yi = fi(x', ..., x"), i = 1, ..., n. 
Let the expression for D on V in the local coframes be written at q E V as 

n 

~q = C a i (qb i  9 

i =  1 

where Gi, . . . , G; is the basis of T,*(N) dual to the coordinate frames. The 
functions 4 4 )  are of class C' on I/ by hypothesis. Using the formula defining 
F*, we see that if p is any point on U and q = F ( p )  its image, then 

( F * ( c ) ) p ( E j p )  = O F ( p ) ( F * ( E j p ) )  = C ui ( ' ( ~ ) ) a A p )  ( F * ( E j p ) ) -  

However, we have previously in Theorem IV. 1.6 obtained the formula 

the derivatives being evaluated at ( x ' ( p ) ,  . . . , x " ( p ) )  = q ( p ) .  Using 
Gi(Ei) = 8;. we obtain 

As p varies over U these expressions give the components of F*(a) rela- 
tive to wl, . . . , Q"' on U ,  the coframes dual to E l , .  . . , Em.  They are clearly of 
class C' at least, and this completes the proof. I 

The formulas are themselves of some interest and may be used for 
computation, so we shall display them in a corollary. 

(1.7) Corollary 
F*(a) = 

tively, und d, d tire the coordinate coframes. Then 

Usiny the notution aboue, let c = cy=, a i d  on V and 
llitd on U ,  w/iere ai und pj are,functions on V and U.  respec- 

j = 1 , .  . ., in. 
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The first formulas give the relation of the bases; the second those of the 
components. If we apply this directly to a map of an open subset of R" into 
an open subset of R", these give for F*(dy') the formula 

m a y i  . 

j= axJ F*(dy') = ~ .dxJ,  i = 1, ..., n. (1.8) 

(1.9) Remark Suppose that we apply the above considerations to the 
diffeomorphism cp: U + R" of a coordinate neighborhood U ,  cp on M .  Let 
V c R" denote cp(U) and d x ' ,  . . . , dx" the differentials of the coordinates of 
R", that is, the dual basis to dldx', ..., d/dx". By definition we have 
( p i  ' (d /8xi)  = Ei and hence cp,(E,) = a/axi, for each i. Further, the definition 
of F ,  above gives for cp*(dx') 

( E j ,  cp*(d.x')) = (cp*(Ej) ,  d x ' )  sj . 

I t  follows that cpJdx') = mi, i = 1, . . . , n, the field of coframes on U dual to 
the coordinate frames El,  . . . , E n .  

There is a potential source of confusion in notation here. The coordin- 
ates x', . . . , X" can be considered as functions on U and as such have differen- 
tials dx' defined by 

( X ,  d x ' )  = XX' ,  

the ith component of X in the coordinate frames. In particular ( E j ,  dx')  = 
E j x i  = Sj, so that dx', . . . , dx" are dual to E,,  . . . , E, and therefore dx' = wi, 
i = 1, . . . , n. Combining this with the formula above gives dx' = cp*(dx'), 
which is nonsense unless we are careful to distinguish xi as (coordinate) 
function on U c M ,  on the left, from xi as (coordinate) function on cp( U )  = 
V c R", on the right (cf. Remark 111.3.2). 

(1.10) Example We may apply Theorem 1.6 to obtain examples of covec- 
tor fields on a submanifold M of a manifold N .  Let i :  M + N be the inclu- 
sion map and suppose (T is a covector field on N .  Then i*(o) is a covector 
field on M called the restriction of (T to M .  It is often denoted ( T ~  or simply (T. 

Recalling that for each p E M ,  T'(M) is identified with a subspace of T,(N) by 
the isomorphism i, , we have for X'E T,,(M) 

a&,) = (i*.)(X,) = o(i*(X,,)) = o(X , ) .  

The last equality is the identification. 
As an example, let M c R", and let (T be a covector field on R", for 

example take (T = dx' .  Then CT restricts to a covector field ( T ~  on M .  Note 
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that in this example tlx' is never zero as a covector field on R", but on M it is 
zero at any point p at which the tangent hyperplane Tp(M) is orthogonal to 
the .-?-axis. 

Exercises 

1. Verify properties (i)-(iii) of V,  V*, and V**. 
[For (ii), suppose that v = a l e l  + ... + a,e, and use the equality 

(v, 0') = (alel  + ...  + a,, e,, wj).]  

2. Let G = Gl(n. R )  and define n2 covector fields aij , 1 5 i, j I n, on G by 
aij = y ik  d.ukj, where Y = ( y j j )  is the inverse of X = (xij). Show 
that these forms are invariant under R,: G + G,  right translation by A. 
Further show that {aij} is a field of frames on G .  
Let j i ,  . . . , j i ,  r I n, be C" functions on an open set U of a manifold M .  
Prove that there are coordinates V ,  t,b in a neighborhood of p E U such 
that jl,. . .  , j ;  are among the coordinate functions if and only if 
df, ,  . . . , dfi are linearly independent at p. 

4. Determine the subset of R2 on which a' = x'  dx' + x2 dx2  and 
C T ~  = x2 dx' + x' dx2 are linearly independent and find a frame field 
dual to a', a' over this set. 

5. Show that the restriction of CT = x' dx2  - x 2  dx' + x3 dx4  - x4 d x 3  of 
R4 to the sphere S 3  is never zero on S3. 

6. Show that the set .T1(M) ofall covector fields on M ,  like the set X ( M )  of 
all vector fields on M is a P ( M )  module. Prove also that O E  . F ' ( M )  if 
and only if a is a C"(M)-linear mapping from X ( M )  to C"(M).  

7. Try to determine a C" manifold structure on T * ( M )  = upE T,* (M)  in 
such a fashion that a covector field a on M is a C" mapping from M into 

3. 

T * ( M )  and so that the natural mapping II taking each a,,€ T * ( M )  to p 
is C ' .  

2 Bilinear Forms. The Riemannian Metric 

In the case of a vector space V over R a bilinear,form on V is defined to be 
a map CD: V x V +  R that is linear in each variable separately, i.e., for 
a, /)E R and v, vl,  v 2 ,  w, wl, w2 E V, 

CD(av, + p v 2  1 w)  = aCD(v,, w) + p q v 2 ,  w), 

O(v, awl + pw2)  = aCD(v, wl) + PCD(v, w2). 

A similar definition may be made for a map (D of a pair of vector spaces 
V x W over R. We will not pursue this generalization at the moment except 
to point out that the map assigning to each pair V E  V, UE V* a number 
(v, a), as discussed in the preceding section, is an example. 
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Bilinear forms on V are completely determined by their n2 values on a 
basis e l ,  ..., en of V.  If aij = @(ei, ej), 1 I i , j  I n, are given and if 
v = Aiei, w = C pjej are any pair of vectors in V, then bilinearity requires 
that 

O(v, w) = C aijAipj. 
i .  j =  1 

Conversely, given the n x n matrix A = (a i j )  of real numbers, the for- 
mula just given determines a bilinear form @. Thus there is a one-to-one 
correspondence between n x n matrices and bilinear forms on V once a 
basis e l , .  . . , en is chosen. The numbers aij are called the components of 0 
relative to the basis. 

We will mention some special cases which will be of interest to us. A 
bilinear form, or function, is called symmetric if @(v, w) = @(w, v), and skew- 
symmetric if @(v, w) = -@(w, v). It is easily seen that regardless of the basis 
chosen, these correspond, respectively, to symmetric, ' A  = A ,  and to skew- 
symmetric, ' A  = - A, matrices of components. 

A symmetric form is called positive definite if @(v, v) 2 0 and if equality 
holds if and only if v = 0; in this case we often call @ an inner product on V .  
We shall be particularly interested in this case in the succeeding chapters; a 
vector space with an inner product is called a Euclidean vector space since 0 
allows us to define the length of a vector, llvll = (@(v, v))*/', and the angle 
between vectors, as was remarked in Section 1.1. 

(2.1) Definition A field @ of C'-bilinear forms, r 2 0, on a manifold M 
consists of a function assigning to each point p of M a bilinear form OP on 
Tp(M),  that is, a bilinear mapping aP: T,(M) x Tp(M)  + R,  such that for 
any coordinate neighborhood U ,  rp the functions aij  = @ ( E i ,  E j ) ,  defined by 
0 and the coordinate frames El,  . . . , E n ,  are of class C'. Unless otherwise 
stated bilinear forms will be C". [To simplify notation we usually write 
@(XP, YP) for @p(xp ,  51.1 

The n2 functions aij = @ ( E i ,  E j )  on U are called the components q f 0  in 
the coordinate neighborhood U ,  cp. Properties similar to those of covectors 
hold in this case also. As in (1.2) if 0 is a function assigning to each P E  M a 
bilinear form, then @ is of class C' if and only if for every pair of vector fields 
X, Y on an open set U of M ,  the function @(X, Y) is C' on U .  As in 
Remark 1.3 we have the fact that @ is C"(U)-bilinear as well as R-bilinear: 
JE C""(U) implies @(fx, Y )  = f @ ( X ,  Y )  = 0(X,fY) (Exercise 2). 

Suppose F , :  W + V is a linear map of vector spaces and @ is a bilinear 
form on V. Then the formula 

(2.2) (F*@)(v, w) = @(F*(v), F*(w)) 

defines a bilinear form F*@ on W. We have the following properties: 
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( i )  If O is symmetric (skew-symmetric), then F*O is symmetric 
(skew-symmetric). 

(ii) If O is symmetric, positive definite, and F ,  is injective, then F*O is 
symmetric, positive definite. 

In particular, this latter applies to the identity map i ,  of a subspace W 
into V .  In this case i*O is just restriction of O to W :  
(i*O)(v, w )  = O(i*v, i,w) = O(v, w). 

Now let F :  M -+ N be a C" map and suppose that O is a field of bilinear 
forms on N .  Then just as in the case of covectors this defines a field of 
bilinear forms F*O on M by the formula for (F*O), at every PE M: 

( F * @ ) ( X ,  7 Y,) = @(F*(Xp)9 F*(YP)). 

We state this in the form of a theorem. 

(2.3) Theorem Let F :  M + N be u C" map and O a bilinear form of class 
C' on N .  Then F*O i s  a C'-bilinear form on M .  I f  O is symmetric (skew- 
symmetric), then F*O is symmetric (skew-symmetric). 

Prooj The proof parallels those of Theorem 1.6 and Corollary 1.7 and 
we analogously obtain formulas for the components of F*O in terms of those 
of O. We suppose U ,  cp and V ,  $ are coordinate neighborhoods of p and of 
F ( p )  with F ( U )  c I/. Using the notation of Theorem 1.6 and Corollary 1.7 
we may write B i j ( p )  = (F*O),,(Ei,,, E j p )  = O(F*(Ei,), F * ( E j P ) ) .  Applying 
Theorem IV.1.6 as before, we have 

This gives the formula 

for the matrix of components ( P i j )  of F*O at p in terms of the matrix (us,) of 
O at F ( p ) .  The functions /Iij thus defined are of class C' at least on U which 
completes the proof, except for the statements about symmetry and skew- 
symmetry which are obvious consequences of ( i )  above. I 

(2.5) l f  F i s  an immersion and O i s  a positive dejinite, symmetric 
.form, then F*O i s  u positive dejinite, symmetric bilinear form. 

Proof All that we need to check is that F*O is positive definite at each 
PE M. Let X ,  be any vector tangent to M at p. Then F*O(X,, X,) = 

O(F*(X,,), F J X , , ) )  2 0 with equality holding only if F,(X,) = 0. However, 

Corollary 

since F is an immersion, F,(X,) = 0 if  and only if X, = 0. I 
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(2.6) Definition A manifold M on which there is defined a field of sym- 
metric, positive definite, bilinear forms @ is called a Rieritannian manifold and 
@ the Rienianiiiuii merric. We shall assume always that @ is of class C ' .  

The simplest example is R" with its natural inner product 

At  each point we have @(d/dx', J / d x J )  = dij so that the matrix of components 
of a, relative to the standard basis, is constant and equals I, the identity 
matrix. It follows that @ is C". 

Corollary 2.5 enables us to give many further examples. Any imbedded 
or immersed submanifold M of R" is endowed with a Riemannian metric 
from R" by virtue of the imbedding (or immersion) F :  M -, R". Thus, for 
example, a surface M in R 3  has a Riemannian metric. The idea of the 
corollary in this case is very simple: I f  i :  M + R3 is the identity and X,, Y, 
are tangent vectors to M at p ,  then i*@(X, ,  Y,) = @ ( i * X , ,  i ,  Yp) = 

@(X,, Y,), that is, we simply take the value of the form on X,, Y, considered 
as vectors in R3,  using our standard identification of T , ( M )  with a subspace 
of T,(R3). In particular S2 ,  the unit sphere of R3, has a Riemannian metric 
induced by the standard inner product in R 3 .  If X,, Y, are tangent to S2 at p ,  
then @(X,,  Yp) is just their inner product in R 3 .  

Classical differential geometry deals with properties of surfaces in 
Euclidean space. The inner product @ on the tangent space at each point of 
the surface, inherited from Euclidean space, is an essential element in the 
study of the geometry of the surface. It is known as theJirst.funnamentnlfor.r,l 
of the surface. 

We terminate with a few remarks about bilinear forms on an t i -  

dimensional vector space Y. We continue the numbering from properties ( i )  
and (i i )  which precede the discussion of mappings. We define the rarik of a 
form @ on Y to be the codimension of the subspace W = {v E Y I @(v, w) = 

0 V w E V ) ,  that is, rank @ = dim Y - dim W. This concept is elaborated in 
the exercises. The following facts are often useful: 

(iii) If @ is a bilinear form on V ,  then the linear mapping cp: Y +  V* 
defined by (w, cp(v)) = O(w, v) is an isomorphism onto if and only if 
rank @ = dim Y. 

(iv) Every bilinear form 0 may be written uniquely as the sum of a 
symmetric and a skew-symmetric bilinear form, namely, 

@(v, w) = +[@(V. w) + @(w. v)] + +[@(V, w) - @(w, v)]. 

(v) I f  a skew-symmetric form @ has a rank equal to dim V, then dim Y 
is an even number. 
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3. 

4. 

5. 
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7. 

8. 
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Exercises 

Verify (i)-(v). 
Suppose that CD assigns a bilinear form Q,p to each P E  M .  Prove that Q, is 
C" if and only if for each X ,  Y E  K(M), @ ( X ,  Y )  is a C"'-bilinear function 
on M ,  that is, @: K(M) x X ( M )  -.+ C ' ( M )  is C" (M)-bilinear. 
Show that the rank of the rank of the matrix of components ( @ ( e i ,  e,)) of 
a bilinear form 0 on V" is independent of the basis e,, . . . , e, and is equal 
to the rank of Q,. 

Show that a symmetric, positive definite form (inner product) on V has 
rank equal to dim V.  Give a condition for a basis of V to correspond to 
its dual basis under the isomorphism cp: Y -+ Y* defined in (iii). 
Show that the sum of two bilinear forms on Y is a bilinear form. More 
generally, show that the bilinear forms on V form a vector space .iA( V ) .  
What is its dimension? 
Show that if F , :  V -+ W is Linear, then the mapping taking Q,E .#( W) to 
F*@E &fY) is linear. 
Taking V = Wand using Exercise 6,  show that Gl(n, R ) ,  I I  = dim V,  acts 
on .+!I( V )  in a natural way. Choose a basis of V and use it to compute the 
action explicitly in terms of components. 
Let Q, be a C field of bilinear forms and X a vector field on a manifold 
M .  Using the one-parameter group action 0, on M and the induced 
mapping 0: on @, define a " Lie derivative" of CD with respect to X ,  L, @. 
Show that @(A, B) = tr 'AB, the trace of the transpose of A times B, 
defines a symmetric bilinear form on . //"( R),  the ti x n matrices over R. 
Is i t  positive definite? 

Riemannian Manifolds as Metric Spaces 

The importance of the Riemannian manifold derives from the fact that it 
makes the tangent space at each point into a Euclidean space, with inner 
product defined by @(X, ,  Y,) (= @,(X,, Y,)). This enables us to define 
angles between curves, that is, the angle between their tangent vectors X, 
and Y, at their point of intersection, and lengths of curves on M .  as we shall 
see. Thus we may study many questions concerning the geometry of these 
manifolds; this is a large part of the classical differential geometry of surfaces 
in R3.  

As an example we consider the question of defining the length of a curve. 
Let r --* p( t ) ,  LZ 5 f I h, be a curve of class C' on a Riemannian manifold M .  
Then its frtiyrii L is defined to be the value of the integral 
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We make several comments here: first, the integrand is a function oft  
alone, so a more precise notation is to denote its value at each t by Q,,,,(dp/dt, 
dpldr), where dp/dt E ?&4) denotes the tangent vector to the curve at 
p( t ) .  This function is continuous by the continuity of dp/dt and Q. Secondly, 
the value of the integral is independent of the parametrization. In 
Equation IV.(3.7), we gave the following formula for change of parameter: 
dp/ds = (dp/dt)(dt/ds), where t = . f (s ) ,  c I s < d is the new parametrization. 
Thus 

In particular, we note that the arclength along the curve from p(a )  to p ( r ) ,  
which we may denote by s = L(r), gives a new parameter by the formula 

which implies 

"=(a(- dp dp -j) ' I 2  or ($j2=Q(d;,drj dP dP 
dt dr ' dt 

Within a single coordinate neighborhood U ,  cp with coordinate frames 
El,, ..., Enp, we have @ ( E i p , , E j P )  = gi j (x) ,  where cp(p) = x = ( x l ,  ..., x"); 
and the curve is given by cp(p(t)) = (x ' ( t ) ,  . . . , x"(r)), so that L(t)  becomes 

This leads to the frequently used abbreviation 

ds2 = C g i j (x )  dx'dx' 

for the Riemannian metric in local coordinates. [This formula can be in- 
terpreted (later) in terms of multiplication of tensors.] 

We note that in the case of a curve in R" (with its standard inner pro- 
duct), say p( t )  = (x ' ( t ) ,  . . . , x"(t ) )  with a < t < b, then we have the familiar 
formula for arclength 

L = jab ( ( X i ( t ) ) ' )  dt.  

We have used Q(d/dxi, d/dxj)  = 6 ,  and dp/dt = c'= i i ( t )  d/dxi  in our 
definition to obtain this. 

i. j = l  

112 

i= 1 
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Of course, it is not necessary to assume the curve of class C'; weaker 
assumptions will do. In particular, we may suppose it is piecewise of class 
C' ,  which we will denote D'. We will prove the following rather useful 
theorem concerning Riemannian manifolds: 

(3.1) Theorem A connected Riemannian manifold is a metric space with the 
metric d(p, q )  = injimum of the lengths of curves of class D' from p to q. Its 
metric space topology and manifold topology agree. 

Proof Since M is arcwise connected, d(p ,  q )  is defined; and from the 
definition it is immediate that d(p ,  q )  is symmetric and nonnegative. It is also 
very easy to check that the triangle inequality is satisfied if we use the fact 
that a curve from p1 to p 2  and a curve from p 2  to p 3  may be joined to give a 
curve from p1 to p 3  whose length is the sum of the lengths of the two curves 
which are thus joined. 

In order to complete the proof we obtain some inequalities. In all that 
follows let p be an arbitrary point of M, U ,  cp a coordinate neighborhood 
which has the property that cp(p) = (0, . . . , 0), and a > 0 a fixed real number 
with the property that cp(U) =I B,(O), the closure of the open ball of radius a 
and center at the origin of R". We let x', . . . , X" denote the local coordinates 
and g j j ( x )  the components of the metric tensor 0 as functions of these 
coordinates. Since these n z  functions are C'" in their dependence on the 
coordinates and are the coefficients of a positive definite, symmetric matrix 
for each value of .Y in cp(U), then on the compact set defined by (1x11 I r 
( r  I u )  and (a ' ,  ..., a") with C;.j=l (ai)' = 1, the expression 
(1;. j =  gj,(x)a'aJ)''2 assumes a maximum value M, and a minimum value 
m, > 0. In  fact if m, M denote the minimum and maximum corresponding to 
r = a, we have the inequalities 

Moreover. if ( P I ,  . . . , 8") are any 11 real numbers such that (cy= ( @ ) 2 ) 1 1 2  = 
b # 0, then replacing each a' above by /?/b and multiplying the inequalities 
by h yields: 

'12 

0 I mh I m,b I ( gij(x)B'pj) I M,b 5 Mb 
i .  j =  1 

for every .YE B , ( O ) .  Now we shall make the assumption that if x, y are any 
points of R" with its standard Riemannian metric (as defined above), then 
the infimum of the lengths of all D' curves in R" from x to y is exactly the 
length of the line segment .v, in other words, it is ( J y  - x ( I  the Euclidean 
distance from .x to j as defined in Section 1.1 (see Exercises 5 and 6 for the 



188 V T E N S O R S  A N D  TENSOR F I E L D S  O N  M A N I F O L D S  

method of proof). Let p(r), a I t I b. be a D' curve lying in cp- ' (Br(0))  c 
which runs from p = p(a) to q = p(b) and let 

b n  11.7 

L = 1 [ C s i j ( x ( r ) ) x i ( t ) X j ( t ) ]  dt 
'(I i , j = l  

denote its length. The last set of inequalities above and the assumption on R" 
imply that for p f q 

b 

We first use these inequalities to complete the proof that d ( p ,  q )  is a 
metric on M .  Let q' be any point of M distinct from p. Then for some r, 
0 < r I a, q' lies outside of cp- ' (Er(0) )  c U .  Let p(t) ,  0 I t I c, be a curve 
of class D' which goes from p = p(0) to q' = p ( c )  and let L: be its length. 
There is a first point q = p(b) on the curve which is outside cp- '(B,(O)), 
that is, such that p ( t )  lies inside the neighborhood cp- ' (BJO) )  for 0 I t I h, 
but q = p(b) does not; q is the first point of the curve with ilcp(q)ll = r. 
If L denotes the length of the curve p ( t ) ,  0 I t I h, then L I L. From this 
it follows that L: 2 L 2 mr and, since the curve was arbitrarily chosen, that 
d ( p .  q )  2 mr. This means that if q' # p, then d ( p ,  q ')  # 0, so that d ( p ,  q )  is 
a metric as claimed. 

In order to show the equivalence of the metric and the manifold topolo- 
gies on M ,  it is enough to compare the neighborhood systems at an arbitrary 
point p of M ;  in fact for the manifold topology we need only consider the 
neighborhoods lying inside a single coordinate neighborhood U ,  cp (we 
continue the notation above). Thus we must show that each neighborhood 
I/, = cp-'(B,(O)) c U of the point p contains an e-ball, S,(p) = 
{ q E  M I d(p ,  q )  < c}, of the metric topology, and conversely. But this will 
follow from the inequalities we have obtained. For, given r I u, suppose that 
we choose E > 0 to satisfy c/m < I'. Then if q is any point of M such that 
d ( p ,  q )  < mr, we see that q E I/,-otherwise d(p,  q )  2 I W  as we have seen. 
Since we have chosen E < mr, S , ( p )  c V , ,  as was to be shown. 

Conversely, suppose we consider some metric ball S,(p) about p ,  that is, a 
neighborhood of p in the metric topology. Then choose r > 0 so that r < a 
and r < E / M .  Let q~ V ,  = cp-'(B,(O)) and let p ( t ) ,  0 I t I b, be the curve 
from p to q in F, defined by the coordinate functions x i ( r )  = pit, where 
(p' ,  . . . , p") denote the coordinates of q. The length L of this curve is given by 
an integral which yields the inequalities 

1 i2  

L = 1 ' [ g i j ( t p ) p p j ]  dt I M, [ i; (4 1'2 5 M r  < c. 
' 0  i.  j = 1  i =  1 
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Thus d(p ,  q )  < 1: and q E S,(p). It follows that cp-'(B,(O)) c S , ( p ) ,  that is, 
each metric neighborhood of p contains a manifold neighborhood of p (lying 
inside V ) .  This completes the proof of the theorem except for the unproved 
assertion about R" (essentially this theorem itself in R"), which is left to the 
exercises. I 

As we have mentioned, the existence of a Riemannian metric on a mani- 
fold provides an important ingredient to the study of manifolds from a 
geonzetric point of view, allowing us to introduce on such spaces many 
concepts of Euclidean geometry such as distances, angles between curves, 
areas, volumes, and-less obviously-straight lines, or geodesics. For one 
way of characterizing a straight line in Euclidean space is that the length of 
any segment on it is exactly the distance d ( p ,  q )  between its end points- 
which implies that it is also the shortest curve between any two of its points 
(by Exercises 5 and 6 again). We can, using the metric just introduced, ask 
whether there exist curves on a Riemannian manifold which have this 
property. The answer, with some qualifications, is yes; and the class of 
curves (geodesics) thus isolated has both similarities to and fascinating dif- 
ferences from straight lines in Euclidean geometry. For example, if S2 is the 
unit sphere in R3,  with the induced Riemannian metric, then great circles are 
the geodesics: they indeed realize the distance (and are the shortest curves) 
between any two of their points which lie on the same semicircle. Note that 
these geodesics are closed curoes in marked contrast to straight lines in 
Euclidean space. 

Two Riemannian manifolds M ,  and M ,  (with Riemannian metrics 0, 
and 0,) are said to be isometric if there exists a diffeomorphism 
F :  M ,  4 M ,  such that F * 0 ,  = 0,. Clearly such an isometry is also an 
isometry of M ,  and M ,  as metric spaces, that is, d, (F(p) ,  F ( q ) )  = d l ( p ,  q )  in 
the metrics defined above. I t  is true, but not easy to prove, that a converse to 
this statement holds (see Kobayashi and Nomizu [l, Theorem 3.10, p. 1691). 

The geometry, including geodesics, lengths of curves, areas, and so forth, 
depends very much on the Riemannian metric of M .  For example, the sphere 
S2 as an abstract manifold is diffeomorphic to many surfaces in R 3 ,  of which 
the unit sphere is only one possibility, another being a standard ellipsoid E 
in R 3 :  

Here the geodesics of the induced Riemannian metric, unlike great circles on 
the unit sphere S2, are not closed curves in general (see Hilbert and Cohn- 
Vosscn [ 1, p. 222-41). Thus E and S2 are diffeomorphic but not isometric, 
that is. they are equivalent as differentiable manifolds but not as Riemannian 
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manifolds. An important question is to decide whether or not two given 
Riemannian manifolds are, in fact, isometric; and if so, in how many ways. A 
question which led Gauss to some of his great discoveries seems to have 
been a very practical one: Is there any isometry possible between a portion 
of the surface of a sphere (the earth) with the metric mentioned above and a 
portion of the Euclidean plane with its standard metric? Or equivalently, 
can we construct a map of some part of the earth's surface which does not 
distort distances and/or angles? We shall come back to this question in a 
later chapter. 

1. 

2. 

3. 

4. 

5. 

6. 

Exercises 

Using spherical coordinates (8, cp) on the unit sphere p = 1 in R3, deter- 
mine the components (g i j )  of the Riemannian metric on the domain of 
the coordinates (U = Sz minus the north and south poles). 
Similarly, find g i j  for TZ = S' x S' using coordinates (8, cp) and the 
imbedding 

(8, cp) + ((a + b cos cp) cos 8, (a + b cos cp) sin 8, b sin cp) 

in R3 given by rotating a circle of radius b, center at (a, O,O), a > b, 
around the x3-axis. 
Show that to each vector field X on a Riemannian manifold there corre- 
sponds a uniquely determined covector field a, by (iii) of the previous 
section. Show that this is actually an R-linear map. Is it C"(M)-linear? 
(See Exercise 6, Section 1.) 
Using the results of Exercise 8 of Section 2, show that Or is a 1-parameter 
group of isometries of a Riemannian manifold M if and only if the Lie 
derivative of the Riemannian metric 0 with respect to the infinitesimal 
generator of Or is zero, LxO = 0. 
Let x(t), 0 I t I 1, be a curve of class D' in R" from x(0) = (0, 0, . . . , 0) 
to x( 1) = (a',  . . . , a"). Assume, for simplicity, that IIx(t)ll > 0 for t > 0 
and write x(t) = A(t)u(t), where A(t) = Ilx(t)ll and u(t )  is a unit vector. 
Show that Ilx(t)llZ = (l( t))z + (A(r))z~/u(t)~/z,  and use this to prove that 
the length of the curve is at least IIx(1) - x(O)ll, the distance from the 
origin to a = (a', . . . , a"). 
Show that the simplifying assumption that Ilx(t)ll > 0 for t > 0 in 
Exercise 5 may be removed by considering only the portion of the curve 
outside a small sphere around the origin, whose radius we then let tend 
to zero. Use these results to establish that in R" the infimum of the length 
of curves of class D' joining two points x and y is IIx - yll so that the 
metric defined on R" by Theorem 3.1 and the standard Riemannian 
structure is the usual one. 
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4 Partitions of Unity 

We have mentioned, but not proved, that there is no nonvanishing 
Cm-vector field on S2. It follows from the exercises at the end of the last 
section that the same is true for covector fields on S2. In  view of this non- 
existence, it might occur to ask whether on an arbitrary manifold M it is 
possible to define a C" positive definite, bilinear form, that is, is every 
manifold Riemannian? This question and a number of others may be 
answered using the notion of a partition of unity. Before discussing this 
concept we need some preliminary definitions and lemmas. 

A covering { A , }  of a manifold M by subsets is said to be locallyfnite if 
each p~ M has a neighborhood U which intersects only a finite number of 
sets A,.  If (A , )  and {B,} are coverings of M ,  then {B,} is called a refnement of 
{ A , )  if each B, c A, for some a. In  these definitions we do not suppose the 
sets to be open. Any manifold M is locally compact since it is locally 
Euclidean; it is also a-compact, which means that it is the union of a count- 
able number of compact sets. This follows from the local compactness and 
the existence of a countable basis PI,  P, ,  . . . such that each Pi is compact. A 
space with the property that every open covering has a locally finite 
refinement is called paracompact; it is a standard result of general topology 
that a locally compact Hausdorff space with a countable basis is paracom- 
pact. We will prove a version of this adapted to our needs. 

(4.1) Lemma Let {A , }  be any covering qf a manifold M of dimension n by 
open sets. Then there exists a countable, locally finite refnement { U i ,  cpi> 
consisting of' coordinate neighborhoods with cpi(U,) = B:(O) for all 
i = I, 2, 3, ... and such that 

Proof We begin with the countable basis of open sets {Pi}, Pi compact, 
which we mentioned above. Define a sequence of compact sets K1,  K 2 ,  . . . as 
follows: K ,  = P ,  and, assuming K , ,  . . . , K i  defined, let r be the first integer 
such that K i  c 

= cp,r1(B!(0)) c U i  also couer M .  

Pj. Define K , , ,  by 
/ -  

K , ,  , = PI u P ,  u . . . u P, = PI  u ... u P, . 

Denote by K i t  the interior of K i t ,  ; it contains K i .  For each 
i = 1,2, ..., we consider the open set (kit, - K i -  ,) n A,. Around each p 
in this set choose a coordinate neighborhood U p ,  , , cpp, , lying inside the set 
and such that 'pp. &I) = 0 and 'p,, ,( U p ,  ,) = B;(O). Take V'. , = cp;, (By (0)) 
and note that these are also interior to (k,,, - K i - , ) n  A,.  Moreover 
allowing p ,  CI to vary, a finite number of the collection of V,,, covers 
Ki+l - R i ,  a closed compact set. Denote these by v.k with k labeling the 
sets in this finite collection. For each i = 1,2, . . . the index k takes on just a 
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finite number of values; thus the collection F, is denumerable. We renum- 
ber them as V,, V, ,  ..., and denote by U , ,  cpl, U , ,  cp2, ..., the corres- 
ponding coordinate neighborhoods containing them. These satisfy the 
requirements of the conclusion; in fact for each p E M there is an index i such 
that p E ki-,  but from the definition of U j ,  i$ it is clear that only a finite 
number of these neighborhoods meet k,- ,. Therefore { V,) and also { r/l} are 
locally finite coverings refining the covering {A , ) .  I 

(4.2) Remark It is clear that it would be possible to replace the spherical 
neighborhoods B:'(O) by cubical neighborhoods C:(O) in the lemma. 

We shall call the refinement U , ,  r/l, 'pi obtained in this lemma a regular 
covering by spherical (or, when appropriate, cubical) coordinate neighbor- 
hoods subordinate to the open covering (4). 

Recall that the support of a function f on a manifold M is the set 
supp(,f) = { X E  M I f (x) = O), the closure of the set on whichfvanishes. 

(4.3) 
tions {,hi defined on M with the following properties: 

Definition A C" partition of unity on M is a collection of Cx' func- 

(1) .f, 2 0 on M ,  
( 2 )  {supp(f;,)} form a locally finite covering of M ,  and 
(3)  cp f,,(.~) = 1 for every .YE M .  

Note that by virtue of (2) the sum is a well-defined C"' function on M 
since each point has a neighborhood on which only a finite number of thef,,'s 
are different from zero. A partition of unity is said to be subordinate to an 
open covering { A , }  of M if for each 1: there is an A ,  such that supp( f,) c A , .  

(4.4) Theorem Associated to each regular covering { U , ,  i(, cp,) of M there 
is a partition of unity { A ]  such t h a f f .  > 0 on r/l = 9,: ' (B,(O))  and suppfi c 
cp; '(B2(0)). I n  particular, eilery open covering { A z }  has a partition of unity 
which is subordinate to it. 

Proof Exactly as in part (a) of the proof of Theorem 11.5.1, we see that 
there is, for each i, a nonnegative C" function ij(x) on R" which is identically 
one on B; (0) and zero outside B;(O). Clearly g,, defined by gi = i j  u 'pi on Ui 
and g, = 0 on M - U , ,  is C" on M .  It has its support in cpl:'(g(0)), is + 1 
on V , ,  and is never negative. From these facts and the fact that {VJ  is a 
locally finite covering of M we see that 

are functions with the desired properties. I 
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Some Applications of the Partition of Unity 

We shall give several applications which illustrate the utility of this 
concept. The first answers the question raised at the beginning of the first 
paragraph in this section. 

(4.5) Theorem 
R ieinnriii iiiri riirrii ifold. 

I t  is possible to rlefiiie a C" Rieriiariniari nietric on every C"' 

Proof Let [ V , ,  K, cp,) be a regular covering of M and,f;. an associated 
C" partition of unity as defined above. Then cp,: U i  -+ B;(O) being a diffeo- 
morphism, the bilinear form mi = cpTY', Y the usual Euclidean inner product 
on R", defines a Riemannian metric on U i  (Corollary 2.5). Sinceji > 0 on 

,j;. Oi is a Riemannian metric tensor on r/;, is symmetric on U i ,  and is zero 
outside cpl: '(IF2(0)). Hence it may be extended to a C"-symmetric bilinear 
form on all of M which vanishes outside cpl: '(P2(0)) but is positive definite 
at every point of v .  I t  is easy to check that the sum of symmetric forms is 
symmetric, therefore Q, = j iO i ,  defined precisely by 

i =  1 

is symmetric. We have denoted by,f;Oi its extension to all of M, and we must 
remember that the summation makes sense since in a neighborhood ofeach 
p E M all but a finite number of terms are zero. However, O is also positive 
definite. For every i,,/) 2 0 and each P E  M is contained in at least one 5 .  
Thenj;(p) > 0, and therefore 

0 = Q,,(X, 7 X,) = 1 .L(P)Oi(X, - X p )  

0 = q T Y ( X p  3 X p )  = y(cpj*(Xp), c p j * ( X p ) ) .  

implies that Q j ( X , , ,  X, )  = 0. This means 

But since Y is positive definite and cp is a diffeomorphism, this implies 
X,]  = 0. This completes the proof. I 

As a second application we consider the following question. Let M be a 
C' manifold. Then is M diffeomorphic to a submanifold ofEuclidean space 
RN of some sufficiently high dimension N ?  This is a rather difficult question, 
particularly if we modify it slightly so as to leave the choice of N less 
arbitrary. For example, is every surface, that is, every two-dimensional mani- 
fold M ,  imbeddable as a submanifold of R 3 ?  [The answer is no; it is known 
that this is not always possible even if the surface is compact.] We shall give 
a partial answer to the question as first posed. 
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(4.6) Theorem Any compact C" manifold M admits a C" imbedding as  a 
submanifold of RN for  suflciently large N .  

Proof We let { U i ,  F , cp,} be a j n i t e  regular covering of M ;  there exists 
such because of the compactness. We have defined the associated partition 
of unity { J }  using functions {gi}, where g i  = 1 on K ,  and we shall use here 
these C" functions {gi} on M rather than the (normalized) { J } .  Let ' p i :  U i  + 

B;(O) be the coordinate map. Then the mapping gicpi: U i  + B;(O)-mapping 
p E U i  to g,(p)cp,(p)  = ( g i ( p ) x ' ( p ) ,  . . . , g i ( p ) x " ( p ) )  in R"-is a C" map on Ui, 
taking everything outside cp; '(B;(O)) onto the origin, but agreeing with cpi 
on v.. It may be extended to a C" mapping of M into B';(O) by letting it map 
all of M - U i  onto the origin. When we write g i c p i ,  we will mean this 
extension; on F it is a diffeomorphism to BY(0) so its Jacobian matrix has 
rank n = dim M there. 

We suppose that i = 1, . . . , k is the range of indices in our finite regular 
covering and let N = (n  + 1)k. Define 

F : M + R N + R "  x x R" x R x ... x R 
r - 
k k 

by 

F ( P )  = (gl(P)cpl(P);. . . ; g k ( P ) ( P k ( P ) ;  Sl(PX * * * 9 9AP)). 

Then F is clearly C" on M ,  and in any local coordinates on M the N x n 
Jacobian of F breaks up into k blocks of size n x n followed by a k x n 
matrix so its rank is at most n. However, p E M implies p E 6 for some i ,  and, 
on F, gi = 1, so g i q i  = 'p i  and the matrix has rank n. Thus F :  M + RN is a 
C" immersion. If it is one-to-one the proof is finished since M is compact 
and Theorem 111.5.7 applies. Suppose F(p)  = F(q) .  Then g i ( p )  = g i ( q ) ,  
i = 1, . . . , k .  This implies that gi (p)cpi (p)  = gi(q)cpi(q);  but since gi(p) # 0 for 
some i ,  this means cp,(p) = cpi(q) for that i and since 'pi is one-to-one, we see 
that p = q. Thus F is one-to-one, completing the proof. I 

We remark that it is an obvious disadvantage of this theorem that N may 
be much larger than we would like it; in fact we have no way of giving an 
effective bound on it from this proof. For example, we know that it takes at 
least two coordinate neighborhoods to cover S2 (using stereographic projec- 
tions from the north and south poles) and hence k = 2, n = 2 so that N = 6, 
implying that S2 may be imbedded in R6. This is obviously not the best 
possible! Since a sphere with handles (compare Section 1.4) may require 
more than two coordinate neighborhoods to cover it, the value of N would 
increase accordingly. 

Another defect of the theorem is that it only applies to a compact mani- 
fold and although such manifolds are important, it would be very nice to 
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know that every manifold may be considered as a submanifold of RN for 
some N .  Then our intuitive geometric concepts derived from the classical 
study of curves and surfaces in R3 could be seen to carry over to arbitrary 
manifolds; in particular, the concept of tangent space T,(M) is given intui- 
tive content just as in Example IV.1.10. Clearly this question has great inter- 
est in manifold theory. The following theorem was proved by Whitney [l] in 
1936 in a paper which is one of the landmarks in the study of differentiable 
manifolds. It is known as the Whitney imbedding theorem. 

(4.7) Theorem Any  differentiable manifold M may be imbedded differen- 
tiably in  RN with N 5 2 dim M + 1. 

The proof has since been simplified and appears in many recent texts, for 

Our final example of the way in which the ideas of this section may be 
example, Milnor [2], Sternberg [ 11, and Auslander and MacKenzie [ 11. 

used will be to prove the following "smoothing" theorem: 

(4.8) Theorem Let M be a C" manifold and A a compact subset of M ,  
possibly empty. I f  g is a continuous function on M which is C" on A and E is a 
positive continuous function on M ,  then there exists a C" function h on M such 
that g ( p )  = h ( p )  for every p E A and I g ( p )  - h ( p )  I < ~ ( p )  on all of M .  

In order to prove this we shall need a similar theorem for the case of a 
closed n-ball in R". For convenience we choose the following one (see 
Dieudonne [ 13 for a proof). 

(4.9) Lemma (Weierstrass approximation theorem) Let f be a contin- 
uous function on a closed n-ball B" of R" and let E > 0. Then there is a 
polynomia1,function p on R" such that 1 f ( x )  - p(x )  I < E on B". 

Another similar but easier approximation lemma for R" which would 
serve equally well here is given in Section VI.8 (Exercise 2). We now proceed 
with the proof of the theorem. 

Proof Since g is C" in A, there is a C" extension g* of g I A to an open 
set U which contains A-by definition of C" function on an arbitrary subset 
of M .  Unfortunately, there is no reason to believe that g ( p )  = g * ( p )  on 
points of U not in A. However, we may replace g by a continuous function ij 
on M with the following properties: (i) I i ( p )  - g ( p )  I < &(p),  (ii) i = g on 
A, and (iii) Zj is C"' on an open subset W of M which contains A. The 
procedure is as follows: Taking any U and g* as above, we use the com- 
pactness of A to choose an open set W containing A and such that two 
further requirements are met: W is compact and lies in U and I g * ( p )  - 
g ( p )  1 < $ ( p )  on W. Since g* is C"' on U ,  hence continuous, there is no 
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problem in finding such a set W .  Now, using Theorem 111.3.4, we define a 
nonnegative, C" function a which is + 1 everywhere on W and vanishes 
outside U .  Finally, we define i = ag* + (1 - a)g and note that it satisfies 
(i)-( iii). 

This being done, we choose a regular covering by spherical neighbor- 
hoods { U i ,  F, rp,) subordinate to the open covering W ,  M - A of M and 
denote by { f ; , }  the corresponding C" partition of unity. For every Ui on W 
the functionfia is C" on Ui and vanishes outside rp; '(g(0)). Thus it can be 
extended to a C" function on M .  I f  we denote the extended functionLB also, 
then we have c 1;:s = on M. If Ui c M - A, then on B",(O) c B;(O) = 
pi( Ui) we use the Weierstrass approximation theorem to obtain a polyno- 
mial function pi  with 

1 p i ( x )  - i r) rp,: '(x) I < f c i ,  ci = inf ~ ( p )  on rp; '(gn2(0)). 

Each ci is defined since @(O) is compact. Let qi = pi 0 pi,  and for each i let 
f ; ,  qi be extended to a C" function on all of M, which vanishes outside U i .  
Now let the indices such that Ui is in M - A be denoted i' and all others by 
i". We define h ( p )  by 

I r b )  = 1 hqi .  + .f;.,.5. 
i. i" 

Thus h is well defined and C" on M since each point has a neighborhood on 
which all but a finite number of summands vanish identically. If PE A, then 
h ( p )  = Ci,, j ; , , (p)a(p)  = g ( p )  since g = 3 on A, each f . , ( p )  = 0 on A, and 

1;. = 1 everywhere on M .  On the other hand we have for p $  A 

Using this, and remembering thatf;, 2 0 for all i, we have 

as was to be proved. I 

(4.10) Techniques of this type are very important in bridging the 
gap between the applications to manifolds of topology-where the data are 
usually continuous-and of calculus concepts such as rank of a mapping. By 
using the fact that a manifold is o-compact, for example, and reverting to the 
use of local coordinates, it is possible to prove by methods of this section 
such statements as the following (compare Steenrod [I ,  p. 251): 

Remark 
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Let X be N vector.field wkich is conrinirous on a11 of M and C" on the closed 
subset A. Then X may be approxiinured arbitrarily closely by a C"-vectorJield 
Y 011 M SUCJI that X = Y on  A. 

Exercises 

I .  

2. 

3. 

4. 

5 .  

5 

Iffis a C' function on a closed regular submanifold N of a manifold M ,  
then show thatfis the restriction of a C' function on M .  
Show that if N is a closed regular submanifold of M ,  then a C" -vector 
field X on N can be extended to a C" -vector field on M .  [Hinr :  Take a 
covering of N by preferred coordinate neighborhoods of M and use a 
partition of unity subordinate to this covering and to the open set 
M - N ;  X can be extended easily within a preferred coordinate 
neighborhood.] 
Show that on a Riemannian manifold every point p lies in an open set 
U p  over which we may define a C" field of frames which is orthonormal 
at each point. 
Let M be a manifold of dimension k and F :  M --* R" a C" imbedding of 
M in R". Further, let G(n. k)  be the Grassman manifold of k-planes 
through the origin of R". Show that the map H :  M + G(n, k ) ,  obtained 
by mapping p to the k-plane through the origin parallel to F ,  (T'(M)), is 
C' . [This generalizes the Gauss mapping for surfaces in R3.] 
Show that if F o  and F ,  are disjoint closed subsets of a C" manifold M ,  
then there exists a C' function f o n  M that is 0 on Fo and + 1 on F ,  
(compare Theorem 111.3.4). 

Tensor Fields 

Tensors on a Vector Space 

I t  is ou r  purpose in this section to define and study some properties of 
tensor fields on a manifold, especially covariant tensor fields. As in the case 
of covectors and bilinear forms, which are examples of such tensors, we 
begin with a vector space V over a field, in fact over R. 

(5.1) Definition A tensor 0 on V is by definition a multilinear map 
0: V x ". x V ' x  V* x ... x V 
v -c I 

V* denoting the dual space to V, r its couarinnt order, and s its ~ o n t r ~ ~ ~ a r i a r ~ t  
ordcr. 
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Thus @ assigns to each r-tuple of elements of Vand s-tuple of elements of 
P a real number and if for each k, 1 I k I r + s, we hold every variable 
except the kth fixed, then 0 satisfies the linearity condition 

O(vl ,  ..., c(vk + a'v;, ...) = a@(vl,  ..., v k ,  ...) + a'@(vl, ..., v;, ...) 

for all a, E'E R,  and vk, V;E V (or V*, respectively). (This equation defines 
precisely the meaning of multilinearity.) As examples we have: (i) for r = 1, 
s = 0, any cp E P, (ii) for r = 2, s = 0, any bilinear form @ on V, and finally 
(iii) the natural pairing of V and P, that is, (v, cp) -, (cp, v) for the case 
r = 1, s = 1. We have also noted that V and (V*)* are naturally isomorphic 
and thus may be identified so then each v E V may be considered as a linear 
map of V* to R, that is, as a tensor with r = 0 and s = 1. 

For a fixed (r, s) we let Z:( V )  be the collection of all tensors on V of 
covariant order r and contravariant orders. We know that as functions from 
V x ... x V x V* x ... x V* to  R they may be added and multiplied by 
scalars (elements of R).  (Indeed linear combinations of functions from any 
set to R are defined and are again functions from that set to R,  a circum- 
stance that we have used on several occasions.) With this addition and scalar 
multiplication .F:( V )  is a vector space, so that if al, @, E .Ti( V )  and 
a l ,  a, E R, then a1 Ol + a,@,, defined in the way alluded to above, that is, 
by 

( a l @ l  + a2@2)(v1, v 2 ,  ...) = a l @ l ( v l ,  v 2 ,  .. .) + a 2 @ , ( v l ,  v 2 ,  .. .), 

is multilinear, and therefore is in T:( V) .  Thus .Ti( V )  has a natural vector 
space structure. In this connection we have the following theorem: 

(5.2) Theorem With the natural definitions of addition and multiplication 
by elements of R the set 3i( V )  of all tensors of'order (r, s )  on Vforms a vector 
space of dimension n' ". 

Proof We consider the case s = 0 only, that is, covariant tensors of 
fixed order r, and we let X'( V) ,  rather than .TL( V) ,  denote the collection of 
all such tensors. I f  e l ,  . . . , en is a basis of V,  then @ E Tr( V )  is completely 
determined by its n' values on the basis vectors. Indeed by multilinearity if 
we write vi = C a i e j ,  i = 1, . . . , r, then the value of@ is given by the formula 

(5.2') 

the sum being over all 1 I jl, . . . , j ,  I n. The 11' numbers {@(ejl, . . . , ej,)) are 
called the components of @ in the basis e l ,  . . . , en. We shall justify the termin- 
ology by showing that there is in fact a basis of .P'(V). determined by 
e l ,  . . . , en, with respect to which these are components of 0. I t  is defined as 

@(vl ,  . . . , v,) = 1 a{;ai; .. . a$@(ej,, . . . , ej,), 
j l .  .... j, 
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follows: Let Q J 1 " ' J r  be that element of .T'(V) whose values on the basis 
vectors are given by 

+ 1 if ji = ki for i = 1, ..., r, 
0 if .ji # ki for some i, 

OJl..' Jr(ekl, . . . , ek,) = 

and whose values on an arbitrary r-tuple v l ,  . . . , v, E V is defined by (5.2'); 
whence 

RJi , , , J t ( v l ,  ) = a J i a j z  ... ' 

This does define a tensor: multilinearity is a consequence of this formula, 
which is linear in the components of each v i .  It is immediate that the n' 
tensors so chosen are linearly independent: If 

..., 1 2 af .  

y j , ~ J i  ... J, = 0, 
Y j l  ' . 

JI. .... j ,  

then it  follows that 

c y j ,  ...,, a'l - y v l ,  . . . , vr) = 0 
j ,  ..... i, 

for any choice of the variables v l ,  ..., v,. But from the definition of the 
Ojl - ' j r  we see, by substituting in turn each combination ekl, . . . , ek, of basis 
elements as variables, that every coefficient Y k l  ... k ,  = 0. 

However, we also find that every 0 is a linear combination of these 
tensors. Let 'p j l  ... j ,  = O(ej,,  . . ., ej,) and consider the element 
C qji . . . j r  Q J 1  " ' j r  of Tr( V).  Applying again the definition of C 2 j I  " ' j ' ,  we see 
that this tensor and Q, take the same values on every set of basis elements, 
hence must be equal. This completes the proof for Zr( V ) .  I 

We remark that an easy extension of the argument using both el, . . . , en 
and its dual basis wl, , . . , (on of Y* gives the general case .Ti( V) .  Since we use 
covariant tensors in most of what follows, we will leave the more general 
treatment to the exercises and to the imagination of the reader. 

Tensor Fields 

I t  is easy to extend these ideas to manifolds following the pattern we 
established earlier. 

(5.3) Definition A Cm-couuriunt rensorjeld of order r on a C" manifold 
M is a function 0 which assigns to  each p E M an element of 3'( T'(M)) 
and which has the additional property that given any X,, . . . , X,, Cm-vector 
fields on an open subset U of M ,  then @(XI, . . , , X,) is a C" function on U .  
We denote by Z r ( M )  the set of all C"-covariant tensor fields of order r 
on M .  
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We have already considered in some detail the case of covector fields, 
Y = 1, and that of fields of bilinear forms, r = 2. Just as in these cases, it is an 
immediate consequence of the definition that a covariant tensor field of 
order r is not only R-linear but also C"'(M)-linear in each variable. For 
example, if,fE C"(M),  

@(XI, ... ) f x i ,  ..., X,) =f@(X,, . ..( xi, . . . , XP). 

This is true because it holds at each point p by the R-linearity of a,,; and the 
two sides of the equation are equal if equality holds for each p E M .  In the 
same way, i f f€  C" ( U ) ,  U open in M ,  the equation holds for , the restric- 
tion of @ to U. (Compare Remark 1.3 and Exercise 2.2.) 

In precisely the same fashion as Section 2 we see that if U ,  cp is a coordin- 
ate neighborhood and El,  . . . , En are the coordinate frames, then 0 E .F ' (M)  
has components @(Ej,, . . . , Ej,), that is, functions on U whose values at each 
p E U are the components of @,, relative to the basis of TP(M) determined by 
El,  . . . , En. Once more, just as before, the differentiability of 0 is implied by 
the differentiability of all the components as functions on the coordinate 
neighborhoods ofsome covering of M .  Finally, i t  is easy to see that .Fr(M) is 
a vector space over R [in fact it is a C " ( M )  module] since linear combina- 
tions of covariant tensors of order r (even with C" functions as coefficients) 
are again covariant tensor fields. 

Mappings and Covariant Tensors 

A further basic fact which carries over to arbitrary r > 0 from covectors 
and forms is that any linear map of vector spaces F , :  V -, W induces a 
linear map F*: P ( W )  + .Fr( V )  by the formula 

F*@(v,, . . ., Vr)  = @(F*(v~) ,  . . * 9 F*(vr)). 

In exact analogy with the case r = 2, we find that a C"-map F :  M + N 
induces a mapping F*:  T r ( N )  -+ . T ( M ) ,  defined for 0 on N by 

F * @ p ( X I p  9 * * * *  X r p )  = @ p ( p ) ( F * ( X 1 p ) r  * * . -  F * ( X r p ) ) .  

As we have seen, this is a special feature of covariant tensor fields; its analog 
does not hold for contravariant fields even for T1(A4) = K ( M )  (vector 
fields); see Definition IV.2.6. Not only does F* map .Fr(N) to . T ( M )  but it 
maps it linearly; this is an immediate consequence of the definitions (com- 
pare Exercise V.2.6). 

(5.4) 
tnerric if for each I I i ,  ,j I r,  we have 

Definition We shall say that Q, E .T( V) ,  V a vector space, is . s y m -  

@(vl ,  ..., v i ,  ..., v j ,  ..., v,) = @(v,, .... v j ,  ..., v i ,  ...) v,). 
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Similarly, if interchanging the ith and ,jth variables, 1 5 i ,  j I r,  changes the 
sign, 

@ ( v l ,  . . .  ) v i ,  ... ( v j ,  ..., v,) = -@(v, ,  ..., v j ,  ..., v i ,  ..., Vr), 

then we say @ is .ske~* or antisymmetric or alternating; alternating covariant 
tensors are often called rxrerior.forna. A tensor field is symmetric (respec- 
tively, alternating) if it has this property at each point. 

The following generalization of Theorems 1.6 and 2.3 summarizes these 
remarks: 

(5.5) Theorem Let F :  M -+ N he a C' riiup of C" munifb1d.s. Theri each 
C' - c o i w i m t  triwor,field @ on N determines I I  C" -covariant tensor field F*@ 
011 M h), thr  jorniul~r 

Thc nicip F*: .P'(N) -+ .Tr(M) so t1qfifinc.d is liiieur tirid tukes symmetric (alter- 
n a t i n g )  t rnsors  to  .spnmetric (~iltrrnariri~q ) tensors. 

We leave the proof as an exercise. Note that (5.5') is the same as 
formula (2.2). 

I t  is also clear how to extend to the case of arbitrary order r the formula 
(2.4) for components of F*@ in terms of those of Q, and the Jacobian of F in 
local coordinates. Thc same method can also be used to derive formulas for 
change of components relative to a change of local coordinates (for r = I 
see Corollary 1.7). Basically, these formulas are all consequences of the mul- 
tilinearity ut ouch poirit of M .  

The Symmetrizing and Alternating Transformations 

In  order to pursue some of these questions somewhat further, we return 
to the case of a covariant tensor on a vector space V .  First note that if and 
Q2 E .Fr( V )  are symmetric (respectively, alternating) covariant tensors of 
order r on V, then a linear combination + /lo2, M ,  /3 E R, is also sym- 
metric (respectively, alternating). Thus the symmetric tensors in ,Pr( V )  form 
a subspace which we denote by Cr( V )  and the alternating tensors (exterior 
forms) also form a subspace A'( V ) .  These subspaces have only the 0-tensor 
in common. 

Next let c denote a permutation of ( 1 ,  ..., r )  with (1, ..., r )  -+ 

(c( l), . . . , a(,.)). We know that any such permutation is a product of permu- 
tations interchanging just two elements (transpositions). Although this 
representation is not unique the parity (evenness or oddness) of the number 
of factors is. We let sgn 0 = + I if 0 is representable as the product of an 
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even number of transpositions and sgn cr = - 1 otherwise. Then, cr -, sgn (T 

is a well-defined map from the group of permutations of r letters 6, to the 
multiplicative group of two elements & 1. It is even a homomorphism as we 
check at once from the definition. The only statement not obvious is the one 
concerning the independence of the parity of the particular decomposition of 
(T into a product of transpositions (for a proof see Zassenhaus [ 11). 

In the light of these facts we see that our original definitions may be 
restated in the following equivalent form: @E P ( V )  is symmetric if 
@(vl, ..., v,) = @ ( v , ( ~ ) ,  . .., vU(,)) for every v l ,  ..., v, and permutation cr, and 
is alternating if @(vl ,  . . . , v,) = sgn a@(v,(,, , . . . , vU(,)) for every v l ,  . . . , v, and 
permutation cr. 

(5.6) Definition We define two linear transformations on the vector space 
F( V),  

symmetrizing mapping 

alternating mapping 

Y : Sr( V )  -, Tr( V) ,  

d :  3-y V )  + .P( V),  

by the formulas : 
1 

r !  

1 

(Y@)(v~, ...) v r )  = 1 @(vu(I) 7 * * * )  vu(r)) 

and 

( - d @ ) ( v i 7 .  . . t  vr)  = r ,  C sgn cr@(v0(1), ..., v g ( r , ) ,  
. u  

the summation being over all O E  G,, the group of all permutations of r 
letters. 

It is immediate that these maps are linear transformations on Yr(  V ) ,  in 
fact @ -, W, defined by 

@ ' ( ~ l r . . . r ~ r )  = @ ( ~ g ( l ) r . . . r v u ( r ) ) ,  

is such a linear transformation; and any linear combination of linear trans- 
formations of a vector space is again a linear transformation. We have the 
following properties. 

(5.7) Properties of .rB and .Y: 

( i )  .d and , Y a r e  projections, that is, .d2 = .d and .Yz = Y ;  
(ii) d(P( V ) )  = Ar( V )  and Y ( P (  V ) )  = Zr(  V ) ;  
(iii) @ is alternating i fand only if'&@ = 0;  

(iv) if F , :  V +  W is u lineur map, then d and 9' commute with 
@ is symmetric i fand only If Y@ = @: 

F*:  P ( W )  -, Tr( V) .  
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All of these statements are easy consequences of the definitions. We shall 
check them only for .d, the verification for ,Y being similar. They are also 
interrelated so we will not take them in order. First note that if 0 is alter- 
nating, then the definition implies 

@ ( ~ 1 , - . . ? v r )  = s g n Q @ ( v u , , , , . . . , v , ( r ) ) ,  

Since there are r !  elements of G,, summing both sides over all Q E  6, gives 
@ = d@. On the other hand if we apply a permutation t to the variables of 
.d@(v , ,  . . . , v,) for an arbitrary @ E .Fr( V) ,  we obtain 

Now sgn is a homomorphism and sgn T~ = 1 so that sgn Q = sgn QT sgn t. 
From this equation we see that the right side is 

1 
sgn t 1 sgn C J T @ ( V ~ , , ) ,  . . ., vU7(,)) = sgn t d @ ( v l ,  . . . , v,), 

r !  U 

and .d@ is alternating. This shows that d(.T( V ) )  c A,( V) .  If @ is alter- 
nating, every term in the summation defining &@ is equal, so &'@ = @. Thus 
.d is the identity on Ar( V )  and d(P( V ) )  2 A'( V).  From these facts (i)-(iii) 
all follow for d.  Statement (iv) is immediate from the definition of F*, for we 
have 

F*@(vu(l, 9 . . vu(r)) = @(F*(vu(1)), * * * 9 '*(vu(r)))* 

Multiplying both sides by sgn 0 and summing over all Q gives-if we use the 
linearity of F*--.d(F*@)(v,, . . . , v,) on the left and F*(d@)(v,, . . . , v,) on the 
right. 

Both of these maps .d and .Y' can be immediately extended to mappings 
of tensor fields on manifolds-with the same properties-by merely apply- 
ing them at each point and then verifying that both sides of each relation 
(ib(iv) give C" functions which agree pointwise on every r-tuple of 
CW-vector fields. We summarize (without proof): 

(5.8) Theorem The maps .d and .V are defined on F ( M )  ( M  a C" nzuni- 
fold trnrl .P'( M )  the Cm-covariunt tensor ,fields of order r )  and they satis/j, 
properties (5.7), (ib(iv), there. In the ruse of(iv), F*: P ( N )  -, T r ( M )  is thc 
linear ,nap induced by a C" mupping F: M + N .  

Exercises 

1. Show that when r = 2 we have .Fr( V )  = A*( V )  0 c'( V )  but that this is 
false if r > 2. 

2. Show that A'( V )  contains only the tensor 0 when r > dim V.  
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3. 

4. 

5. 

6. 

7. 

8. 

6 

Let a( V )  denote the space of all linear transformations on V.  Show that 
it is a vector space over R of dimension equal to (dim V)' and that it is 
naturally isomorphic to the space of all bilinear maps of V x V* to R. 
[Hint: To a linear transformation A :  V +  V we associate the bi- 
linear map (v, cp) -, (Av, cp) on V x V* to R.] 
Give a definition of a C' field of lirwar transformations on M and check 
that its property of being C" can be defined in terms of local coordinates 
or in terms of W(M). 
If V is a vector space with an inner product, then there is a natural 
isomorphism of V to V* (compare (iii) of Section 2). Show that this 
determines an isomorphism of .F;( V )  and P+'( V )  and extend to tensor 
fields on C" manifolds. 
If  Q, is a Cm-covariant tensor field of order r on a C" manifold M, show 
that @(XI, ..., X , )  is a Ca(M) R-linear function from X(M) x . - .  x 
W(M) to C"(M).  Conversely, show that each such function determines 
an element of . T r ( M )  as we have defined it. 
Let T :  V x ... x V + V be an R-linear function of r vectors with values 
in V,  that is, T ( v , ,  . . . , v,) is in V and linear in each variable. Define 
components in this case and extend this object to a field on a manifold in 
the manner of Exercises 3 and 4. 
As in the case of vector fields on manifolds, a tensor field, say 
Q E .Tr(M), is a function assigning to each p E M a covariant tensor Q,, 
on T,(M), that is, a function from M to the set W = U p E M  .F'(T',(M)). 
Try to define the structure of a C" manifold on W such that (1 )  the 
natural mapping n: W + M taking a,, to p for each .Tr(Tp(M)) is 
C' and (2) covariant tensor fields on M are exactly the C" mappings 
0: M --f W satisfying n 0 Q, = identity (on M ) .  

Multiplication of Tensors 

Except for a few of the exercises, we will continue to restrict our attention 
to couariant tensors in the remainder of this chapter and in the next. Thus V 
will denote a vector space and M a C" manifold, as before. We have seen 
that both Tr(  V )  and . F r ( M )  are vector spaces over R. In the case of tensor 
fields, F ( M )  has also the structure of a C"'(M)-module. We agree by 
definition that To( V )  = R and T 0 ( M )  = C 5 ( M ) .  Having made these con- 
ventions, recall that our viewpoint is to define tensors as functions to R, a 
field, in the case of Tr(  V )  and functions to C"(M),  an algebra, in the case of 
Z r ( M ) .  In either case it is appropriate to discuss products of such functions. 
Just as functions from a set to an algebra can be multiplied in a natural 
way-using the algebra product of their values-to give new functions of the 
same type, so can we hope to multiply tensors. As usual we begin with the 
vector space case. 
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Multiplication of Tensors on a Vector Space 

Suppose V is a vector space and cp E .F"( V) ,  $ E .P( V )  are tensors. Their 
product is easily seen to be linear in each of its r + s variables so we make 
the following definition: 

(6.1) Definition The product of cp and $. denoted cp 0 $ is a tensor of 
order r + s defined by 

~p 0 $(v1, . . ., v r  V r +  1. . . ., v r  + s) = ~ ( V I  7 . . ., v,)$(vr + 1 9  . . ., vr+,s) .  

The right-hand side is the product of the values of cp and $. The product 
defines a mapping (cp? $) + cp 0 $ of Zr(  V )  x .Ts( V )  + .Tr+' ( V).  

(6.2) Theorem The rwppiny .Fr( V )  x Z'( V )  + FtS( V )  just  dejned is 
bilineur ~ i r i t l  cissocititive. If w', . . . , (of' is t i  busis of V* = .F '( V) ,  then 
(dl 0 . . .  0 (o"J ouer ull 1 I i , ,  . . . , i, I 11 is a basis of .Fr(V). Finally, if 
F,: W + V i s  linear, theri F*(cp x $) = (F*cp) x (F*$) .  

Proof' Each statement is proved by straightforward computation. To 
say that 0 is biliiiecw means that if a, p. are numbers cp,, cp2 E .Tr( V )  and 
$ E .F'( V ) ,  then (acp, + ,!h,h2) 0 II/ = a(cp, 0 $) + P(q2 0 $). Similarly for 
the second variable. This is checked by evaluating each side on r + s vectors 
of V :  in fact basis vectors suffice because of linearity. Associativity, 
(cp 0 II/) 0 0 = cp 0 ($0 O), is similarly verified-the products on both 
sides being defined in the natural way. This allows us to drop the paren- 
theses. To see that (oil @ ... 0 mi' form a basis it is sufficient to note that if 
e l ,  . .  .. e,, is the basis of V dual to to1, ..., Q", then the tensor Q i l " ' i r  

previously defined is exactly t o i 1  0 . . .  @ w': This follows from the two 
definitions : 

Q i 1  ..' i ,  10 i f  ( i  , , . . . , i r ) # ( j l  . . . j r ) ,  
1 1  if ( i  , , . . . , i , ) =  ( j ,  . * . j r ) ,  

(e,il, . . . , ej,) = 
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A more sophisticated but no more general way to state this theorem is 
derived from the following observations. First we take the direct sum over R 
of all of the tensor spaces, beginning with Z o ( V )  = R.  We denote it by 
.q V ) ,  

.F( V )  = T O (  V )  0 TI( V )  0 * .  0 P( V )  0 .. * . 
We identify each Zr( V )  with its (natural) isomorphic image in Z( V) .  An 

element cp of Z( V )  is said to be of order r if it is in Sr( V),  and every element 
S, of T ( V )  is the sum of a finite number of such cp, which we call its 
components. Thus S, E 3( V )  may be written uniquely (7, = cppil' + . . . + cp?, 
where q i j €  T i j (  V )  and i l  < i2  < ... < i , .  If @, $ E Z( V),  then they may be 
added componentwise, that is, by adding in 3'( V )  any terms in Zr( V).  They 
may be multiplied by using 0, extending it to be distributive on all of ,F( V) .  
This makes Z( V )  into an associative algebra over R called the tensor afge- 
bra. I t  contains R = To( V),  has 1 as its unit, and is infinite-dimensional. The 
contents of Theorem 6.2 (even a little more) can be written: 

(6.2) .F( V )  = Zr( V )  (direct) is an associative algebra (with unit) over 
R = Z0( V).  I t  is generated hy Yo( V )  and 9 '( V )  = Y*, the dual space to  V. 
Any linear mapping F , :  W + V of vector spaces induces a homomorphism 
F * :  ,F( V )  --t F( W )  which is ( i )  the identity on R and ( i i )  the dual mapping 
F * :  Y* + W* on F1( V) .  Together ( i )  and ( i i )  determine F* uniquely on all of' 
.F ( V ) .  

Multiplication of Tensor Fields 

Now we turn briefly to the case of tensor fields on a manifold M. If 
cp E P ( M )  and $ E F(M), then we may define cp 0 $ on M by defining it at 
each point using the definition for tensors on a vector space, that is, (cp 0 $ ) p  

is defined to be the tensor cpp O $ p  of order r + s on the vector space T,(M). 
Since this defines a covariant tensor of order r + s on the tangent space at 
each point of M, it will define a tensor field-if it is C". Now in local 
coordinates the components of cp 0 $, according to the definition just given, 
are the functions of the coordinate frame vectors 

CP O $(Ei1, Ei,+E) = V(Ei1, . . * )  Ei,)$(Ei,+i, ..., Ei,+,)  

over the coordinate neighborhood. The right-hand side is the product of two 
C" functions, components in local coordinates of cp and $, and thus the left 
side is C" as hoped. We have an appropriate version of Theorem 6.2 for this 
case. 

(6.3) Theorem The mapping .B ' (M)  x X S ( M )  + XrfS ( M )  just dejned i s  
hilincrrr r ind  crssociutir~e. I f  (ol, . . . , w" i s  a basis of .F (M), then every element 
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of ,F'(M) is a linear combination with C"' coej3cients of fwi i  @ . @ wirl 
1 5 i , ,  ..., I ,  5 t i ) .  I f  F :  N -+ M is a C" mapping, (PE 3 ' ( M )  and 
$ E .F'(M), then F*((P 0 $) = (F*cp) @ (F*$),  tensor~elds  on N .  

Proof Since two tensor fields are equal if and only if they are equal at 
each point, it is  only necessary to see that these equations hold at each point, 
which follows at once from the definitions and the preceding Theorem 6.2. 

I 

In general we do not have a globally defined basis of .F1(M), that is, 
covector fields to', . . . , o", which are a basis at each point. However, we do in 
R", from which the following corollary is obtained by applying the theorem 
to a coordinate neighborhood V ,  0 of M .  Let El ,  . . . , E,  denote the coordin- 
ate frames and a', .. ., o" their duals, that is, Ei = B;'(d/dxi) and 
w' = ~ * ( ~ ~ X j ) .  

(6.4) Corollary Each cp E .Fr( U ) ,  including the restriction to U of any cou- 
ariunt tensor field on M ,  hus a unique expression of the form 

cp = c ' - -  1 ui, __. i,ui' 0 * * .  @ a i r ,  

i i  1, 

where at euch point of U ,  ai ,  ... i, = cp(Ei,, . . . , Ei,) are the components ofcp in 
the basis (wi' 0 * * .  @ 0'3 and are C"'functions on U .  

Exterior Multiplication of Alternating Tensors 

For each r > 0 we have defined the subspace A'( V )  c 3'( V )  consisting 
of alternating covariant tensors of order r ;  it is the image of F( V )  under the 
linear mapping sl, the alternating mapping. We define A'( V )  to be R, the 
field. Then A'( V )  = .To( V )  = R and A*( V )  = Z'( V )  = YU, but k( V )  is 
properly contained in .F'( V )  for r > I (Exercise 5.2). We see, therefore, that 
the direct sum A( V )  of all the spaces A'( V )  is contained in 3( V )  as a 
subspace: 

A ( V )  = A"V)  0 A ' ( V )  0 A"V)  0 ' . '  

c .F '( V )  @ 3 ( V )  0 .T2( V )  Q . . * = 3( V).  

Although ,A,( V )  is a subspace of 3( V),  it is not a subalgebra. For even if 
cp E A'( V )  and $ E As( V), i t  may be shown by example (Exercise 1) that 
(P @ II/ may very well fail to be an element of A""(V); thus the tensor 
product of alternating tensors on V is not, in general, an alternating tensor 
on V.  We know, however, that each tensor determines an alternating tensor, 
its image under st. This fact enables us to define another multiplication for 
alternating tensors that is extraordinarily useful. 
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(6.5) Definition The mapping from Ar( V )  x As( V )  + V ) ,  defined 
by 

is called the exterior product (or wedge product) of cp and $ and is 
denoted cp A $. 

(6.6) Lemma The exterior product i s  bilinear and ussociutioe. 

Proof Bilinearity is a consequence of the fact that the product is defined 
by composing the tensor product, a bilinear mapping from A‘( V )  x As( V )  
to .Tr+‘( V )  with a linear mapping ( ( r  + . s )! /r!  s!).d. 

To show that the product is associative we first prove a property of the 
alternating mapping .d. Suppose cp E Zr( V ) ,  $ E ZS( V ) ,  and 0 E .P( V) .  
Then we show that 

.d(cp 0 $ Q 0) = crd(.d(cp Q $) Q 0) = .d(cp Q .d($Q 0)). 

For this purpose let G = 6,+,+, denote the permutations of 
(1,2, . . . , r + s + t )  and 6’ the subgroup which leaves the last f integers 
fixed; 6’ is isomorphic to the permutation group G,+, of (1,2,  ..., r + s). 
We have 

* $ ( v n o , ( r + l )  7 ..., v n o , ( r + s ) ) 0 ( v o o , ( r + s + t )  ? . . . ,  Vnn’(r+s+t)),r I 

using the fact that sgn o sgn o’ = sgn oo’ and that o’ is the identity on the 
last t numbers of ( I ,  . . . , r + s + t ) .  For each o‘, as o runs through G and we 
sum over the outer summation symbol, this expression is equal to 
d ( c p  Q $ 0  O)(v,, . . . , v , + , + J .  Thus we have the expression above reducing 
to l /(r + s ) !  ~ n , E O , d ( c p  0 $ 0 0) evaluated on v l ,  ..., v , + , + ~ .  Since there 
are ( r  + s)! terms in the summation this gives 

d(cp 0 $ 0 6) = d(d(cp 0 $)) 0 0). 
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The second equality is proved in the same way. If cp, $, 0 are in the subspaces 
A'( V ) .  A"( V ) ,  A'( V ) ,  respectively, then by definition 

and 

From this and a similar expression in the other order of associating terms we 
obtain the associativity of the exterior product 

( c p A $ ) A O  = V A ( $ A d ) .  I 

The following relation is an immediate consequence of the proof, which 
allows us to write exterior products without parentheses. 

(6.7) Corollary Let c p i €  A'#( V ) ,  i = 1, . . . , k .  Then 

Lemma 6.6 makes it possible for us to give A( V )  the structure of an 
associative algebra over R ;  we define the product A( V )  x A( V )  -, A( V )  
simply by extending the exterior product to be bilinear, so that the distribu- 
tive law holds. This is possible in only one way: Suppose that cp, $ E A( V).  
Then 

V = + ' . '  + ( P k y  V i E A ' ' ( V ) ,  $ = $ 1  + " '  + (C/lEI"\"'(V), 

and we define 

(6.8) Corollary A( V )  = A'( V )  0 A'( V )  0 A'( V )  0 .. . with the e.utrr- 
ior prodirct us ilt:firietl rrhore is L I I I  (ussociutiiv) ulgrhru oiler R = A'( V ) .  

The algebra A( V )  is called the exterior ulgehru or Grrissmnn ulgehru over 
V.  Unlike the tensor algebra .P( V ) ,  of which it is a subspace (but not a 
subalgebra), it is finitedimensional. To see this we determine a basis of 
A( V )  as a vector space. For this we need the following lemma, which is 
important in its own right. 
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(6.9) Lemma If cp E Ar( V )  and $ E As( V ) ,  then 

V A $  = (-1)'"$ACp. 

Proof This is equivalent to showing that 

d(cp 0 $) = ( - l)lSd($O cp). 

To prove this equality we note that 

* d ( ~  O $)(v1, ..-) vr+s) 

I f  T is the permutation taking (1, . . . , s, s + 1, . . . , r + s) to ( r  + 1, . . . , r + s, 
1, . . . , r ) ,  then we may write 

. ~ ( c P  O $)(~1- **.rVr+s) 

1 

( r  + s)! Csgn Q sgnT$(vur(l) 3 . . . ?  vm(s))dvur(s+I) 3 ...) vur,r+s)) - _ _ _  ~ - 

= sgn d ( $ O  q)(vl, . . . , vr+,). 
Since it is easily checked that sgn t = (- lr, this gives the relation cp A $ = 

( -  1)lS$ A 9. I 

(6.10) Theorem If r > n = dim V, then K(V) = (0). For 0 I r 5 n, 
dim A"( V )  = (:). Let wl, . . . , w" be a basis o j  A'( V) .  Then the set 

{ d i ~ . . . ~ w i r 1  15 i l  c i2 -= ... < ir I n )  

i s  (I basis of Ar( V )  and dim A( V )  = 2". 

Proof Let el,  . . . , en be any basis of V. I f  cp is an alternating covariant 
tensor of order r > dim V,  then on any set of basis elements 
cp(ei,, . . . , ei,) = 0. For some variable ei, is repeated and interchanging two 
equal variables both changes the sign of cp on the set and leaves it 
unchanged-the same argument one uses to show that a determinant with 
two equal rows is zero. Since all components of cp are zero, cp = 0 so 

Suppose that 0 I r I n and that wl, . . . , w, is the basis of V* = A'( V )  
dual to e,, . . . , en. Since d maps Tr( V) onto Ar( V),  the image of the basis 
(ai1 0 ... 0 wir} of 3'( V )  spans Ar( V ) .  We have 

ArW = IO). 

A a". r ! d ( w i l  0 . . .  0 = ,, . . . 
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Permuting the order of i , ,  . . . , i, leaves the right side unchanged, except for a 
possible change of sign according to Lemma 6.9. It follows that the set of (:) 
elements of the form wil A *..  A wir with I I i l  < i ,  c ... < i, I n span 
A'( V).  On the other hand, they are independent. For if we suppose that 
some linear combination of them is zero, say 

C cli, . . . i r d l ~ * . * ~ m i r  = 0, 
i] < I . .  < i, 

then its value on each set of r basis vectors must be zero. In particular, given 
k l  < ... < k, ,  we have 

which becomes c lk l  ... k, 5 0 by virtue of the formula of Corollary 6.7 
combined with the fact that wi(ek) = 8: for I I i, k I n. By suitable choice 
of k ,  < .. .  < k , ,  we see that each coefficient must be zero; therefore the 
given set of elements of A'( V )  is linearly independent and a basis. 

To complete the proof we note that 

dim A( V )  = i dim A*( V )  = i ( y )  = 2". I 
r = O  r = O  

The following theorem is an immediate consequence of Theorem 6.2, the 
fact that .d o F* = F* 0 .d, and the definition of exterior multiplication. 

(6.11) Theorem Let V and W be finite-dimensional vector spaces and 
F , :  W + V a linear mapping. Then F*:  T ( V )  + 3 ( W )  takes A ( V )  into 
A( W )  und is a homomorphism of these (exterior) algebras. 

The Exterior Algebra on Manifolds 

It  is evident from what we have seen above that all of these ideas extend 
to alternating tensor fields on a C" manifold M .  We introduce the following 
terminology: 

(6.12) Definition An alternating covariant tensor field of order r on M 
will be called an exterior differential form of degree r (or sometimes simply 
r-form). 

The set K(M) of all such forms is a subspace of P ( M ) .  The following 
two theorems are immediate consequences of what has been done above and 
their proofs will be left to the reader. We let M ,  N be manifolds and 
F :  M + N be a C" mapping. 
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(6.13) Theorem Let A ( M )  denote the vector space over R of all exterior 
dgerential forms. Then for c p ~ k ( M )  and $EA'(M) the formula 
(cp A $ ) p  = c p p  A $ p  deJines an associative product satisfying cp A $ = 

( -  I)'"$ A cp. With this product, A ( M )  is an algebra over R. l f  f E  Cm(M), we 
also have (f') A $ = f ( c p  A $) = cp A (.f$). I f  ul, . . . , o" is a field qfcoframes 
on M (or an open set U of M), then the set { W ' ~ A * - . A C D ' ~ \  

1 I i ,  < i2 < . . . < i, I n} is a basis of A r ( M )  (or A'( U ) ,  respectively). 

(6.14) Theorem If F: M + N is a C" mapping of manifolds, then 
F*: A(N) + A ( M )  i s  an algebra homomorphism. 

We shall call A ( M )  the algebra of diflerential forms or exterior algebra 
on M .  

Exercises 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

By constructing an example show that tensor products are not commu- 
tative and that cp, $ symmetric (respectively alternating) does not imply 
cp @ I(/ is symmetric (respectively, alternating). 
Let C( V )  denote the subspace of Z( V )  consisting of all (P E *T( V )  whose 
constituents are symmetric: C( V )  is the image of Co( V )  0 C1( V )  0 

in T( V )  under the natural injection defined by inclu- 
sion of Y( V )  in .Tr( V ) .  Define an associative multiplication in C( V )  by 
analogy with that for A( V )  and prove analogs of the theorems proved 
for A( V )  where possible. 
SHOW that A ( V )  is isomorphic to the quotient of the algebra Z ( V )  
modulo the ideal .f generated by all elements {u @ v + v @ u I u, v E V}.  
Show that the C" exterior forms of order r on M are exactly the func- 
tions a: X(M) x * . -  x X ( M )  + C " ( M )  which are multilinear, in the 
sense of C " ( M )  modules, and alternating. Find an example of such a 
function which is R-linear but not a tensor field. (Hint:  Use [ X ,  Y] . )  
Let cp,, . . . , cp, be elements of Y* = A'( V). Show that they are linearly 
dependent if and only if cpl A 

Assume (PE Ar( V )  and V E  V.  Define an element i(v)cp of Ar- ' (  V )  by 

0 Zr(  V )  0 

A cpr # 0. 

(i(v)cp)(v,, ...+ vr-1) = q(v9 vI ,  .... vr-1). 

Show that i(v) thus defined determines a linear mapping of A'( V )  into 
A'-'( V )  and that if cp E Ar( V) ,  $ E As( V),  then i(v)(cp A $) = (i(v)Cp)A 
$ + (-  1)'cp A (i(v)$). Extend this definition and these properties to ex- 
terior forms on a manifold (with v replaced by a vector field). 
A Riemannian metric @ on a manifold is often denoted by ds2 in local 
coordinates x l ,  . . . , x" on M with ds2 = xy, j =  gij (x)  dx' dxj. Interpret 
this by the use of tensor multiplication and Theorem 6.3. Show that 
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from this expression for 0 and the formulas dx' = I;= (dx ' /d$)  dy' we 
may derive the formula for change of components of Q, relative to a 
change of local coordinates. 

7 Orientation of Manifolds and the Volume Element 

We shall make one application of differential forms in this paragraph. 
others in subsequent chapters. To do this we shall need the concept of an 
oriented vector space. Let V be a vector space and {el, . . . , en}, {fl, . . . , f,) be 
bases. The bases are said to have the sunv orientution if the determinant of 
the matrix of coefficients expressing one basis in terms of the other is posi- 
tive, that is, if det(aj) > 0, where fi = I ajej ,  i = 1, ..., n. The reader 
should check that this is an equivalence relation on the set of all bases (or 
frames) of V and that there are exactly two equivalence classes. A choice of 
one of these is said to orient V so that we have the following definition: 

(7.1) Definition An oriented vector space is a vector space plus an equi- 
valence class of allowable bases: all those bases with the same orientation as 
a chosen one; they will be called oriented or positively oriented bases or 
frames. 

This concept is related to the choice of a basis R of A"( V ) .  Recall that 
dim A " ( V )  = (!) = 1, so that any nonzero element is a basis. The relation- 
ship to orientation appears as a corollary to the following lemma: 

(7.2) Let R $. 0 he an alternating couariant tensor on V of'order 
n = dim V and let e l ,  . . . , e, he a basis of V.  Then for any set of vectors 
v 1, . . . , v, rvirli vi  = C .I,{ ej , we liuve 

R(vl,  ..., v,) = det(y$2(e1, ..., en). 
Proof' This lemma says that up to a nonvanishing scalar multiple R is 

the determinant of the components of its variables. In particular, if V = v" is 
the space of n-tuples and el, . . . , en is the canonical basis, then R(vl, . . . , v,) 
is proportional to the determinant whose rows are vl, . . . , v,. The proof is a 
consequence of the definition of determinant. Given R and vl, . . . , v,, we use 
the linearity and antisymmetry of R to write 

Lemma 

R(v,,  . . . , v,) = 1 c t j l  ... a:R(ej,, . . ., ejn) 

= C sgn oa?") * .  . az'"'Q(e,, . . . , en) 

= det(rj)R(e,, . . . , en). 

j i .  .... in 

US@. 

The last equality is the standard definition of determinant (G, is the symme- 
tric group on n letters). I 
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(73) Corollary A nonvanishing R E  A"( V )  has the same sign (or opposite 
sign) on two bases if they have the same (respectively, opposite) orientation; 
thus choice of an R # 0 determines an orientation of V. Two  such forms R,, R, 
determine the same orientation if and only if R, = &2,, where 1 is a positive 
real number. 

Proof From the formula of the lemma we see that R has the same sign 
on equivalent bases and opposite sign on inequivalent bases. If Iz > 0, then 
Ai2 has the same sign on any basis as R does, whereas the contrary holds if 
1 < 0. I 

(7.4) Remark Note that if R # 0, then v l r  . . . , v, are linearly independent 
if and only if R(v,, . . . , v,) # 0. Also note that the formula of the lemma can 
be construed as a formula for change of component of R-there is just one 
component since dim A"( V )  = l-when we change from the basis el ,  . . . , e, 
of V to the basis v,. . . . , v,. These statements are immediate consequences of 
the formula in the lemma. 

If V is a Euclidean vector space, that is, has a positive definite inner 
product @(v, w), then in orienting V we may choose an orthonormal basis 
el,  . . . , e, to determine the orientation and choose an n-form R whose value 
on el,  . . . , e, is + 1. If fi = C aiej is another orthonormal basis, then 

R(fl, ..., fn) = det(a!)R(e,, ..., en) = k 1, 

depending on whether f,, . . . , f, is similarly or oppositely oriented. [We have 
used the fact that the determinant of an orthogonal matrix is f 1.1 Thus the 
value of R on any orthonormal basis is k 1 and t2 is uniquely determined up 
to its sign by this property. In this case the form R may be given a geometric 
meaning when n = 2 or 3;  R(vl, v2) or Q(v,, v2, vj) is the area or volume, 
respectively, of the parallelogram or parallelepiped of which the given vec- 
tors are the sides from the origin. This is a standard formula from analytical 
geometry and serves as a geometric motivation for some later applications. 
(See Exercise 2.) 

To extend the concept of orientation to a manifold M one must try to 
orient each of the tangent spaces T,(M) in such a way that orientation of 
nearby tangent spaces agree. We will do this in two ways and then demon- 
strate their equivalence as an application of the ideas of this chapter. 

(75) Definition We shall say that M is orientable if it is possible to define 
a C" n-form R on M which is not zero at any point-in which case M is said 
to be oriented by the choice of 52. 

By virtue of Corollary 7.3 any such R orients each tangent space. Of 
course any form R' = 1R, where 1 > 0, is a C" function would give M the 
same orientation. 
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Thus R" with the form fi = dx' A .. . A dx" is an example; this is known as 
the natural orienration of R" and corresponds to the orientation of the frames 
dldx', . . . , d/dx". If  U c R" is an open set, it is oriented by a, = 1" and we 
say that a diffeomorphism F :  U --f V c R" is orientation preserving if 
F*& = I&, 1 > 0 a C" function on U .  More generally a diffeomorphism 
F :  M I  + M 2  of manifolds oriented by R,,  R 2 ,  respectively, is orientation- 
preserving if F*R2 = l R l ,  where 1 > 0 is a C" function on M .  

A second, perhaps more natural definition of orientability could be given 
as follows: M is orientable if i t  can be covered with coherently oriented 
coordinate neighborhoods { U ,  , cp,), that is, neighborhoods such that if 
U ,  n U ,  # fa, then cp, 0 c p i 1  is orientation-preserving. We shall now see 
that this second definition is equivalent to Definition 7.5. 

(7.6) Theorem A manifold M is orientable ifand only i f  it has a covering 
{ U ,  , cp,). of coherently oriented coordinate neighborhoods. 

Proof First suppose that M is orientable and let R be a nowhere vanish- 
ing n-form that determines the orientation. We choose any covering { U ,  , cp,} 
by coordinate neighborhoods, with local coordinates x,', . . . , x," such that for 
R restricted to U ,  we have the expression in local coordinates 

cpU-'*Ru, = L,(x)dxi ~ . . . ~ d x , "  with 1, > 0. 

We may easily choose coordinates so that the scalar function A,, component 
of R, is positive on U , ,  since replacing coordinates (XI, ..., x") by 
(-XI, . . . , x"), that is, changing the sign of one coordinate, changes the sign 
of 1. An easy computation, using Lemma 7.2 and Remark 7.4, shows that if 
U ,  n U ,  # fa, then on this set the formula for change of component is 

(7.6') 1, det -u = 1,. (i:;) 
Since 1, > 0 and A, > 0, the determinant of the Jacobian is positive, so the 
coordinate neighborhoods we have chosen are coherently oriented. 

Now suppose that M has a covering by coherently oriented coordinate 
neighborhoods {U, ,  cp,}. We use a subordinate partition of unity {A}  to 
construct an n-form R on M which does not vanish at any point. For each 
i = 1,2, . . . we choose a coordinate neighborhood U a i ,  cpai  of the covering 
such that UUi 3 suppJ; these neighborhoods, which we relabel U i ,  c p i ,  cover 
M .  If U i  n U j  # 0, then by assumption the determinant of the Jacobian 
matrix of pi ~1 q,: is positive on U i  n U j .  Define R E A " ( M )  by 

R = 1 f;cpt(dx! A . . . A  dxl) ,  

extending each summand to all of M by defining it to be zero outside the 
closed set suppf;. Letting P E  M be arbitrary, we will show Rp # 0. By the 

i 
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local finiteness of {suppf;.} we may choose a coordinate neighborhood V ,  $ 
of p which is coherently oriented to the U i ,  'pi and intersects only a finite 
number of the sets supp1;., say for i = i l ,  ..., i k .  Let y ' ,  ..., y" be the local 
coordinates in V and use formula (7 .6 ) ,  on each summand to change 
components : 

Now eachJj 2 0 on M and at least one of them is positive at p ;  moreover, 
the Jacobian determinants are all positive. This implies R, # 0 and since p 
was arbitrary, R is never zero on M .  I 

A Riemannian manifold has the special property that the tangent space 
T,(M) at every point p has an inner product. Applying our remarks about 
n-forms on a Euclidean vector space of dimension n, we have the following 
theorem : 

(7.7) Theorem Let M be an orientable Riemannian manifold with Rieman- 
nian metric O. Corresponding to  an orientation of M there i s  a uniquely 
determined n-form Q which gives the orientation and which has the value + 1 on 
every oriented orthonormal frame. 

Proof It is clear from our earlier discussion that at each point p E M ,  R, 
is determined uniquely by the requirement that on any oriented orthonor- 
ma1 basis F1,,  . . ., F,, of T,(M) we haveR,(F,,, . . ., F,,,) = + 1.  Let U ,  cp be 
any coordinate neighborhood with coordinate frames E l ,  . . . , E n .  The func- 
tions g i j ( p )  = Op(Eip, Ejp),  p~ U ,  define the components of 0 relative to 
these local coordinates and are C" by definition. We shall derive an expres- 
sion for the component R(E1, . . . , En) on U in terms of the matrix ( g i j ) .  from 
which it will be apparent that R is a C" n-form. Choose at p~ U any 
oriented, orthonormal basis F , , ,  .. ., F,, and let the n x n matrix (a!) 
denote the components of E l , ,  . . . , En, with respect to this basis: 

n 

Ei,, = 1 U r F k , ,  i = 1, ..., n. 
k =  1 

Then since O(Fk,, Fl , )  = d k , ,  we have 

for 1 I i , j  I n. This may be written as a matrix equation: 

( g i j b ) )  = ' A A ,  

the product of the transpose of A = (a!) with A itself. 
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On the other hand R,,(E,,, .. ., E n p )  = det(a~)Rp(FIp,.  .., Fnp) by 
Lemma 7.2, and R(F,,, . . . , F,,,,) = + I by our definitions. Since det('AA) = 

(det A)' = det(yij), this gives for the component of R in local coordinates 

which tells us that the component, being the square root of a positive C" 
function of ,YE U ,  is itself a C" function on the local coordinate neighbor- 
hood U .  Since U .  cp is arbitrary, R is a C" n-form on M. I 

This form R is called the (natural) aoluriie element of the oriented 
Riemannian manifold. We have just seen that in local coordinates we have 
the following expression for R: 

(7.8) 
where g ( s )  = det(gij(x)). [We use the same notation for g i j  as functions on U 
and on cp(U).] When M = Rfl with the usual coordinates and metric, this 
becomes R = d.u' A .  A r ix" .  In this case, as we remarked earlier, the value 
of R,, on a set of vectors is the volume of the parallelepiped whose edges from 
p are these vectors. I n  particular, on the unit cube with vertex at p and sides 
(1/(7.x', . . , . (7/?xn, 52 has the value + 1. As might be anticipated, the existence 
of the form R on a Riemannian manifold will enable us to define the volume 
of suitable subsets of the manifold and to extend to these manifolds the 
volume integrals defined in Rn in integral calculus. 

cp- I *R = Jg dx' A . . . A ri.u". 

Exercises 

Using the definition of dx'  A . . . A  tlx" on R" from Corollary 6.7, show 
that its value on ?/?s', . . .. C/?s" is indeed + I so that this is R for R" 
with the standard Riemannian metric, as claimed above. 
Prove that the volume of the parallelepiped of R3 whose vertex is at the 
origin and whose sides (from this vertex) are the vectors 
v, = (.u!, .u;, x?), i = I ,  2, 3, is in fact the determinant of the matrix (x;). 
Show that I I  x I I  determinants as functions of the 11-rows v, ,  . . . , v, are 
completely characterized by being alternating ri-tensors on I"' whose 
value on the standard basis is + 1. 
Compute the expression for R on S2 (with the induced metric of R 3 )  in 
terms of the coordinates given by: ( i )  stereographic projection and (ii) 
spherical coordinates (p, 0, cp) with p = I .  

Exterior Differentiation 

Much of this chapter has been devoted to extending the concepts of 
covariant tensors, and of operations on covariant tensors, on a single vector 
space Y to tensors and tensor operations on manifolds. This was done 
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according to a very standardized procedure which consisted in viewing each 
tangent space T , ( M )  as a copy of V and thus extending the tensor or tensor 
operation point-by-point, making suitable restrictions to ensure some sort of 
smooth variation. By using very different ideas we now introduce an impor- 
tant operator d mapping A ( M )  onto itself. It is defined in terms of differen- 
tiation and is known as the exterior derivative; it has no analog on A( V), the 
exterior algebra of a single vector space. 

When U is an open subset of M we shall denote by Ou the restriction of 
an exterior form on M to U ;  of course 0" = i*8, i:  U -+ M being the inclu- 
sion map. When U ,  cp is a coordinate neighborhood with x ' ,  . . . , x" as coor- 
dinate functions on U ,  that is, cp(q) = (x'(q),  . . . , x"(q)), then the differentials 
of these functions dx', . . , , dx" are linearly independent elements of A'( U )  
and constitute a C" field of coframes on U .  It follows that they, with 1, 
generate A ( U )  over Cm(U), or equivalently, Cm(U) = Ao((v) and A ' ( U )  
generate the algebra A( V )  over R. Thus locally every k-form 8 on M has a 
unique representation on U of the form 

0, = ail ... dxil A * .  * A dxik, ail ... i t  E Cm( U ) ,  
i 1 < . . . < i k  

the summation being over all sets of indices such that 1 I i ,  < i2 < 
c ik I n. If we define bil ... i, for all values of the indices so as to change sign 
whenever two indices are permuted-in particular to be zero if two indices 
are equal-and to equal ail ... ik  if i ,  < * c i, , then we also have a unique 
represen tation 

.' ik dxil A .. . A dX", 

the summation being over all values of the indices. Both representations are 
used in practice. We are using dx', . .., dx" to denote the coordinate 
coframes, rather than ol, . . . , o" as in Section 1, in order to emphasize that 
the dx' are differentials of functions on U c M .  This is important in what 
follows. 

(8.1) Theorem Let M be any C" manifold and let A ( M )  be the algebra of 
exterior diflerential forms on M .  Then there exists a unique R-linear map 
d,: A ( M )  -+ A ( M )  such that: 

(1) g j € A o ( M )  = Cm(M), then d , j =  dJ the differential o f f ;  
( 2 )  if O E A ' ( M )  and CTE/\~(M),  then d M ( O A o )  = d,8Ao + 

(-1)'O A d,o; 
( 3 )  d i  = 0. 
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Proof We give the proof in a series of steps. 

(A) We remark that if dM exists and g, f ', . . . ,f' E Cm(M), then (1)-(3) 
imply that for 0 = g df' A .. . A df we must have 

dMO = d g A d f ' A . * * A d f ' .  

Now suppose that M is covered by a single coordinate neighborhood 
U ,  cp with coordinate functions x ' ,  . . . , x". The above remark and linearity 
imply that d ,  must be given by the formula 

(*I d,(C ail ... i, dxii ,, . . . A dXir) = doi, . _ _  i, A dXil A . . ' A dXir, 

where 

dai, ... & 
dai, . . . i ,  = ~ dxj  

dx' 

and the summation in (*) is over 1 I i, < i2 < ... < i, I n. Therefore, if 
defined at all, d ,  is unique in this case. 

Conversely, the d ,  defined by (*) is linear and trivially satisfies ( I )  and 
(3). To check (2) it is enough to consider forms 9 = u dx" A * * A dx i r  and 
o = b dxJ1 A ... A dxj*, the general statement being then a consequence of 
linearity. We have 

d,[(U dXil A . . * A dx") A (b  dx'' A . . . A dx")] 

= d,(ab)(dX" A . . . A dx") A (dx" A . * . A dX") 

= [(d,a)b + a ( d , b ) ] ~  ( d x ' l r \ . . . ~ d x ' ~ ) ~  ( d x j ' ~ - . . ~ d x ' ~ )  

= (d,a A dx'l A . * .  A dx'r) A (b dxj l  A . . .  A dxjs) 

+ ( -  1)*(a dxi*  A A dx'r) A (db A dxj l  A ... A dxjb), 

which completes the proof. The ( -  1)' is due to the fact that 

db A dxil A ... A dx" = ( -  1)' dxi l  A . . .  A dxb A db. 

(B) Now suppose that d,: A ( M )  -, A ( M )  with properties (1)-(3) is 
defined and that U c M is a coordinate neighborhood on M with coordin- 
ate functions x l ,  . . . , x". According to (A), d,, : A ( U )  + A( U )  is uniquely 
defined by (*). We will show that for any 0 E A ( M )  the restriction of d ,  0 to 
U is equal to d,, applied to 8 restricted to U :  

0)" = duo,, ' 

We may suppose that 0 E A ' ( M )  and that 

8" = ail ... i ,  dXi' A . . . A dXir, ail _.. i,E Cm(U). 
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Suppose p is an arbitrary point of U.  Applying Corollary 111.3.5 to an open 
set W ,  P E  W and WE U ,  we may find a neighborhood V of p with V t W 
and C" functions y', . . . , y" and b i ,  ... ,,on M which vanish outside W but are 
identical to x ' ,  . . . , x", respectively, on V .  Define D E K ( M )  by 

D = Chi, . . . , , d y i 1 ~ . . . r \ d y i r .  

Then D is an r-form on M which vanishes outside W and is identical to 8 on 
V .  Now let g be a C" function on M which has the value + 1 at p and is zero 
outside V .  The r-form g ( 8  - D )  vanishes everywhere on M as does 
dg A (8 - D). Therefore, using (A), 

g dM 8 = g d ,  d = g 1 hi, ... i, A dyi '  A . . . A dy'.. 

On V we have 

1 da,,  ... i , ~  dy" A . . . A  dyir  = da,, ... ,, A d x i l  A . . . A  dxir  

so that at the point p ,  where g ( p )  = 1, d, 8 = d, 8,. Since p is arbitrary, this 
holds throughout U .  

(C) If d,: A ( M )  + A(A4) satisfying (1)-(3) exists, it is unique. Indeed, 
let { U , ,  cp,} be any covering of M by coordinate neighborhoods; each durn 
exists by (A); and for any 8 E A ( M )  we have (d,  8),# = dua8ua for any U ,  by 
(B). Since every PE M lies in a neighborhood U,, this would determine d, 
completely. 

On the other hand, we may use this formula to define d,. To do so we 
must verify that if p E U ,  n U ,  , then d, 8 is uniquely determined at p .  This 
essentially repeats the argument above: Let U = U ,  n U,; applying (A) and 
(B) to U ,  an open subset and coordinate neighborhood with coordinate map 
qs cut down to U ,  we have 

(dUmO,JU = du% = (dU#8"#)U. 

Therefore (d,M),, is determined on every U ,  in such a manner that 
(d, o ) ,  = (d ,  o)u, on points common to U ,  and U,. This determines d, . 

Because (l)-(3) hold on each U ,  and the other operations of exterior 
algebra commute with restriction, that is, (8 A D ) ~  = 8, A cU, and so on, dM 
has the required properties as an operator on A ( M ) .  This completes the 
proof. I 

Since d, is uniquely defined for every C" manifold M ,  we can drop the 
subscript M and use d to denote all of these operators. We know from the 
above proof that d commutes with restriction of differential forms to coor- 
dinate neighborhoods. It is important to know how it behaves relative to a 
C" mapping F :  M + N .  Any such mapping, as we know, induces a homo- 
morphism F*: A ( N )  + A ( M ) .  The following theorem gives the relation of 
F* and d. 
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(8.2) Theorem F* and d commute, that is, F* 0 d = d 0 F*. 
Prmf We know that both F* and d are R-linear and that the equality 

F*(dcp) = d(F*cp) holds on M if it holds locally. More precisely, by virtue of 
the facts concerning d determined above we see that the theorem will hold if 
we can establish it for any pairs Y ,  J-/, U ,  t? of coordinate neighborhoods on 
M, N ,  respectively, such that F ( Y )  c U.  Let m = dim M and n = dim N 
and xi, ..., x" and )ti, ..., y" be the coordinate functions on Y ,  U ,  respec- 
tively, with JJ = $(XI,. . . , x m ) , j  = 1,. . . , n, giving the map F in local coor- 
dinates. Then it is enough to establish F* 0 d = d "  F* on forms of the 
following type: 

cp = U(x) dxi '  A .  ' * A d X i k ,  

any other forms being the sum of such. We proceed by induction on the 
degree of the forms. For forms u(x)  of degree zero, that is, C" functions, we 
have 

since 

F * ( ~ u ) ( X , )  = du(F,X, )  = (F,X, )u  = X,(a 0 F )  = X,(F*a) = ~ ( F * ~ ) ( X , ) .  

(NOTP:  By definition, F*u = u J F.)  
Suppose the theorem to be true for all forms ofdegree less than k and let 

cp be a k-form of the type above. Let cp = u dx" and cp2 = dxi2  A .  * * A dxik so 
that cp = cp, A cp2 with both cp, and cpz of degree less than k ;  moreover since 
d2  = 0, we have dcp, = 0. Thus 

F*(da) = d(F*u), 

An Application to Frobenius' Theorem 

The algebra of exterior differential forms A(M) on a C" manifold M ,  
with the operator d just defined, is very important in the application of 
calculus to manifolds. Forms are involved in integration on manifolds 
(especially in extending Gauss', Stokes' and Green's theorems); in the alge- 
braic topology of the manifold via the theorems of de Rham and Hodge; and 
in the study of partial differential equations. We will touch on the first two 
topics later. As to the differential equations aspect, we will show next that 
the essential data and hypothesis of Frobenius' theorem can be stated in 
terms of d and A ( M ) .  

On a vector space Y of dimension n, a k-dimensional subspace D may be 
determined in either of two equivalent ways: ( i )  by giving a basis e,, . . . , ek of 
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D or (ii) by giving n - k linearly independent elements of Y*, say 
cpk+ I ,  . . . , cp" which are zero on D. In fact we may extend el, . . . , ek to a basis 
e, ,  . . . , en of Y so that cpk+', . . . , cp" is part of a dual basis cp', . . . , cp" of P. 

Similarly, if A is a C" distribution of dimension k on M, an n-manifold, 
then locally, say in a coordinate neighborhood V ,  $, we may suppose A is 
defined by n - k linearly independent l-forms cpk+', . . . , cp". We may restate 
the condition that A be involutive-hence Frobenius' theorem-as follows: 

(8.3) Theorem Let A be a C" distribution of dimension k on M ,  
dim M = n. Then A is involutive ifand only in a neighborhood V of each p E M 
there exist n - k linearly independent one-forms cpk+ ', cpk+', . . . , cp" which 
vanish on A and satisfy the condition 

dcp' = C O i ~ c p ' ,  
n 

r = k + 1, ..., n, 
I = k + l  

for suitable l-forms 4. 
Proof This may be considered a sort of dual statement to our earlier 

condition on A in terms of the existence of a local basis X , ,  . . . , Xk at each 
point. (Just as in that case, we may state the conditions in a fashion which 
does not depend on local bases. This will be done below (8.7), with proof left 
to the exercises.) 

Suppose a distribution A is given. Then in a neighborhood V of each 
point a local basis X,, . . . , Xk of A can be completed to a field of frames 
X,, . . ., Xk, . . ., X , .  If cp',. . ., cpk, cpk+', . .., cp" is the uniquely determined 
dual field of coframes, then cpk+', . . . , cp" vanish on X,, . . . , xk and hence on 
A. The distribution A is involutive by Definition IV.8.2 if and only if in the 
expressions [ X i ,  X i ]  = I;= c ! ~ X [ ,  giving [Xi, X j ]  as linear combinations 
of the basis, we have cfj = 0 for 1 I i ,  j I k and k + 1 I 1 I n. 

(8.4) Lemma Let W E  A ' ( M )  and X ,  Y E  X(M) .  Then we have 

dW(X, Y )  = XW( Y )  - Y w ( X )  - w ( [ X ,  Y ] ) .  

Let us assume the lemma and proceed with the proof. We compute dq', 
using the lemma and recalling that cpi(Xj) is constant for 1 I i , j  I n. We 
have then, 

n 

dq ' (X i ,  X j )  = - q ' ( [ X i ,  X j ] )  = - C ~ l j ~ p ' ( X 1 )  = - ~ i j  
I =  1 

for 1 I i,,j, r s n. On the other hand 
n 

d q ' =  b:,cp"r\cpl, 1 5  r I n, 
s.  I 
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where hi, are uniquely determined if we assume b:, = - b;, . Hence 

dqr(Xi  9 X j )  = f 1 bL[cpYXi)cp'(Xj) - c ~ ' ( X i ) c ~ ~ ( X j ) l  
s, I 

= L(br. - b!.) = by. . 
2 I J  J l  V 

From this we have bij = -cij and so the system is involutive if and only 
if for each r > k 

dcp' = b!,cp' + fh~,cpj} A cp', 

that is, the terms involving bij with 1 I i, j I k and r > k vanish. Taking the 
terms in { I 

Proof of Lemma 8.4 It is enough to prove that it is true locally, say in a 
coordinate neighborhood of each point. In any such neighborhood with 
coordinates XI, . . . , x", o = a, dx' and it is easy to see that the equation 
of the lemma holds for all w if it holds for every w of the formfdg, wheref; g 
are C" functions on the neighborhood. Suppose, then, that o = f d g  and let 
X ,  Y be C"-vector fields. Then, evaluating both sides of the equation of the 
lemma separately, we obtain 

I = k + l  " i k  i = l  j = k + l  

as 0; we have completed the proof except for Lemma 8.4. 

and 

after cancellation. This proves the lemma. (See Exercise 3 for a generaliza- 
tion.) I 

We can state Theorem 8.3 in a more elegant way if we introduce the 
concept of an ideal of A ( M ) .  

(8.5) 
that whenever cp E .f and 0 E A ( M ) ,  then cp A 0 E .f. 

(8.6) Example Let +P be a subspace of A ' ( M ) ,  that is, a collection of 
one-forms closed under addition and multiplication by real numbers. Then 
the set A ( M )  A j = (0 A cplq E 2) is an ideal, the ideal generated by 9. 

Definition An ideal of A ( M )  is a subspace .f which has the property 
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Now suppose A is a distribution on M and suppose that j is the collec- 
tion of 1-forms cp on M which vanish on A, that is, for each  EM, 
cp,(X,) = 0 for all X ,  E A,. 9 is a subspace; in fact, i f f€  C"(M) and cp E 9, 
then .fcp E $. We have: 

(8.7) A i s  in involution i f  and only ij d$ = {dcp 1 cp E 9} is  in the ideal gen- 
erated by $. 

The proof is left to the exercises. 

Exercises 

These exercises involve differential forms on a manifold M .  A differential 
form cp on M is closed if dcp = 0 and exact if cp = d6 for some form 6 on M .  

1. Show that the closed forms are a subalgebra (over R )  of A ( M ) ,  which 
contains the collection of exact forms as an ideal. If F :  M N is C", 
then show that closed forms are mapped to closed forms and exact forms 
to exact forms by F*. 

2. Let M = R3 and determine which of the following are closed and which 
are exact: 
(a) cp = y z  dx + xz  dy  + x y  dz;  
(b) cp = x dx + xzyz  dy  + y z  dz ;  
(C) 0 = 2Xy2 dx A dy  + z dy  A dz. 

3. Show that the following generalization of Lemma 8.4 is true for every 
cp E A r ( M ) :  

r + l  

dV(X1,  ..., X , + , )  = C (- l y - ' X i q ( X l ,  ..., X i ,  ..., X , ,  1 )  
i =  1 

+ 1 ( -  l ) '+'cp([Xi ,  X,] ,  X I ,  . . . , zi , . . . )  x j  , . . ., x , ,  1 )  
i i j  

(where the caret means that the term is omitted). 
Let X E X ( M )  and define i,: A r ( M )  -+ R-l(M) by 4. 

i , q ( X , ,  . .., xr-  1 )  = cp(X, X I ,  .. * ,  xr-  1). 

(Compare Exercise 6.6 for the vector space analog.) Show that i, is not 
only R-linear, but C"(M)-linear and that the operator L, = i,d + di, is 
an R-linear mapping of A(M) to A ( M )  with the following properties: 
(i) L , ( A r ( M ) )  c A r ( M ) ;  (ii) if cp E A r ( M )  and $ E A s ( M ) ,  then 
L,(cp A $) = (L,cp)$ + cp A L , $ ;  and (iii) L x d  = d L x .  

5. Show that there can exist at most one R-linear operator L, on A ( M )  
with properties (i) and (ii) of Exercise 4 and the following property: If 
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j ' ~  C' (M). then L,  .f = Xfand L,  df= d ( X f ) .  From this deduce that 
the operator L ,  of Exercise 5 is uniquely determined. 

6. Prove (8.7). 

Notes 

A translation of Riemann's famous Inaugural Address, given at Gottingen on the occasion 
of his being named a Privat dozent (an instructor whose fees depended on how many students 
came to his lectures) may be found in the book of Spivak [2], which particularly valuable 
source material for those interested in further reading on Riemannian geometry. [The. entire 
second half o f  his book is built around an explanation of the (often obscure) meaning of 
Riemann's lecture. This material is also relevant to Chapters VII and VlII below.] 

The author does not know when partitions of unity were first introduced. They are some- 
what out of place in this chapter, but were placed here since this is the first point at which they 
were needed. Not all of the applications. as is seen, have to d o  with tensors. The imbedding 
theorem given here is a very weak version of the Whitney imbedding theorem for which proofs 
of stronger versions can be found in several of the references, for example, Auslander and 
Mackenzie [ I ]  and Sternberg [ I ] .  These proofs are quite within the reach of the reader at this 
point and would form a valuable supplement to the text. especially for those interested in 
differential topology. The same is true of various approximation theorems (especially those of 
Munkres [ 1. Sections 3 and 41, which will be very useful for readers who wish to pursue further 
the consequences of differentiable structure alone (without further geometric structure such as  a 
Riemannian metric. Lie group structure, and so forth). This is basic to modern differentiable 
topology (see Milnor [2] for example). 

Readers who desire a more complete and general approach to tensors and tensor fields will 
find i t  in many of the texts listed in the references. Both Kobayashi and Nomizu [l]  and 
Sternberg [ I ]  begin with this subject and could be studied with profit at this point. 

Exterior differential forms were first used extensively by Elie Cartan whose work has 
enormously inlluenced all modern differential geometry and Lie group theory. The calculus of 
A ( M ) ,  the exterior algebra on M, is his creation and he made many applications of it, too 
numerous to discuss here. Some idea of his contributions may be found in the article in his 
memory by Chern and Chevalley [I] .  



VI INTEGRATION ON MANIFOLDS 

The chapter begins with a brief review (without proofs) of properties of multiple integrals 
over domains of R". In the next section this theory is extended to C" manifolds. The extension 
to manifolds involves two steps: first, we define integrals over the entire manifold M of suitable 
exterior n-forms and second, for those M which have a predetermined volume element (for 
example, Riemannian manifolds), integrals of functions over domains are defined. All the 
standard properties of integrals follow readily from the corresponding facts in the Euclidean 
case. As an illustration of the use of integration on manifolds an application is made to compact 
Lie groups. It is shown that by averaging a left-invariant Riemannian metric on a compact 
group one may obtain a bi-invariant Riemannian metric. With the same techniquesdue to 
Weyl-it is shown that any representation of a compact group as a matrix group acting on a 
vector space leaves invariant some inner product on that vector space, from which it follows 
that any invariant subspace has a complementary invariant subspace. 

Following this, in Section 4, the concept of manifold with boundary is introduced. This 
generalizes the line interval, unit disk, and similar simple manifold-like objects needed if one is 
to discuss "pasting" together of manifolds-as in Chapter I-or differentiable homotopy. 
However, our immediate interest is in a statement and proof of Stokes's theorem, using mani- 
folds with boundary as domains of integration. This theorem, a generalization of the fundamen- 
tal theorem of calculus, embodies Green's theorem on the plane, the divergence theorem, and 
Stokes's theorem of advanced calculus in a unified form. If M is a manifold with boundary dM 
and w an n - 1 form on M, dim M = n, then the theorem asserts the equality of the integral of 
o over dM (with suitable orienttation) and dw over M. This theorem, proved in Section 5, 
concludes our development of the basic techniques of integration on manifolds. 

226 
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The remainder of the chapter is devoted to various applications of the techniques accu- 
mulated thus far to the (algebraic) topology of manifolds. In order to introduce these ideas the 
concept of homotopy or deformation of mappings is introduced. The simplest case is the 
deformation over a manifold M of a loop based at bE M, that is, a continuous image of 
0 I t I 1 with both endpoints at b. In general, not all loops can be deformed to one another on 
M (consider M = T 2 ,  for example). The classes of those which can be deformed to one another, 
with a suitable product, form a group-the Poincare fundamental group of M. Although quite 
diverse in general, these groups are isomorphic for two homeomorphic manifolds, furnishing 
the simplest example of an algebraic object which measures topological invariants of a space, 

Following this, the de Rham groups are defined. They are the groups of closed k-forms 
modulo exact k-forms, and are used here, together with integration theory, to prove some 
classical theorems of topology (in the spirit of Milnor [2]). In particular, a proof is given of the 
Brouwer fixed point theorem and of the nonexistence of' nowhere vanishing vector fields on 
even-dimensional spheres. Finally these techniques are once more applied to compact Lie 
groups to obtain-by way of example only-a few interesting scraps of information about their 
topology. 

1 Integration in R" Domains of Integration 

As might be expected, we begin with integration in Euclidean space and 
carry over to manifolds the basic ideas developed there, just as we have done 
for differential calculus in earlier chapters. The basic facts that we will need 
concerning integrals on various subsets of R" will be assumed known. We 
shall enumerate them here, and they may be found, proved in detail, in the 
references, for example, Apostol [l] or Spivak [l]. We need only the 
Riemann integral. However, we must admit domains of integration and 
functions which are slightly more complicated than those found in elemen- 
tary calculus. This is natural since a diffeomorphism, or change of coordin- 
ates, badly distorts even a simple region such as a cube. First, we proceed to 
define the domains of integration which we allow. 

We shall say that a subset A of R" has (n-dimensional) Jordan content 
zero, c ( A )  = 0, if for any E > 0, there exists a Jinite collection of cubes 
C1, .. ., C, which cover A and the sum of whose volumes is less than E,  

C;=, vol Ci < E .  If A satisfies a similar condition with the less rigid require- 
ment that for E > 0 there exists a counfffble set of cubes covering A with 

vol Ci -= E, then we say that A has Lebesgue measure zero, mfA)  = 0. 
These are not equivalent concepts. It is easy to see, for example, that the 
subset of rational numbers in R has measure zero but not content zero. 
However, cfa) = 0 implies m( A )  = 0 and, if A is compact, the converse also 
holds. More generally m ( A )  = 0 if and only if A is a countable union of sets 
of content zero. 

(1.1) Definition A bounded subset D of R" is said to be a domain of 
i~ t eg r f f~~on  if its boundary Bd D has content zero. A function f on R" is said 
to be u~mosf confi~uous if the set of points at which it fails to be continuous 
has content zero. 
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The most obvious example of a domain of integration is a cube, or an 
n-ball. The usual domains of integration in R2 or R 3 ,  bounded by piecewise 
differentiable curves or surfaces, are also examples. 

(1.2) Theorem Let D be a domain of integration in R" and let f be a reul- 
valued function on D. Suppose that f is bounded and almost continuous on D. 
Then the Riemann integral j D  f dv exists. 

We shall refer to a function with these properties as integrable on D. To 
say that the integral exists means, of course, that it is a limit of approximat- 
ing sums in the usual sense. The proof is essentially the same as that which is 
at least outlined in every calculus book. It is a very useful exercise to carry it 
out in detail and then to verify the following properties which are relatively 
easy consequences of the reasoning used in proving existence. 

Basic Properties of the Riemann Integral 

Let D, D1, and D ,  denote domains of integration in R" and j ;  g bounded 
almost continuous functions on R". It is not too difficult to show that 6, the 
closure of D, and 8, the interior of D, are also domains of integration as are 
D ,  v D , ,  D1 n D,, and D ,  - D,. We have the following standard 
properties: 

I f  c(D) = 0, then f du  = 0. 
(1.3) s, 

(1.5) jD(af + by) du = a \.f d o  + b 1 g dv .for all a, b E R. 

Suppose f 2 0 on D and c(D) # 0. Then 

holds if and only iff = 0 at every point at which it is continuous. 

f du 2 0. Equality 
JD 

(1.6) 

Recall that the characteristic function k ,  of a subset A of a space X is 
defined to be identically equal to + 1 on A and 0 outside A, that is, on the 
complement of A.  Therefore k ,  is bounded and its discontinuities are exactly 
the set of boundary points of A, Bd A .  In particular. if D is a domain of 
integration, we have c(Bd D )  = 0 so that kD is integrable. If D' is a domain of 
integration which contains D, then jD ,  kD f du = j,, f du. Thus if.f on R" is 
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bounded, has compact support, and is almost continuous, then we 'define 
JRn f t f v  unambiguously by SRn f dv = ID f d v ,  using any domain of integra- 
tion D such that D =I suppJ: 

(1.7) Definition 
volume of D,  vol D, by 

Let D be any domain of integration. Then we define the 

vol D = 5 kD dv = ' k, dv. 
R" J, 

The following property is an easy consequence of the definitions: 

inff vol D I f d v  I supf vol D. 
(1'8) ( D J D '  ( D 

When D is connected undf  is continuous, we obtain the mean value property 

f d u  = { ( u )  VOI D 

for some point a E D.  

The following theorem, a special case of Fubini's theorem, is more 
difficult to prove than the above properties, although we need only the 
simplified version below. It justifies the usual evaluation of multiple integrals 
by repeated single integrations of functions of one variable (iterated 
integrals). 

(1.9) Theorem 
D = {XE R": a' I xi I b', i = 1, ..., n} ,  then 

l f f  is a continuous junction on the domain of integration 

.@ . b '  1 f d v  = 1 . .. 1 f ( x ' ,  ..., x")dx'  . . . d x " ,  
' D  *a" .UI 

the expression on the right denoting repeated single integrations. 

We shall need one further theorem from advanced calculus, the principle 
which allows us to change the variable, or variables, of integration. In the 
case of a function of one variable this is the standard and indispensable 
technique of substifurion, which allows us to write 

where y = g(x), a I x I b, with c = g(a) and d = y(b). Unless we assume 
d}j/d.x > 0, we encounter problems in this formula. If  this condition is 
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satisfied, then y = g(x) may be considered as a change of variable, or as a 
diffeomorphism of [a, b] onto [c, 4. The general multiple-integral statement 
is less familiar in elementary calculus, although it occurs, for example, in the 
passage from Cartesian to polar, cylindrical, or spherical coordinates. It is 
proved in most advanced calculus courses for n = 2 or 3 at least, so we will 
assume it without proof. This is the most difficult of the standard theorems 
of integral calculus which we will expect of the reader. It will be essential to 
us in extending Riemann integration to manifolds, since we clearly must 
know the effect of change of coordinates on the value of an integral. 

Let us denote by G: U -+ U' a diffeomorphism of U c R" onto U' c R" 
and by AG the determinant of its Jacobian. We suppose G to be given by 
coordinate functions y' = y'(x), i = 1, . . . , n. Then AG = det(dyi/dxJ). A 
function f '  on U' determines a function f = f '  0 G on U and we have the 
following relation of their integrals. 

(1.10) Theorem (Change of Variables) Suppose D c U and 
D' = G ( D )  c U' are domains of integration and that f' is integrable on D'. Let 
f = f ' o  G, that is,f(xl, ..., x") =f'(gl(x), . . . , g " (  x)). Thenf i s  integrableon 
D and 

p Y )  do' = p ( G c X ) )  I AG I do = f ( x )  1 AG 1 do. I, 
(1.11) Example Let 

D = {p, 8, v)10 < a I p I b, 0 I 0 I ~~2,1114 I cp 5 R / 2 )  

and D' be the first quadrant region of xyz-space between the spheres with 
center at the origin and radii a and b, and outside the inverted cone 
z2 = x2 + y 2  (Fig. VI.1). Let G be given by the coordinate functions 

x = p sin cp cos 8, y = p sin cp sin 8, z = p cos cp. 

(a) 

Figure VI.1 
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Given f ’(x, y ,  z )  = x2 + y’ + z’, then f = f ’  0 G is 
f ( p ,  8, cp) = f ’ ( p  sin cp cos 8, p sin cp sin 8, p cos cp) = p’ 

and A = p2 sin cp so that 

(x’ + y2 + z’) d x  d y  dz = p’ sin cp 1 dp d q  d8. 

If we are to extend these ideas to C” manifolds, we need to know what 
happens to domains of integration under diffeomorphisms. A cube in R”, for 
example, is such a domain since its boundary-’the faces-have zero (n- 
dimensional) content. Does it remain a domain of integration after a diffeo- 
morphism? If we recall that there are continuous images of an interval, 
0 5 t I I ,  which fill a square, this question seems less trivial; it is possible 
that the image of the boundary of a cube could become very large under a 
differentiable mapping. The following lemma shows that this does not 
happen. Recall that a set is relatively compact if its closure is compact. 

(1.12) Lemma Let A be u relatively compuct subset of R“ of content zero 
and let F :  A + R”, n 5 i n  be a C’ mapping. Then F ( A )  has content zero. 

Proof’ By definition F is C’ on an open set U 3 A and we may choose 
an open set V 3 A such that ‘v is a compact subset of U .  Let K = 

sup,, 13fi/?.xjl, a bound of the derivatives on T7 of the coordinate functions 
of the map F. Choose 6,, 0 < 6, I 1, so that every cube of side 6, whose 
center is in A lies inside V. By the mean value theorem (Theorem 11.2.2), 
we have 

IIW - fwll .= (nm)”’Kllx - all 

for any x in a cube of side 6, and center a E A. I f  6 ,  > 6 > 0, then a cube C of 
side 6 and center L I E  A must map into a cube C‘ of center F(a) and side 
length less than or equal to (nm)”’Kd. Thus we see that F(C) lies in a cube 
C’ whose volume satisfies 

vol C’ I ((nm)”’Kd)“ = (nm)m’2Km6m-”8” I k vol C, 

where k = K”(nin)miZ is independent of U E  A. (We have used 6 < 6, I 1 
and vol C = 6“). From this it follows at  once that given any E > 0, we may 
cover F ( A )  with a finite number of cubes C;, . . . , CI whose total volume is 
less than c.  We need only cover A with cubes C , ,  . . . , C, whose volume is less 
than Elk and whose side is less than 6,. This shows that the content of F ( A )  is 
zero. I 

Using this lemma it is easy to extend the notions ofzero content and zero 
measure to subsets of any C“ manifold M of dimension n. 
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(1.13) Definition A relatively compact subset A c M is said to have con- 
tent zero, c ( A )  = 0, if it is the union of a finite number of subsets A = A ,  u 
. .*  u A, each of which lies in a coordinate neighborhood U j ,  qj  such that 
c('pj( A i ) )  = 0 in R", i = 1, . . . , s. An arbitrary subset B c M is said to have 
measure zero, m(B) = 0, if B is the union of a countable collection of subsets 
B = UiZ Bi such that each Bi has content zero. 

In the light of this definition we may state, as a corollary to the lemma, 
the following facts about sets on a manifold: 

(1.14) Corollary If A c M has content (measure) zero and F :  M -+ N is a 
C' map with dim M I dim N ,  then F ( A )  has constant (measure) zero. I n  partic- 
ular, this holds if F is a difleomorphism. 

Proof This is an obvious application of Lemma 1.12 to Definition 1.13. 

We define domain of integration in an arbitrary manifold precisely as we 
did for R": D c M is a domain of integration if D is relatively compact and 
the boundary of D has content zero, c(Bd D) = 0. [Note that in R" "rela- 
tively compact " is equivalent to "bounded."] We have analogous properties 
to those of domains of integration in R". 

(1.15) Theorem If D is a domain of integration in M ,  so are its closure and 
i t s  interior. Finite unions and intersections of domains of integrirtion are do- 
muins ofintegration and the image of u domuin ofintegrurion undrr a rliffeomor- 
phism is a domain of' integration. 

Proof These are all immediate consequences of Definition 1.13 and of 
the corresponding statements for subsets of content zero and domains of 
integration in R". For the last statement we must note that a diffeomorphism 

I 

takes boundary points to boundary points. I 

Exercises 

Prove that a set of measure zero cannot contain any open set. 
Prove Theorem 1.2 for a general domain of integration in R2 assuming 
that the integrand f is: (a) continuous on D, and then (b) continuous 
except for a set of content zero. 
Prove that finite unions and intersections of domains of integration are 
domains of integration. 
I f  D is a domain of integration show that D, its closure, and 8, its 
interior, are domains of integration and that if.f is integrable on D, then 

f du = 1 f d u  = ). f d u .  
' D  ' I 5  
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5. 
6. 

7. 

8. 
9. 

2 

Verify properties (~3)-(1.6) of the Riemann integral. 
Let D be a domain of integration in R" and a < t < ban open interval of 
R. Suppose.f'(.x, t )  is continuous on D x (u, b) and is of class C' in t .  
Then prove that g(?) = fn j'(.x, t )  do is of class C' on ( a h )  and 

Supposejl y are both integrable on a domain of integration D and that 
.f 2 g. Then show that fD ,fdc 2 fD g ~ L L  

Prove the change of variables theorem for a linear mapping G :  R2 + RZ. 
If  f.f;,(.x)) is a sequence of continuous functions on D (a domain of 
integration in R") converging uniformly to g(x), show that 
Iirn".., I JD fn(.x) (fc = JD g(x) L ~ V .  

~ g / f ~ f  = f D  (iy./i?t) du. 

A Generalization to Manifolds 

In this section we carry over to arbitrary oriented manifolds the concept 
of integral reviewed in the previous section. We first define the integral of an 
tr-form (u on the oriented manifold M of dimension n, denoting it by fM w. It 
is only when we specialize to a more restricted class of manifolds, say 
Riemannian manifolds, that we are able to give meaning to the integral of a 
f'unction on M over a domain D of integration in M and thus obtain a 
complete generalization of integrals on R". This is not surprising since 
definition of the Riemann integral in R" makes important use of uohime, 
a metric concept, which is not defined on a general differentiable manifold. 

Suppose that M is an oriented manifold and dim M = n. By 
Definition V.7.5 this means that there is a C" n-form on M which is not 
zero at any point of M .  It is a basis of k ( M ) ,  any other n-form Q is given by 
c u  = fa, wheref'is a function on M .  Since R is C", (u will have the differen- 
tiability class ofj: We use this to make the fo~lowing de~n~tions.  

(2.1) ~efinition A functionf'on M is ~ ~ ? t e g r u ~ ~ e  if it is bounded, has com- 
pact support (vanishes outside a compact set), and is almost continuous 
(that is, continuous except possibly on a set of content zero). An n-form w on 
M .  in the very general sense of a function assigning to each p E Man element 
f o p  of I\"( ~ ~ ( M ) ) ,  is said to be ~ n t e ~ r u ~ ~ e  if w = f i r ,  wherefis an integrable 
function. [Note: We are not requiring w to be C" or even C'.] 

We remark that the definition of integrable n-form does not depend on 
the particular R we use. Any other fi giving the orientation is of the form 
d = gR, where g is a positiue C' function on M ;  thusfa = . f / g f i .  Iffhas 
compact support, is bounded, and is almost continuous, then the same will 
be true of.f/g. We will denote by ,&(M) the set of integrable n-forms. Like 
~ ~ ~ M ) ,  it is a vector space over R ;  moreover, it is closed under muttiplica- 
tion by continuous or integrable functions on M .  



234 V I  I N T E G R A T I O N  O N  M A N I F O L D S  

We shall refer to a subset Q c M as a cube of M if it lies in the domain of 
an associated, oriented, coordinate neighborhood U ,  cp and cp(Q) = C = 

{XE R" 10 I xi I 1, i = 1, . . . , n}, the unit cube of R". Thus a cube is a com- 
pact set and is coordinatized in a definite way. We first define the integral 
over M of any w E A\no(M) whose support lies interior to some cube Q. Let 
U ,  cp be the coordinate neighborhood associated with Q and suppose 

cp - ' *(w ) = f (x) dx  ' A . . * A dx" 

represents w in the local coordinates. Then fis bounded and almost contin- 
uous on C so that Jc f du is defined. We define 

s,w = jcfdu. 

We must show that the value of this integral is independent of the partic- 
ular cube we have used. Suppose Q' is another cube containing supp w and 
let U', cp' be the associated coordinate neighborhood. We denote the local 
coordinates for this neighborhood by y ' ,  . . , , y" and suppose that 

cp'-'*(w) = f ' ( y ) d y ' ~ . . . ~ d y "  

represents w on cp'( U'). According to the rules for change of components of 
an n-form, we have 

Ax)  = f ' ( G ( 4 )  
where G = cp' 0 cp- ' : cp( U n U ' )  + cp'( U n U')  and AG is the determinant of 
the Jacobian matrix of this diffeomorphism; AG is positive since these are 
oriented neighborhoods (see Section V.7). On the other hand, since Q, Q are 
domains of integration, so are Q n Q' and its images D = cp(Q n Q')  and 
D' = cp'(Q n Q') which lie in the unit cube of the x-coordinate space and the 
y-coordinate space, respectively. Moreover, supp w c Q n Q', so 
suppfc  D and suppf' c D'. Therefore 

f ( x )  du = f ( x )  do and lc f'(y) do' = I D , f ' ( y )  du'. I, I, 
According to the change of variable theorem 1.10, and since D' = G(C), we 
have 

However, AG > 0 so that I AG I = AG and the integral on the right must 
then be equal to I D  f ( x )  du by the above formula for change of components. 
This shows that SM w is uniquely determined for every integrable o which 
vanishes outside of some cube. We note, in particular, the following linearity 
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property: I f o , ,  w2 vanish outside a cube Q and a , ,  a2 are real numbers, then 

a101 + a2w2 = a1 j M W l  + a2 s,%. 
j M  

Now suppose that w is an arbitrary integrable n-form. We will define 
JM o in this case by representing as the sum of a finite number of forms of 
the special type above and adding their integrals to obtain JM w. More 
precisely, let K = supp w and choose a finite covering of K by the interiors 
dl, . . . , OS of cubes Q1, . . . , Q, associated with coordinate neighborhoods 
U , ,  cpl, . . ., Us, cps, respectively. The open sets M - K ,  dl, . . ., &, cover M ,  
and by taking a suitable partition of unity {h} subordinate to this covering 
we may assume that forj  > s,& = 0 on K ,  and for j  = 1, . . . , s, supp1;. c O j ,  
the interior of the cube Q j .  Since c& = 1, we have then 

0 = f 1 o  + * * -  +Lo 
and we define 

J',W = p w  + ... + J;Lw.  

Each of the integrals on the right is defined since the integrand has its 
support on the interior Oj  of the cube Q. 

The value of this integral does not depend on the choice of covering or 
the functions {J} .  Let Q; ,  . . . , Q: be another set of cubes whose interiors 
cover K and choose again a partition of unity { g k }  such that supp gk c &;, 

and for fixed k, 1 I k I r, we have supphgk c Q; . Therefore 
k = 1, ..., r and g k  = 0 On K for k > r. Then xi,, x i  h x k  g k  1 

FMgku = f l g k o  + " '  + 1 fsgkw s, ' M  

by the linearity of the integral with respect to forms with support in the same 
cube. Therefore, if we compute J,,, w using this second covering by cubes, we 
have 

However, by a symmetric argument the sum on the right is also equal to 
I;= J,,, ji w, hence both choices assign the same value to JM w. This com- 
pletes the definition of the integral over M of integrable n-forms, we now list 
some of its properties. 

(2.2) Theorem The process just defined assigns to each integrable n-form w 
on an oriented manifold M a real number SM w. W e  have the following 
properties: 
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( i )  If - M denotes the same underlying manifold with opposite orienta- 

(ii) The mapping w + jM w is an R-linear mapping on A\"o(M), that is: 
tion, then j - M  w = -IM w. 

a, a2 E R and w l r  w2 E A\"o(M). 
If Q is a nowhere vanishing n-form giving the Orientation of M and 

w = gR with g 2 0, then jM gQ 2 0 and equality holds ifand only i fg = 0 
wherever it is continuous. 

(iv) If F :  M ,  + M 2  is a difleomorphism and u € A \ " o ( M 2 ) ,  then 

(iii) 

l M , F * w  = 

with sign depending on whether F preserves or reverses orientation. 

Proof Because of the definition of the integral, we need to verify these 
properties only for forms w whose support lies in a cube Q associated with 
the oriented coordinate neighborhood U ,  cp and coordinates x', . . . , x". 
Then by definition, j,,, w = jc f ( x )  do, where cp- ' * ( w )  = f ' ( x )  dx' A 

* . * A  dx". If orientation of M is reversed, then the map cp assigning coordin- 
ates in U must be replaced by a map cp' such that the Jacobian of cp' 0 cp-'  
has negative determinant, for example, by interchanging the first and second 
variables. This changes the sign off since f is the component of w in the local 
coordinates, hence it changes the sign of the integral. Property (ii) was 
previously noted; it is a consequence of the corresponding property for the 
Riemann integral on R". Property (iii) is clear once we note that in (oriented) 
local coordinates cp-l*R = p ( x ) d x ' ~ . * . ~ d x " ,  p ( x )  > 0, so that jM gQ = 
lc g(x)p(x)  dv. Since g(x)p(x)  2 0, and vanishes exactly where g(x) vanishes, 
the assertion follows from the corresponding property in R". Finally, sup- 
pose F :  MI + M 2  is a diffeomorphism which preserves orientation. If w on 
M 2  has support in a cube Q associated with the coordinate neighborhood 
V, cp, then Q' = F - ' ( Q )  is a cube on M ,  associated with U' = F- ' (V) and 
rp' = cp 0 F - ' .  Using this cube, which contains the support of F*w,  we have 
precisely the same expressionf(x) dx' A . .  . A dx" for both w and F*w in local 
coordinates, hence the same integral jc f dv gives the value of both jM, w 
and jMl F*w. If F does not preserve orientation, the equation 
jMl F*w = - j M 2  w follows from the orientation-preserving case and 

(2.3) Remark We note that a special case of the definition above, namely 
M = R", defines 

property (i). I 

1 f ( x ' , . . . , x") dx I A . . . A dX" 
* R" 
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for any bounded function f on R" which has compact support and is almost 
continuous. It  is left as an exercise to show that if supp f c D, a domain of 
integration, then 

f(x) dx'  A . .  . A dx" = 1 f (x) du, 
' D  

the usual Riemann integral. 

Integration on Riemannian Manifolds 

Thus far we have not defined integrals of.functions, but rather integrals of 
n-forms. Even a cursory examination of the definition of integrals of func- 
tions over domains of R" used in advanced calculus shows that it assumes 
that we are able to assign a volume to certain classes of subsets of R", say, 
cubes and rectangular parallelepipeds. In fact only this one ingredient is 
lacking; if M has a well-determined volume element, then we are able to pass 
from the definition above to integrals of functions on an oriented manifold 
M .  A ~olunie elernenf is, by definition, a nowhere vanishing n-form R on M 
which is in that class which determines the orientation. On an arbitrary 
oriented manifold there is such a form R but it is determined only to within a 
multiple by a positive C" function. This is not enough to define volumes; we 
must have a unique R given, say, by the structure of M .  One case in which 
this occurs, according to Theorem V.7.7, is on an oriented Riemannian man- 
ifold M .  In this case there is a unique R whose value on any orthonormal 
frame is + 1. We shall always use this R on the Riemannian manifold and in 
the remainder of this section we shall discuss only the Riemannian case. 
Then, using R and the characteristic function k ,  of a domain of integration 
D we are able to parallel the theory for R". 

(2.4) Definition I f  D is a domain of integration on an oriented Rieman- 
nian manifold M and k ,  is the characteristic function of D, we define the 
d w n e  of D, denoted by vol D, by vol D = sM kDR. I f f  is any integrable 
fuxtion on M ,  we define the integral o f f  over D, denoted J, ,f; by 
j,, .I' = s,,, .f'k,R. When M is compact. we may take D = M and obtain 
vol M=~,RandJ , J '=J ' , J 'R .  

These integrals are defined since k, is continuous except on Bd D which 
has content zero. 

(2.5) Lemma With these definitions the integral off  on a domain of integra- 
tion on M sutisjies properties (1.3)-(1.6) of the Riemann integral on R". I t  is 
rqirul to thc Riernutitr integral when M = R" (with i t s  standard metric). 



238 V I  I N T E G R A T I O N  O N  M A N I F O L D S  

This is a consequence of the definitions and of the corresponding proper- 
ties (1.3)-( 1.6) of the Riemann integral. One merely needs to demonstrate- 
by choosing a covering of D by the interiors of cubes and taking a 
corresponding partition of unity as in the definition of IM o-that it is 
possible to reduce the proof to verifying each property for the special case in 
which w = f R has its support in a single cube. In this case the properties 
coincide with the properties of the integral on R". For the last statement we 
use Remark 2.3. 

We recall that in local coordinates U ,  cp with coordinate frames 
El,  . . . , En and Riemannian metric tensor @(X, Y ) ,  the matrix components 
@ ( E i ,  E j )  on U are customarily denoted by g i j ,  i ,  j = 1, . . . , n, with the same 
symbols gij  frequently used to denote g i j ( p )  = 4),(Ei,, Ejp)  and 
i j i j (xl ,  . . . , x") = g i j ( q ( p ) ) ,  that is, the components considered as functions 
on U c M or as the corresponding functions on cp( U )  c R". In Section V.7 
we found that the local expression for R on an oriented neighborhood was 

cpP-l*R = &dx'r \ . . . r \dx" ,  g = det(gij). 
We use this in the example below. 
(2.6) Example Let M be a surface in R 3  with the Riemannian metric 
induced by the standard metric of R' and let U ,  cp be a coordinate neighbor- 
hood with coordinates (u, u).  Suppose cp(U) = W an open subset of the 
uu-plane. Let F = cp-l so that F :  W + M has image U ,  and let F(u,  u )  = 
(f (u, u),  g(u, u), h(u, u ) )  be the C"-coordinate functions for the mapping (see 
Fig. VI.2). As in Example IV.1.10 the coordinate frames El ,  E ,  on U are 

W 

" /  Y 

(b) 

Figure VI.2 
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and hence 

These are denoted E, F ,  G, respectively, in the literature of classical differen- 
tial geometry and we have then 

‘p-’*R = F*R = ( g l  g2* - g:,)’” du A du = (EG - F2)’12 du A do. 
If D is a domain of integration on M such that D c U ,  and h is an integrable 
function on D. then 

j D h  = jDhR = (. h(u, u)(EG - F2)l12 du A ~ U  
‘ d D )  

= h(u, u)(EG - F 2 ) ” ,  du du. 
L D )  

Suppose, for example, that cp is the (diffeomorphic) projection ofan open 
set U of M onto an open set W of the xy-plane, which we identify with the 
parameter plane. In this case F :  W --t U is given by F(x, y) = (x,  y,f(x, y)). 
The graph of z = f ( x ,  y)  lying over W is the subset U of M ,  Fig. VI.3. The 
coordinate frames are El = a/ax + fx d / d z  and E ,  = a/ay + f y  d /dz ,  so 
E = 1 + ff, F = fxf,, G = 1 + f,’. Hence 

F*R = (EG - F2)’12 dx A dy = (1 + f :  + fi)1’2 dx A dy. 

I I  I I  
Y 

/ x  

Figure V1.3 
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I f  D c U is a domain of integration and A c W its projection to the xy- 
plane, then for any integrable function h on M we have 

h = i I ? ( ~ ,  y, z ) (  1 + f :  + f y 2  dx dy. 
i D  ' A  

When h = 1, the value of this integral is the area of D [= vol D]. 
If, for example M = S2, the unit sphere, let U be the upper hemisphere 

and D = U .  Then A = W = { (x ,  y )  l x 2  + y 2  < 13 and F ( x ,  y) = 

(x, y, (1  - x2 - y2)'l2). The area of U is 

R = i (1 - x 2  - y 2 ) - l / ~ d x A d y  
Ill ' A  

- - (1 - x2 - y2)- l'* dx dy = 271. 

(2.7) Remark In practice (or for theoretical purposes) one might hope 
that a compact manifold M could be covered by a finite number of domains 
of integration D,, ..., D, with the properties: (i) c(Di  n Dj) = 0, i # j ,  
i , j =  1 , . . . , s, and (ii) each Di lies in a coordinate neighborhood U i ,  'pi. 

Then, using the fact that 

it would be possible to evaluate each integral on the right separately as an 
integral on cp,(D,) c R", 

(. f =  i . j - ( . x ) ~ y d x l ~ . - A d x ~ =  1 f(x)J4du, 
' D I  ' ~ t ( D d  * adD,) 

wheref(x) denotes the expression forfin local coordinates and y = det(yij) 
as in the remark preceding Example 2.6. 

In  fact, it can be shown that any differentiable manifold M (compact or 
not) can be covered with a collection of domains of integration D,, D 2 ,  . . . , 
each the diffeomorphic image of a simplex (for n = 2 a triangle, for 11 = 3 a 
tetrahedron, and so on). Moreover these domains intersect in sets of content 
zero. [This is part of a theorem which asserts that any C" manifold is 
triartyulrrhle. An example is illustrated in Fig. V1.4.1 When M is compact the 
number of Di is finite. This is not a complete description of a triangulation; 
for more details see Singer and Thorpe [l]. However, it shows that for both 
practical and theoretical purposes a technique of evaluation of JM f o r  lM R 
is available. 
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Figure V1.4 

Triangulated manifolds. 

Exercises 

Show that if D is a domain of integration on a manifold, then 

Find R (for the induced Riemannian metric) on the torus T2 in R3 
obtained by rotating a circle of radius I I  and center at (b, O,O), 
h > ( I  > 0, around the .u3-axis. Use this to determine vol(T2). (See 
Exercise 5.) 
Interpret R and volume for a curve in R3, that is, a one-dimensional 
manifold. 
Using Remark 2.7 integrate on M = S 2 .  the unit  sphere of R3,  the func- 
tion ,f giving the distance of a point on M from the plane x3 = - 1. 
Argue that we may use as D, and D ,  the upper and lower hemispheres. 
[ H i r i t :  Use Exercise I . ]  
Let D be a domain of integration in R" and F :  D + M a C' mapping 
into an rt-manifold M. Suppose F is a diffeomorphism on d the interior 
of D and that (11 is an integrable rt-form on M. Then show that F ( D )  is a 
domain of integration and that j F ( D ,  tu = ID F * o .  [We do  not require F 
t o  be one-to-one on the boundary of 0.3 Show that Exercise 2 gives an 
example. 

Integration on Lie Groups 

One striking illustration of the uses to which integration on manifolds 
can be put arises when the manifold considered is a Lie group G. Although 
the most interesting case is a compact Lie group, for the present we allow G 
to bc an arbitrary Lie group of dimension 17 .  We shall need some simple 
observations concerning left and right translations and inner automor- 
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phisms of G .  Given a, b E G ,  we denote by La,  R b ,  and I ,  = La 0 R,- left and 
right translation and the inner automorphism, I , (x)  = axa-I ,  of G,  respec- 
tively. These are C" mappings with inverses L; = La- R; = R , - , ,  and 
I ;  = I , -  ,. Hence they are diffeomorphisms and as such induce R-linear 
mappings of X(G)-the C"-vector fields on G-onto itself which preserve 
the bracket operation (Corollary IV.7.10). However, on G our main interest 
is in the subspace g of X(G) consisting of all left-invariant vector fields on G .  
As we have seen g is a Lie algebra, the Lie algebra of G, with respect to the 
product [ X ,  Y]. Given a, b E G, we note the fact that the left and right trans- 
lations La and Rb commute-this is just the associative law a(xb)  = (ax)b.  
From this we deduce that if X E g, then Rb* X E g. Also 

L,*(Rb*X) = R b * ( L , , X )  = Rb*X.  

Similarly, I , ,  X = La, R,- I *  X = R,- I *  X E g ;  thus I,*: g + g. Because I , ,  
is both a linear mapping and preserves the product, that is, I,,[X, Y] = 
[ I , ,  X, I , ,  Y], it is an automorphism of the Lie algebra g. Finally, note that 
I, ,  = I ,  0 = I , ,  0 Ib* by the chain rule. Putting these facts 
together and adopting the notation Ad g for I , ,  , g any element of G,  we have 
proved most of the following statement. 

so that 

(3.1) The mapping of G into the group of all automorphisms of g dejned by 
g + Ad g is a homomorphism. Let Gl (g)  denote the group of all nonsingular 
linear transformations of 9 as a vector space. Then Ad: G --f G l ( g )  is C'. 

It is only the last statement which requires proof and interpretation. In 
general, if V is a finite-dimensional vector space over R, then the group GI( V )  
of all nonsingular linear transformations of V onto Y is isomorphic to 
Gl(n, R), n = dim V.  The isomorphism depends on the choice of a basis 
e l ,  . . . , en of V and is given by letting A E GI( V )  correspond to the matrix (a i j )  
defined by A(ej) = ai je i ,  j = 1, . . . , n. We take the topology and C" 
structure on Gl( V )  obtained by identifying it with the Lie group Gl(n, R ) .  It 
may be shown (Exercise3) that this C" structure is independent of the 
choice of basis. Therefore, if we choose a basis X I ,  . . . , X, of g and let (a i j (g ) )  
denote the matrix corresponding in this way to  Ad g ,  the last statement 
asserts that g H ( a i j ( g ) )  is a C" mapping. Note that I,(e) = e, hence 
I ,*:  T,(G) 3 T,(G). Because g may be naturally identified with T,(G) by 
identifying each X E g with its value X, at e, we may think of Ad g as a linear 
transformation on g-the left-invariant vector fields-or on T,(G) where, of 
course, it coincides with that induced by I ,  according to the definition. In 
particular, if we use the latter point of view, the matrix (aij(g)) is a submatrix 
of the Jacobian matrix evaluated at (9, e) of the C" mapping of G x G + G 
defined by ( g ,  x) I+ gxg- = I,(x). Hence g H (ai j (g))  is C". More generally, 
we make the following definitions. 
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(3.2) Definition A representatjon of a Lie group G on a vector space Y is a 
Lie group homomorphism of G into the group GI( Y )  of nonsingular linear 
transformations of Y onto Y. Its degree (dimension) is the dimension of V. A 
matrix representation of G of degree n is a Lie group homomorphism of G 
into Gl(n, R) .  The representation g H Ad g is called the adjoint representa- 
lion of G. 

We remark again that we interpret Ad g both as a linear mapping on g, 
the space of invariant vector fields, and on T,(G), the tangent space at the 
identity. This is by virtue of the identification of 9 with T,(G). In either case 
Ad g is induced by the diffeomorphism I , (x)  = gxg-' of G onto G.  

Many questions about Lie groups may be reduced to questions about the 
adjoint representation of the group. Some examples are given in the exer- 
cises; we give another below. First we shall need a definition and a lemma. 

(3.3) Definition A covariant tensor fieid Qt of order r on G is left- (right-) 
invariant if L,*@,, = @, (or R:Qga = @$, respectively). It is bi-inuariunt if it is 
both left- and right-invariant. 

We remark that any left- (or right-) invariant covariant tensor field 
@E F f G )  is necessarily C". If XI, . . . , X ,  is a basis of C" left- (or right-) 
invariant vector fields, then @ ( X i , ,  . . . , Xi) is constant-hence Cm-on G for 
any 1 I i l ,  ..., i ,  5 n. Therefore the components of @ with respect to a 
Cm-frame field are C", and CD is thus C". 

(3.4) Lemma Let 0, be a covariant tensor of order r on the tangent space 
T,(G) at the identity. Then there is a unique ~e~- inuar ian~ tensorjeld and a 
unique r~ght-in~arian~ tensor field coinciding at e with @, . These two agree 
everywhere on G,  that is, @c determines a bi-invariant tensorjeld, ifand only if 
Ad g*Or = 

Proof Let CDe be given on T'(G). For each g E G we have a unique left 
translation L,: G -+ G which takes e to g. Define @ , E P ( G )  by 
CDg = L;- ;ae. Then L,*@*,, = L,*(Ld- ;a,) = L,* 0 L$ I 0 Li-  &, = Ld- ,@,. 
However, this is just a,, so we see that 0 is left-invariant. Similar arguments 
show that R f -  

If @ is bi-invar~ant, then Ad(g)*@, = L: 0 Ri-  @e = @,. Conversely, if 
this relation holds, then 

for all g E G .  

is a right-invarian~ tensor field. 

so that the left- and right-invariant tensor fields determined by CD, agree at 
every y E G.  It is immediate that an invariant field must be determined by its 
value at any one element, say e, of G. I 
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(3.5) Corollary Every Lie group has a left-invariant Riemannian metric and 
a left-invariant volume element. In particular every Lie group is orientable. 

Proof We take any inner product @, (a positive definite, symmetric 
covariant tensor of order 2) on T,(G)  and apply Lemma 3.4 to Oe and to the 
volume element Re that a,, with a choice of orientation of T,(G), determines 
in order to obtain a left-invariant Riemannian metric 0 and volume element 
R. I 

In case G is compact we are able to say even more, as the next theorem 
and its corollary show. The corollary will make use of integration; to sim- 
plify the treatment we shall suppose G is connected (see Exercise 5) .  

(3.6) Theorem An oriented, compact, connected Lie group G has a unique 
bi-invariant volume element R such that vol G = 1. 

Proof Let R be a left-invariant volume element on G. We claim that R 
is necessarily right-invariant also. In order to prove this it is enough to show 
that Ad(g)*R, = Re for all g E G.  Let X,,  . . . , X, be a basis of g and Xier  
i = 1,.  . ., n, be the corresponding basis of T,(G).  We have seen that 
Ad(g)X, = c:= aij(g)Xi and that g H (a i j (g ) )  defines a C" homomorphism 
of G -, Gl(n, R) .  The linear transformation Ad(g)* on A"(T , (G) )  determined 
by Ad(g) acts as follows on a,: 

Ad(g)*R, = det(aij(g))R, . 
However, since G is compact and connected, the same applies to its 

image under the C"-homomorphism g -, det(a,(g)) of G to R*, the multipli- 
cative group of nonzero real numbers. However, the only compact con- 
nected subgroup of R* is { + l}, the trivial group consisting of the identity, 
hence det(aij(g)) = 1 and Ad(g)*R, = Re for all g E G .  By the preceding 
lemma this proves that CI is bi-invariant. 

Any other bi-invariant R must be of the form AQ, where I is a positive 
constant; but then vol G = jG 1R = I jG R. Hence it is possible to choose 
just one I # 0 such that vol G = + 1. For the opposite orientation on G, we 
would have -0 as the corresponding unique bi-invariant volume element. 

I 

From the existence of such a bi-invariant volume element one is able to 
deduce many important properties of Lie groups, of which the next two 
corollaries give examples. Further implications will appear later. 

(3.7) Corollary On a compact connected Lie group G it is possible to dejne 
a bi-invariant Riemannian metric 6. 
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Proof Let @, be a symmetric, positive definite, bilinear form on T,(G) 
and let R be the bi-invariant volume element. Given X,, Ye€ T,(G), we 
define a function on G by 

f ( 9 )  = (Ad(S)*@,)(X, 7 5) = @,(Ad(g)X, 9 Ad(s)Y,), 
the last equality being just the usual definition of Ad(g)*. Then define the 
bilinear form &c, on T,(G) by 

$l.(xe 3 Y,) = 1 f(s)Q. 
'G 

According to Lemma 3.4, Oe determines a bi-invariant form if for every a E G 

Ad(a)*&,,(X,, Y,) = 7 K). 
The left-hand term may be written &,(Ad(a)X,, Ad(a)Y,). Applying the 
definition of 6, to this expression, we find that 

(Ad(a))*&AX:, Y,) = (. (Ad(g))*@,, (Ad(a)X,, Ad(a)Y,)Q 
' G  

= 1 Ad(g)* Ad(a)*@,,(X,, Y,)R 

= ). Ad(ag)*@,,(X,, Y,)R. 

' G  

' G  

This shows that 

Ad(a)*&(X,, x.) = f'(R,(g))Q. 
G 

On the other hand, I,,: G -, G is a diffeomorphism and Theorem 2.2 (iv) 
asserts that 

1 f ( 9 ) Q  = f(R,(B))R,*Q. 
* 1 .G)  'G 

Since I,(G) = G and R,*R = R, we see that 

Ad(a)*&(X,, 5) = (. .f(g)R = @(X,, Y,). 

I t  follows that 8 is a bi-invariant bilinear form on G. It is obviously sym- 
metric and it is easy to check that it is positive definite. Since we do so in a 

* G  

more general case below, we will omit this verification here. I 

(3.8) Remark When we use this Riemannian metric on G, we see that 
both right and left translations are isometries, that is, they preserve the 
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Riemannian metric (and also its associated distance function). We shall see 
later that as Riemannian manifolds compact Lie groups have rather inter- 
esting properties. 

In closing this section we shall give another application, not too different 
from the above, which in fact actually includes it. Let (p,  V),  p :  G + GI( V),  
be a representation of G on a finitedimensional real vector space V.  As we 
have noted, if a basis is chosen in V, this determines a C" homomorphism of 
G into Gl(n, R) ,  n = dim V,  a special case is p = Ad with V = 9. 

(3.9) Theorem l f  G is compact and connected and p is a representation of G 
on V ,  then there is an inner product (u, v )  on Y such that every p ( g )  leaves the 
inner product invariant : 

( P ( d U 9  P b ) V )  = (u, v).  

Proof Let @(u, v )  be an arbitrary inner product on V and, given a fixed 
u, v E V, let f ( g )  = @(p(g)u, p ( g ) v ) ,  thus defining a C" function on G.  Then 
we define 

(u, v )  = f ( d Q  I 
with Q denoting the bi-invariant volume element. The linearity of the inte- 
gral implies at once that (u, v )  is bilinear, and it is clearly symmetric in u, v 
since the integrand is. Moreover (u, v )  2 0, and equality implies u = 0, by 
virtue of the fact that f ( g )  2 0 on G with equality holding if and only if the 
integral vanishes. Finally, for a E G we have 

(p(a)u, p(a)v)  = j W ( g ) p ( a ) u ,  p ( g ) p ( a ) v P  
G 

= J-G@(P(ga)u, P ( s a ) v p  = j f (s4Q. 
G 

But by the same argument as in the previous proof, this is equal to 
JG f ( g ) n  = (u, v). This completes the proof. If we let p = Ad and Y = 9, we 
obtain Corollary 3.7 as a special case. I 

We could state this result as follows: Each p(g )  is an isometry of the 
vector space V with the inner product (u, v) .  Since the matrix of an isometry 
of V relative to an orthonormal basis is an orthogonal matrix, we have the 
following corollary concerning the representations of a compact group. 

(3.10) Corollary 
every p ( g )  are orthogonal. 

Relative to a suitable basis of V,  the matrices representing 
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Theorem 3.9 is very important in the representation theory of compact 
Lie groups. We shall say that W c Y is invariant if it is invariant for every 
linear transformation p(g). The representation is irreducible if Y contains no 
nontrivial invariant subspaces; if each invariant subspace W has a com- 
plementary invariant subspace W‘, such that Y = W e  W ,  then the re- 
presentation is said to be semisimple. In this case it is easily verified that 
V = W ,  0 0 W , ,  where the Wi are invariant irreducible subspaces. 
Applying Theorem 3.9 gives an important result. 

(3.11) Corollary I f  p is a representation of a compact connected Lie group 
G on a jinite-dimensional vector space V,  then it is semisimple. Moreover 
Y = W ,  0 . . .  0 W,,  where for i # j the subspaces are mutually orthogonal 
and each is a nontrivial irreducible subspace. 

Proof If Y is irreducible, there is nothing to prove. If Y contains a 
nontrivial invariant subspace W, then its orthogonal complement W1 is also 
invariant: Let w E W1 and let v E W. Then (p(g)v, p(g)w) = (v, w) = 0. Thus 
p(g)w is orthogonal to p(g)v for every V E  W. Since p(g) is nonsingular, this 
means that p(g)w is orthogonal to every element of Wand must then be in 
W’. Hence Y = W 0 W1, a direct sum of complementary invariant sub- 
spaces. Repeated application of this argument gives the final statement of the 
corollary. I 

(3.12) Example It is easy to see that there are representations of noncom- 
pact connected groups which do not have the property of complete reducibi- 
lity, hence cannot leave an inner product invariant. For a simple example 
consider p :  R + Gi(2, R )  acting on Vz defined by 

Then p ( t )  acts on Yz,  the space of all (t), x, Y E  R, 

1 t  x 
p ( t ) ( : )  = (0  l ) ( y )  = (” : l Y ) .  

The subspace (i) is invariant but has no complementary invariant subspace. 

Exercises 

1. Show that a Lie group G has a bi-invariant volume element R if and only 
if it is possible to choose a basis XI, . . . , X, of T,(G) such that the matrix 
representation g -+ (aij(g)) corresponding to Ad(g) lies in Sl(n, R) ,  that 
is, det(aij(g)) = + 1 for all g E G. Give an example of such a G which is 
not compact. 
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2. Show that if the adjoint representation of G is irreducible, that is, there is 
no nontrivial subspace I/ t T,(G) which is invariant under Ad(y) for all 
g, then any normal subgroup H c G has dimension 0 or n (= dim G) .  

3. If V is a finite-dimensional vector space over R and GI( V )  denotes the 
group of all nonsingular linear transformations of V onto V, then GI( V )  
is a group, isomorphic to GI(n, R),  n = dim V, with the isomorphism 
resulting from a choice of basis. Show that the C" structure on GI( V )  
obtained from such an isomorphism is independent of this choice. 
In Exercise 3 let V = 9, the Lie algebra of a Lie group. Prove that the 
subgroup Aut g, consisting of all elements of GI(g) which are isomor- 
phisms of g, is closed in GI(g)  and that Ad(G) is a normal subgroup of 
Aut g. 

5. Show that the connected component of the identity Go in any Lie group 
G is an open and closed set and a normal (Lie) subgroup. Show also that 
if Go has a bi-invariant volume element or Riemannian metric, then the 
same is true of G .  

4. 

In the following two exercises let G be a connected Lie group and H a 
closed (Lie) subgroup of G and use the notation and ideas of Section IV.9. In 
particular, we denote by K: G + G / H  the natural projection and by 1: G x 
G/H + G the natural, transitive, left action of G on G / H .  

6.  Let o denote the coset H as a point of G / H  and let 1' denote the action of 
H on G / H ,  obtained by restriction of I to H. Show that for each h E H ,  
1;: G/H + G/H leaves o fixed and that the correspondence h + is a 
representation of H on To(G/H). 

7. Using IT*: T'(G) -+ To(G/H), show that To(G/H) is naturally isomorphic 
to gk and that if these spaces are identified by this isomorphism, then 
the adjoint representation of G on g, when restricted to H ,  induces on 
g/t) the same representation as the one above. 

8. Show that M = G / H  has a G-invariant Riemannian metric if and only if 
H is compact. 

4 Manifolds with Boundary 

The problems we wish to consider when we deal with integration make it 
useful to introduce the notion of manifold with boundary, which we shall 
define presently. Examples are a line segment or ray, a circular disk or 
half-plane, a closed n-ball, a surface with an open disk removed, and so on. 
Manifolds with boundary are important for other reasons too, for example, 
to study differentiable deformations of differentiable maps from a manifold 
M to a manifold N ,  we will need to define C" mappings from M x I into N .  
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However, M x I is a manifold with boundary, for example, if M = S ' ,  then 
M x I is a cylinder. What we must do. then, is extend our notions of differ- 
entiable functions and mappings, of tangent space and tensor field, and so 
on, to these slightly more general objects. In the definition of manifold with 
boundary the half-planes H" play a role analogous to that of R" for ordinary 
manifolds. 

Let H" = is = (XI, . . . , x") E R" I s" 2 0) with the relative topology of R", 
and denote by i7H" the subspace defined by c'H" = (x E H" I x" = 0). Then 
?H" is the same space whether considered as a subspace of R" or H";  it  is 
called the boundary of H". Of course all of these spaces carry the metric 
topology derived from the metric of R". and ?H" is obviously homeomorphic 
to R"-' by the map (XI, ..., xY"- ' ) + (x', ..., .x"-I, 0). 

Remembering now that differentiability has been defined for functions 
and mappings to R" of arbitrciry subsets of R", we see that the notion of 
diffeomorphism applies at once to (relatively) open subsets U ,  V of H " ;  
namely, U ,  V are diffeomorphic if there exists a one-to-one map F :  U -, V 
(onto) such that F and F - '  are both C' maps. Although this sounds 
precisely like the earlier definition, it is broader since U ,  V are not neces- 
sarily open subsets of R", but are in fact the intersections ofsuch sets with H". 
I f  U ,  V c R" - ?H", then U and V are actually open in R" so that this 
definition of diffeomorphism coincides with our previous one. On the other 
hand, if U n ?H" # 0, then we claim that V n (7H" # 0 and that 
F (  U n ? H " )  c V n ?H". Similarly, F -  '( V n ?H")  c U n 3 H " ;  in other 
words, difleomorphisms on open sets of H" take boundary points to bound- 
ary points and interior points to interior points. This follows at once from 
the inverse function theorem: U - c'H" is open in R" and hence F must map 
it  diffeomorphically onto an open subset of R", but no open subset of H" 
which contains a boundary point, that is, a point of ?H",  can be open in R". 
Thus F ( U  - ?H")  c V - c'H" and F -  ' (  V - P H n )  c U - ?H". Since F and 
F - '  are one-to-one on U and V .  the result follows. 

We also notice the following two facts: First U n ?H" and V n ?HI1 are 
open subsets of ?HI1, a submanifold of R" diffeomorphic to R"- ' ; and F ,  F -  
restricted to these open sets in ?HI1 are diffeomorphisms. Second both F and 
F - '  can be extended to open sets U'.  V'  of R" having the property that 
U = U' n H" and V = V'  n H". These extensions will not be unique nor are 
the extensions in general inverses throughout these larger domains. 
However. the derivatives of F and F - '  on U and V are independent of the 
extensions chosen and we may suppose that even on the extended domains 
the Jacobians are of rank 1 1 .  These statements are immediate consequences 
of the definition of differentiability for arbitrary subsets of R" and the fact 
that the Jacobian ofa C' mapping has its maximum rank on an open subset 
of its domain. Some further amplification of this situation is given in the 
problems. 
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(4.1) Definition A C" manifold with boundary is a Hausdorff space M with 
a countable basis of open sets and a differentiable structure Q in the follow- 
ing (generalized) sense (compare Definition 111.1.2): Q = { U , ,  cp,} consists 
of a family of open subsets U ,  of M each with a homeomorphism cp, onto an 
open subset of H" (topologized as a subspace of R") such that: 

(1)  the U ,  cover M; 
(2) if U ,  , cp, and U ,  , cp, are elements of Q, then cp, 0 9,- ' and cp, 0 c p j  ' 
(3) 92 is maximal with respect to properties (1) and (2). 
Examples are shown in Fig. VI.5. 

are diffeomorphisms of q,(U n V )  and qa(U n V ) ,  open subsets of H"; 

( C )  

Figure VIJ 

The U ,  cp are coordinate neighborhoods on M .  From the remarks above 
we see that if ~ ( p )  E dH" in one coordinate system, then this holds for all 
coordinate systems. The collection of such points is called the boundary of 
M, denoted dM,  and M - dM is a manifold (in the ordinary sense), which 
we denote by Int M. If dM = (25, then M is a manifold of the familiar type; 
we call it a manifold without boundary when it is necessary to  make the 
distinction. The following theorem follows from the first of the two facts 
remarked upon above. 

(4.2) Theorem I f  M is a C" manifold (of dimension n )  with boundary, then 
the differentiable structure of M determines a C"-direrentiable structure of 
dimension n - 1 on the subspace dM of M .  The inclusion i :  dM + M is an 
imbedding. 
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The differentiable structure @ on d M  is determined by the coordinate 
neighborhoods 0, I& where 0 = U n aM, $ = cp for any coordinate 
neighborhood U ,  cp of M which contains points of dM. 

Differentiable functions, d~fferentiable mappings, rank, and so on, may 
now be defined on M exactly as before by using local coordinates. By virtue 
of the C" compatibility of such coordinate systems these concepts are 
independent of the choice of coordinates. We leave the verification to the 
reader. We also define T , ( M )  at boundary points of M. This could be done 
using derivations on C"(p) as before, but to avoid some slight complications 
we use an ~lternative definition. First note that in the case of H" c R", upon 
which manifolds with boundary are modeled, we identify z(H") with T,(R"); 
we may think of this identification as being given by the inclusion mapping. 
For x E ?H", this defines what we mean by T,(H"). In the case of a general 
manifold M ,  for P E  aM we define a vector X ,  E T , ( M )  to be an assignment to 
each coordinate neighborhood U, cp of an n-tuple of numbers (a', . . . , a"), 
the U ,  cp components of X, satisfying the following condition: If (x', . . . , x") 
and ( y ' ,  . . . , y") are coordinates around p in neighborhoods U, cp and V ,  +, 
then the components (a', ..., a") and (b', ..., p) relative to U and V are 
related by 

(as in Corollary IV.1.8). What this does is attach toeachpe M a T,(M)such 
that each coordinate system U ,  cp determines an isomorphism q* taking X, 
with components (a', . , . , a") to the vector ai(8/dx') E T,,,,(H"). As 
previously El,  . . . , En will denote the basis determined by cp,(Ei) = a/axi, 
i = 1, . . . , n. Having defined T,(M) on J M  [it is already known on Int M, 
which is an ordinary manjfold~, we may extend all of our definitions and 
theorems to manifolds with boundary. In particular, exterior differential 
forms and the exterior calculus is still valid on manifolds with boundary. 
There is no essential change in the definitions or proofs. 

For many purposes, in particular for our discussion of Stokes's theorem 
in the next section, we could use an (apparently) weaker, but closely related 
notion. 

(4.3) Definition A regular domain D on a manifold M is a closed subset of 
M with nonempty interior 6 such that if P E  aD = D - 8, then p has a 
cubical coordinate neighborhood U ,  cp with cp(p) = (0, . . . , 0), cp(U) = C:(O), 
and cp( U n D) = fx E C:(O) 1 x" 2 0) on aD. 

We remark that if D is compact, then it is a domain of integration on M .  
It is a straightforward matter to check that D, with the topology and differ- 
entiable structure induced by M is a manifold with boundary. All of our 
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examples can be seen to be of this type: H" and the closed unit ball B" are 
regular domains of M = R", N x I is a regular domain of N x R, and the 
set D obtained by removing from a manifold M a diffeomorphic image of an 
open ball is a regular domain. Further examples are given in the exercises. 

It is a fact-somewhat too difficult to prove here-that any manifold M 
with boundary can be realized as a regular domain of a larger manifold M'.  
The basic idea is simple enough: one simply takes two copies of M ,  say M I  
and M, , and "glues" them together along their boundaries, identifying 
corresponding boundary points. The resulting manifold, called the double of 
M ,  contains M as a regular domain. Figure VI.6 shows the doubles of the 
examples of Fig. VI.5 (which are shaded in Fig. VI.6). For details the reader 

(aMz 
( C )  

Figure V1.6 

should consult Munkres [ I ,  Section 61. For regular domains it is simpler or 
at least more intuitive to define the tangent space at boundary points and to 
define the calculus of exterior differential forms, since we may do so by 
restriction of the corresponding objects on M .  This could be taken as further 
evidence that the reader who wishes to carefully check the details of the 
extension to manifolds with boundary of the concepts and operations we 
have used for manifolds without boundary, will encounter no serious obsta- 
cle: In fact, by definition M is locully diffeomorphic to H", which is a regular 
domain of R". 

We consider next the question of orientability. A manifold M with nor.- 
empty boundary is orientable provided that it has a covering of coordinate 
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neighborhoods { U = ,  cp,) which are coherently oriented, that is, 
U ,  n U ,  # 0 implies cp, cp, I has positive Jacobian determinant (or equiv- 
alently, preserves the natural orientation of H").  This is equivalent to the 
existence of a nowhere vanishing n-form R on M .  The proof is the same 
except that when we speak of a partition of unity on M associated to a 
regular covering { U , ,  v ,  cp,} we limit ourselves to a regular covering by 
cubical coordinate neighborhoods concerning which we impose the follow- 
ing slight restriction: if U i  n d M  # @, then cp,(U,) = C:(O) n H" and 
cp,(K) = Cl(0) n H". With this modified definition of regular covering we 
still have a regular covering (by definition locally finite) refining any open 
covering ( A , )  of M and an associated C" partition of unity { J }  on M .  We 
remark that those Ui, v ,  cp, of the regular covering that intersect dM deter- 
mine a regular covering 0, = U i  n dM, k, = V i  n d M ,  and +, = 'pi Ioi of 
SM and the associated partition of unity restricts to an associated partition 
of unity {,c = ji on d M .  

(4.4) Theorem Let M be an oriented tnutiijold and suppose dM is not empty. 
Then (7M is orientable and tku orientation qf M deterniines a17 orientation of 
2M. 

Proof Since c?M is an ( n  - 1)-dimensional submanifold of M ,  its tan- 
gent space at each point may be identified with an ( n  - 1)-dimensional 
subspace of T,(M); we denote this subspace by TP(dM). We shall show that 
there is a distinction between the two half-spaces into which T J S M )  divides 
T,(M) which is independent of coordinates. Suppose that U ,  cp and I/, Ic/ are 
coordinate neighborhoods of p E dM with local coordinates (.XI, . . . , x") and 
(y', . . . , y"), respectively. By our definitions of coordinates of boundary 
points, the last coordinate x". or y" is equal to zero if the point in U or I/, 
respectively, is on i )M, and positive otherwise. Writing y' = yi(xl,  . . . , x"), 
i = 1, ..., n, for the change of coordinate functions, we have 

every LIE U n i )M.  It follows that the Jacobian matrix then has the form 
0 = y"(.x 1 , ..., .x"-', 0) so that ( ? J " ' / ~ ~ . x ~ ) ~ ( ~ ,  = ... = (dy"/dx"-'),,,(,, = 0 for 

Since the Jacobian is nonsingular, Sy"/c~.x" # 0 at (p(q) ;  in fact, it must be 
positive. For let q ( q )  = (u', a', . . . , an- ', 0) and consider f( t ) ,  defined by 
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f ( t )  = y"(a', . , . , a"- I, t). Thenf'(0) = (dy"/dx"),,,, can certainly not be neg- 
ative since f(0) = 0 and f( t )  > 0 in some interval 0 < t < 6 ;  therefore 
dy"/dXn > 0 at q ( q )  as claimed. 

If U ,  rp and V ,  $ are oriented neighborhoods of M, then this matrix has 
positive determinant so dy"/dx" and the ( n  - 1) x (n  - 1) minor determin- 
ant obtained by striking out the last row and column has the same sign. This 
minor determinant is exactly the determinant of D ( $ o  Q-'), the change of 
coordinates from 0 = Lr n aM, ij = rp lo to = V n dM, $ = JI I,, on the 
submanifold d M .  Thus the neighborhoods on dM determined by oriented 
neighborhoods on M are coherent and determine an orientation on dM. 

(4.5) Remark Using the notation of the proof, let q E U n V be a bound- 
ary point of M and let X, E T,(M). Because (dy"/dx"'),~,, > 0, it follows that 
when we express X, in the coordinate frames of either U ,  rp or V ,  $, 

X, = a',?, + .- .  + a"- lE , - l  + a"E, = P ' F ,  + ..- + /P-'F,-l + PF,,  
then a" and /P have the same sign. (This fact does not depend on the coordin- 
ates being oriented.) It follows that the vectors of T,(M) - T,(dM) fall into 
two classes, those whose last component is positive-which we call inward 

Figure V1.7 

pointing vectors at P E  dM-and those for which the last component is 
negative-which we call outward poinring vectors (see Fig. VI.7). Those for 
which the last component vanishes are tangent to d M ,  and this classification 
is independent of the orientation of M. 

(4.6) Remark We have noted that there are difficulties in gluing two 
manifolds with identical boundaries together along their boundaries. We 
can, however, describe a special case which will give some idea of the impor- 
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tance of such operations. Let M1, M, be two manifolds (without boundary) 
of dimension n and let Ui , 'pi be coordinate neighborhoods of points pi E Mi, 
i = 1,2. We suppose that cpi(pi) = (0, . . . I ,  0) and that cpi(Ui) = B;(O) in each 
case and we set 6 = cp,: l (B , (O) ) .  Then Mi = M i  - 6 ,  i = 1, 2, is a manifold 
with boundary, indeed cpi(dMi) = S"- '. The manifold obtained by gluing 
Mi to M; along the boundaries is called the connected sum of M1 and M, , 
denoted M1 # M 2  (see Fig. VI.8). In order to define it without loss of 

Figure V1.8 

differentiability, we will actually remove only cp- '(B1,,(0)) from each Mi to 
obtain MY, and we will then identify points q i €  Ui - cp; 1(81j2(0)), i = 1,2, 
whenever cpl(ql) = c p 2 ( q 2 ) / ~ ~ c p z ( ~ 2 ) ~ ~ 2 ,  that is, q1 E M ;  and q 2 E  M" are 
identified if their images cpl(p,) and cp2(p2)  in R" are "reflections" of one 
another in the unit sphere (lie on the same ray and have reciprocal distance 
from the origin). 

Any closed surface (compact 2-manifold) can be obtained as the con- 
nected sum of copies of S2 and T 2  if orientable, P2 and T 2  if nonorientable 
(see Wallace [ 13). 

This whole procedure and ones similar to it have become very important 
in the recent years and are intimately related to the attempt to  classify or list 
all simply connected n-dimensional compact C" manifolds-a problem 
which was solved long ago for closed surfaces but is still unsettled in dimen- 
sion three. Oddly enough there has been more success in higher dimensions! 
It is not yet known whether there exist simply connected, compact, orient- 
able manifolds of dimension three other than S 3 ;  that there are none is the 
famous Poincare conjecture. Similar questions in dimension 2 5 were 
answered by Smale [l]. Milnor [3] has shown that every compact 3-manifold 
can be represented uniquely as a connected sum of 3-manifolds which 
cannot be further decomposed into connected sums. 
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Exercises 

Let M be a manifold without boundary and$ M + R a C" function. 
Suppose that 4f# 0 onf-'(O) and show that M +  = { p ~  M I f ( p )  2 0) 
is a regular domain of M .  What is its boundary? 
Let C be an imbedded image of S' in R3. Show that there is an c > 0 
such that N = uxsc B E ( x )  is a manifold with boundary. Show that it is 
diffeomorphic to the solid torus. What can be said about the comple- 
ment in R 3  of fi (the interior of N ) ?  
Show that if M has a Riemannian metric, then there is a uniquely 
determined vector field X defined at each point of dM such that X ,  is 
inward pointing, is orthogonal to T,(SM) for each P E  d M ,  and has unit 
length. 
Show that if M is a manifold with boundary, then it is always possible to 
choose a vector field X defined at each point of dM such that X is 
inward pointing. Given such X and an R on M which is an n-form 
determining the orientation, then show that the form w = ( -  l)"i(X)n 
determines the orientation of dM.  [i(X)R is defined as in the Exercise 
of Section V.8.41. 
Let M be a 2-manifold in R 3  such that M - R 3  has two components. 
Show that it is possible to define a continuous field of unit normal 
vectors to M .  
Let U ,  V be open subsets of R" and F :  U + V ,  G :  V + U diffeomor- 
phisms which are inverse to each other. Discuss the possibility of finding 
extensions F', G' to open subsets U', V' of R" containing U ,  V ,  respec- 
tively, such that G' 0 F' = idu, and F' 0 G' = id",. 
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5 Stokes's Theorem for Manifolds with Boundary 

We consider an oriented manifold M with possibly nonempty boundary 
d M ,  oriented by the orientation of M .  We shall consider only oriented coor- 
dinate neighborhoods U ,  cp in what follows. If U n dM # 0, then we denote 
by d, 3 the corresponding neighborhood 0 = U n d M ,  @ = cp lo on dfi. 
All of the concepts used in defining the integral extend to M ;  namely the 
definitions of content zero, domain of integration, and so on. In particular 
d n l  has measure zero and, if compact, has content zero. This follows from 
corresponding properties of dH" (and Corollary 1.14). A cube Q associated 
with U ,  cp is as in Section 2 unless U n d M  # 0, in which case we assume 
that Q has a "face" on d M ,  that is, 

c p ( Q n d M ) = { x E R " I O s x i s  1 and x " = O } .  

In this case we note two facts: (a) 0 = Q n dM is a cube of SM associated 
with 0, 4 and (b) 0 = cp-'({x E R"10 < xi < 1, 1 I i I n - 1; 0 I x < I}), 
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that is, the interior of Q has a different image in R" than it has when 
U c Int M .  

Taking these minor modifications into account, the definition of j M  0 is 
exactly as in Section 2 and the integral of an integrable n-form has the same 
properties as before. Indeed, if M is a compact regular domain in a manifold 
N ,  then it is necessarily a domain of integration in N and j M  R = jN kM Iz so 
there is nothing new to define in this case! The same comments apply to the 
integral over a Riemannian manifold with boundary and to the definition of 
vol M when M is compact. 

Now suppose M is both oriented and compact and that o is an ( n  - 1) 
form of class C' at least on M .  We have an important relation between the 
integral of rko over M and i*w, the restriction of w to dM ( i :  dM + M is the 
inclusion mapping). To simplify the statement of the theorem we let d f i  
denote irM, the boundary with the orientation induced by M ,  when n is even 
and -?M, the boundary with the opposite orientation when n is odd; thus 
('A = (-1YdM. 

(5.1) Theorem (Stokes's theorem) Let M be un oriented compact mani- 
fold ofdimrn.sion n and let d M  hove the induced orientation. Then we have 

no = 1 i*w. 
.?M 

When ?M = 0, the inttgral over' M vanishes. 

Proof According to our definitions it is enough to establish the theorem 
for an (11 whose support is contained in the interior 0 ofa cube Q associated 
to a coordinate neighborhood U ,  cp. Suppose o has its support in Q and 
x', . . . , x" are the local coordinates. We may suppose that in these coordin- 
ates (0 is expressed as 

Then we have 

so that 

This follows from the definition of integration on M and the iterated integral 
theorem. The expression on the right may be rewritten; consider the j th 
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summand only and integrate first with respect to the variable xi. This gives 
an (n - 1)-fold iterated integral 

1 1 

(*I I, . . * jo [Aj(x',  . . . , xJ- 1, 1, Xj' 1, . . . , x") 

A 
- Aj(xl ,  . . . , x i -  ', 0, x j+  ' ,  . . . , x")]  dx' * * * dxJ . . . dx", - 

where we indicate by dxJ that this differential is to be omitted. The sum of 
these (n - 1)-fold iterated integrals for j = 1, ... , n gives JM dw if 
supp(o) c 0. Two cases can occur: either Q n dM = 0, in which case 
cp( ) = ( x  10 < x i  < 1, i = 1, ..., n}; or Q n dM # 0, in which case 
cp( B ) = { x  10 < x i  < 1, i = 1, ..., n - 1; 0 I x" < 11. In the first case,using 
supp w c 0, we see that Ai = 0 if any xi = 0, 1. Hence each of the inte- 
grands in (*) vanish and jM do = 0. On the other hand w restricted to dM is 
the zero (n - 1)-form since supp w c 0 which has no points on dM. Thus 
jy dw = 0 = jay i*w and Stokes's theorem holds for this case. 

In the second case we again have all of the integrands in (*)equal to zero 
except the one corresponding to J' = n; therefore 

1 1 

do = -I, ...s, A"(X', ..., x " - l , o ) d x l  ... dx"-1. I, 
On the other hand we may evaluate jay i*w using the fact that i*o has its 
support in 0 = Q n dM so that its expression in the local coordinates 0, @ 
(obtained by restriction of U ,  cp) collapses to 

@ -  *(i*o) = ( - 1)"- IAn(xl ,  . . . , x"- l ,  0) dx' A . .. A dx"- '. 
[We may obtain this from the expression for w by applying the correspond- 
ing inclusion i: ( x ' ,  . . . , x " - ' )  -+ ( x ' ,  . . . , x"- ', 0) in the local coordinates 
and noting that i* dx" = 0.1 This will give 

1 1 

j*w = ( -  1)"-1 Jb . . . ~o~" (x ' , . . . , x" - ' ,O)dx '  " ' d x " - ' .  I, 
Thus, in the case where supp w c 0 and 0 n dM # 0, we find that 

J; do = ( - I P S  i*w = j i*w, 
aM + aM 

with the right-hand integral over dM when n is even and -dM when n is 
odd, that is, over dM. 

We shall consider several examples in which M is a regular domain of R2 
or R3. In these cases this theorem corresponds to standard theorems of 
calculus known by various names. 
(5.2) Example (Green's theorem) Let M be a bounded regular domain 
of R2,  that is, the closure of a bounded open subset of the plane bounded by 

I 
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simple closed curves of class C" ; for example, let M be a circular disk or 
annulus. Then d M  is the union of these curves (in the cases mentioned a 
circle or a pair of concentric circles). If w is a one-form of class C' on M ,  
then, using the natural Cartesian coordinates, we have w = a dx  + b dy .  We 
may suppose, by definition of differentiability on arbitrary sets, that a, h are 
restrictions of C' functions on some open set containing M. We have 
dw = ((dh/dx) - (da/ay) )  dx A dy  and by Stokes's theorem 

According to Remark 2.3, the left-hand side is the ordinary Riemann integral 
over the domain of integration M c R2.  On the other hand, if we think of 
dM as a onedimensional manifold and cover it with (oriented) neighbor- 
hoods, it is clear that its value is that of the usual line integral along a curve 
C (or curves Ci) oriented so that as we traverse the curve the region is on the 
left. (This is further discussed below.) Thus the equality ab6ve may be 
written 

which is the usual statement of Green's theorem. 

(5.3) Example Let M be a regular domain of R3, that is, the closure of a 
bounded open set bounded by closed C" surfaces. Examples are the ball of 
radius 1, which is bounded by the sphere S2, or the region interior to a torus 
T 2 ,  obtained by rotating a circle around a line exterior to it. Consider the 
two-form w = P d y  A dz + Q dz A dx + R dx A dy,  where P, Q, R are C' 
functions on some open set of R3 containing M .  We have 

and Stokes's theorem asserts that 

1 (g + :t + E) d x ~ d y ~ d z  =j P d y A d z  + Q d z A d x  + R d x A d y .  
' M  - r7M 

If we use Remark 2.3 and our definitions to translate this into a Riemann 
integral over a domain and a surface integral over the boundary, respec- 
tively, then we obtain the usual divergence theorem of advanced calculus. 

(5.4) Example A third example is obtained if we consider M to be a piece 
of surface imbedded in R 3  and bounded by smooth simple closed curves, for 
example, a sphere with one or more open circular disks removed, thus 
leaving boundary circles, which are d M .  Since dx,  dy,  and dz may be con- 
sidered, by restriction, as one-forms on M or on a M ,  any one-form w on M 
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may be written: w = A dx  + B d y  + C dz,  where A, B, and C are C' func- 
tions on M .  In this case Stokes's theorem asserts that 

dx  A dy  
ac dB aA ac a B  d A  

= A dx + B dy  + C dz. I, 
The integral on the left-hand side may be converted by the procedure used in 
defining integrals of forms on manifolds to an ordinary surface integral over 
the surface M in R3 and that on the right to a line integral. When this is done 
one obtains the usual Stokes theorem of advanced calculus. 

Often these examples of special cases of the general Stokes theorem are 
stated in terms of vector calculus and vector operations such as gradient, 
divergence, and curl. To establish the equivalence would require use of the 
duality between vectors and covectors and other such relations on R" which 
use the fact that R" is a Riemannian manifold. Basically these stem from the 
natural isomorphism of a Euclidean vector space and its dual (and its exten- 
sion to a duality between covariant and contravariant tensors). We do not 
need these operations in what follows so they will not be taken up here; 
some indications are given in the exercises. 

It is important to note that the version of Stokes's theorem proved above 
is deficient in the following sense: it holds only for smooth manifolds with 
smooth boundary. Thus, for example, our proof does not even include the 
case of a square in R2 or an open set of R3 bounded by a polyhedron. The 
difficulty in these cases is not so much with the analysis and integration 
theory, as with describing the regions of integration to be admitted and with 
giving precise definitions of orientability and induced orientation of 
the boundary. The search for reasonable domains of integration to validate 
Stokes's theorem usually leads to the concept of a simplicia1 or polyhedral 
complex, that is, a space made up by fastening together along their faces a 
number of simplices (line segments, triangles, tetrahedra, and their generali- 
zations) (Fig. VI.4) or more general polyhedra (cubes, for example). Since it 
can be shown (see Munkres [ 13) that any C" manifold M may be " trian- 
gulated," which means that it is homeomorphic (even with considerable 
smoothness) to such a complex, the integral over M becomes the sum of the 
integrals over the pieces, which are images of simplices, cubes, or other 
polyhedra as the case may be (compare Remark 2.7). The strategy is then to 
reduce the theory (including Stokes's theorem) to the case of polyhedral 
domains of R". This approach is particularly important for those interested 
in algebraic topology and de Rham's theorem. It is very clearly set forth, for 
example, by Singer and Thorpe [l]  or Warner [l]. 

For many purposes, integration of forms over C' (but not one-to-one or 
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d~ffeomorphic~ images of simplices and poly~edra jn a manifold is very 
useful. Some idea of how this works is given in the following example. 

(5.5) Example (Line integrirls in a manifold) Let [a ,  b] = r E RI 
a 5 t 5 bj and let F :  [a,  b] -+ M be a C' mapping whose image is, then, a C1 
curve S on M .  If w is a one-form on M ,  we define ss Q by 

.Is@ = .i[u,bJF*w' 

This is called the line integral of w along S .  In general S is not a submanifold 
of M :  it can be very complicated. However, the right-hand side is the integral 
of a one-form, F*cu = At) dt ,  on a one-dimensional manifold with bound- 
ary; thus 

b 

Js{O = .f@) J t .  

Exactly as for line integhs in R", we may prove that the value of the integral 
does not depend on the parameter as long as the orientation of S is preserved 
(Exercise 5) .  Thus the integral of w over an oriented C' curve S of M is 
defined. When we reverse the orientation, traversing S in the opposite sense, 
it changes the sign of the integral. We write J-s w = -Js w. 

More generally, let s be an oriented continuous and piecewise differen- 
tiable curve, that is, we consider s to be a union of curves S , ,  S ,  , . . . , S,  such 
that each Si is C' and the terminal point of Si is the initial point of S i +  
(terminal and initial point make sense since we are dealing with oriented 
curves). Then we define the integral over by 

thus extending to this case the definition of line integral on a manifold. This 
definition reduces to the usual one when M = R". In fact we could have used 
that as a starting point by subdividing the curve on an arbitrary manifol~{ 
into a finite union of C' curves Si, each in a single coordinate neighborhood 
and evaluated the integral over each Si in local coordinates, that is in R". 

(5.5) Example Consider the special case w = 45 wherefis a C" function 
on M. (This implies that dw = 0.) In this case the value of the line integral 
along the piecewise differentiable curve s" from p to q is given by 

In particular, it is independent of the path chosen. The verification is 
Exercise 1 at the end of the section. Note that if p is held fixed, t h e n ~ ( q )  is 
given at each q by ad ding^(^) to the value of the line integral along any 
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piecewise C' curve from p to q. Thus f is determined to within an additive 
constant by the line integral (assuming M connected). 

The fact that a (line) integral of a one-form o over an oriented piecewise 
differentiable curve s has been defined enables us to state Stokes's theorem 
for a polygonal region Q of RZ bounded, as it is, by an oriented piecewise 
linear (simple closed) curve s = aQ. We carry this out for the unit square. 

(5.7) Theorem Let o be a C' one-form dejned on Q = {(x ,  y ) :  0 I x I 1, 
0 I y 5 1 )  and let 3 be the boundary of Q traversed in the counterclockwise 
sense. Then JQ d o  = Ss w. 

Proof Let o = a dx + b dy,  where a, b vanish outside Q and are C' 
functions on Q. Then d o  = ((ab/ax) - (aa/dy)) dx A dy on Q and by 
Remark 2.3, 

dx dy 

The orientation is that given by the standard coordinate system in RZ. On 
the other hand the integral over the boundary is 

This is because d y  = 0 on the vertical sides and dx = 0 on the horizontal 
ones. (See Fig. V1.9.) Comparing 
theorem is true. 

the values of the integrals shows that the 
I 

yl 
5-3 ( I .  I )  

Figure V1.9 
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We remark that this essentially mimics our earlier proof, and from the 
procedure used it is clear that we could state and prove this theorem for 
rectangles of any dimension and even for triangles, tetrahedra, and other 
simplices although in these cases, as we mentioned, some machinery is neces- 
sary to describe proper orientations on the faces. 

1. 

2. 

3. 

4. 

5.  

6. 

6 

Exercises 
Prove the formula of Example 5.6 for lS d'by first proving it for curves 
of class C" which lie in a coordinate neighborhood. 
Evaluate the line integral of w = x 2 y  dx + x d y  on M = R2 along the 
radial path from (0,O) to ( 1 ,  1) and along the path consisting of the 
segments (0,O) to (1,O) and (1,'O) to (1, 1). Determine whether this 
integral is independent of the path. 
Show that all line integrals of w = P dx + Q d y  + R dz in R3 are 
inde~nden t  of the path only if the value of the integral over any closed 
(piecewise C') path is zero. Use this and Stokes's theorem to obtain a 
condition on P ,  Q, R which is sufficient to show independence of the 
path. [Assume w is defined on all of R3.] 
In Example 5.3 let M be the unit ball and aM the unit sphere. If P = x', 
Q = y2, and R = 2, compute both sides of the equation giving Stokes's 
theorem. 
Suppose that S is an (oriented) C' curve on a manifold M given paramet- 
rically by a mapping F :  t~-+ F ( t ) ,  u I t I b of [a, b] into M. Suppose 
t = f(s), c I s I d is a change of parameter on S.  Show that the value of 
the line integral over S of any one-form o is unchanged iff'(s) > 0, that 
is, if the orientation of G = F of is  the same. 
Prove Stokes's theorem for a triangle in R' and a cube in R3. 

Homotopy of Mappings. The Fundamental Group 
One of the most basic ideas used in the study of mappings from one 

space to another is that of homotopy. Two mappings are said to be homo- 
topic if one can be "deformed" into the other through a one-parameter 
family of mappi~gs between the same spaces, Sometimes further conditions 
are imposed on the family of mappings as we shall see. The basic definition 
can be stated as follows. 

(6.1) Definition Let F,  G be continuous mappings from a topological 
space X to a topological space Y and let I = [0, 11, the unit interval. Then F 
is ~ ? o ~ o r o ~ ~ c  to G if there is a continuous mapping {the ~ o ~ ~ ~ o ~ y )  

H :  X x I - +  Y 

which satisfies the conditions: F ( x )  = H ( x ,  0) and G ( x )  = W ( x ,  1) for all 
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x E X .  If X and Y are manifolds and F ,  G are C", we define a C" or smooth 
homotopy by requiring that H be C" in addition to the conditions above. 

We remark that H , ( x )  = H ( x ,  t )  does indeed define a one-parameter 
family of mappings H I :  X + Y ,  0 5 t I 1, with F = H o  and G = H I .  The 
formulation of the definition emphasizes the simultaneous continuity in 
both variables t and x. 

Some brief comments on the C" case: If dX = 0, then X x I is a 
regualr domain of X x R and is a manifold with boundary. Indeed, 
ir(X x I) = X x (0) u X x { l}, so C" is perfectly well defined. I f  d X  # 0, 
then X x I is not a manifold with boundary [consider X = B:(O), the closed 
unit disk, for example]. However, it is a reasonably nice domain of X x R 
which is a manifold (with nonempty boundary), so only minor technical 
problems arise. We remark however, that when both X and Y have non- 
empty boundaries, there are cases in which it is natural to require that 
H,( i rX)  c dY for 0 I t I 1, which is closely related to the generalization 
below. 

When the class of continuous maps from a space X to a space Y is 
considered in its entirety, then homotopy of maps forms an equivalence 
relation, and for many purposes it is the equivalence class of the map that is 
important and not the particular representative. We shall illustrate this in 
great detail in a special case, namely X = I, the unit interval. Before doing 
this we mention a useful generalization of our definition: Suppose ( X ,  A )  
and ( Y ,  B )  are pairs consisting of spaces X and Y and closed subspaces 
A c X and B c Y. Consider F ,  G :  X + Y continuous maps such that 
F ( A )  c B and G ( A )  c B ;  F and G map the pair ( X ,  A )  into the pair ( Y ,  B )  
continuously. We say that F and G are relatively homotopic if there exists a 
continuous map H :  X x I + Y such that H ( A  x I )  c B, H ( x ,  0) = F ( x ) ,  
and H ( s ,  1) = C(x). We have added to Definition 6.1 the requirement that 
H,(A) c B for 0 I t I 1. When A = 0 = B, the definition reduces to the 
original one. We will write F - G to indicate that F and G are (relatively) 
homotopic; we justify this notation as follows. 

(6.2) Theorem Relative homotopy is an equivalence relation O H  the contin- 
uous maps of ( X ,  A )  into ( Y ,  B )  for any topological spaces X and Y and closed 
subspaces A and B, respecrively. 

Proof The relation is reflexive since H ( x ,  t )  = F ( x )  is a homotopy of 
F ( x )  with F ( x ) .  I t  is symmetric as well; given a homotopy H ( x ,  t )  of F to G,  
then fi(x, r )  = H ( x ,  1 - t )  is a homotopy of G to F .  Finally, suppose 
F ,  - F ,  and F ,  - F 3  by homotopies H ,  and H , ,  respectively. Then we 
define H ( x ,  t )  a homotopy of F ,  and F ,  by 

O l t l f ,  
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It is easily verified that H ( x ,  t )  is continuous, and that all these maps take A 
into B for every t between 0 and 1 inclusive. We leave the Cat case to the 
exercises. I 

Homotopy of Paths and Loops. The Fundamental Group 

As a first application of the concept of homotopy we will consider homo- 
topy classes of continuous maps of the unit interval I = [0, 13 into a mani- 
fold M. A map.f: I + M of this type is called a path , f (O)  its initial point, and 
.f( 1 )  its terminal point. We shall consider homotopy classes of paths under 
the additional restriction that the homotopy keep initial and terminal points 
fixed, that is, H ( t ,  0) and H ( t ,  1) are constant functions. This is exactly rela- 
tive homotopy for ( I ,  {O, 1)) and (X. {h, d ) ) ,  h = f ( O ) ,  d = f (  I) .  Given a mani- 
fold M, fix a basepoint h on M and consider the paths with b as initial point. 
If h is also the terminal point, then the path is called a loop; thus a loop is a 
continuous map .f: I + M such that f ( 0 )  = h = f (  1). We denote its homo- 
topy class by [.f], meaning always relative homotopy. Among these classes is 
that of the constant loop eb(s) = h, 0 I s I 1. If this is the only homotopy 
class and M is connected, then we say M is sintply connected; this means that 
every loop at h can be deformed over M to the constant loop. It is rather 
easy to see (Exercise I )  that this property does not depend on the choice of b 
and is equivalent to the statement that any closed curve (continuous image 
of S ’ )  may be continuously deformed to a point on M .  

Paths, loops, and their homotopy classes are very useful in the study of 
spaces from the point of view of algebraic topology, for an important objec- 
tive is to assign algebraic objects, such as groups, to spaces in such a way 
that they depend only on the topology of the space, that is, are invariant 
under homeomorphism, and thus “measure ” topological features. We shall 
illustrate this process in this chapter for the case where our spaces are 
manifolds. The restriction to manifolds is not essential but is for convenience 
only. 

If M is a connected manifold andf, g are paths on M with the terminal 
point j’( 1) coinciding with the initial point g(O), we may clearly combine 
these to a single path / I  after readjusting the parametrization; in fact, 

is obviously a continuous map / I :  I + M traversing the image offfollowed 
by that of g. We shall call this the product off and g, denotedf* g. This 
product has the following properties with respect to (relative) homotopy: 

(ii) Let .f( 1 )  = h = y(0) and suppose .f= eb .  Then eh * y 
0)  .f* (g * 17) - (.f* 9) * h. 

g. Si- 
milarly, if g = p,, , thenf* e,, -.I: 
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(iii) Iffl -f2 and g, - g 2 ,  thenf, * g1 -fi * 9 2 -  

(iv) If g(s) =f ( l  - s), and s =f(O),  b = f(l) ,  then f *  g - eb and 
9 *f - e, .  

(v) If F :  M + N is continuous and f ’  = F oJ; g’ = f o  g, then 
( f*  gy =f ‘  * 9’. 

The verification of most of these properties is left as an exercise. In each 
case a homotopy H ( t ,  s) having the given properties must be constructed; as 
a sample we verify (ii). By definition eb * g(s) = b for [0,3] and eb * g(s) = 

g(2s - 1) for [+, 11. We define H(s ,  t )  in the following way: 

It is useful to see how this map H: I x I + M maps various portions of the 
unit square in Fig. VI.10. The shaded portion is mapped onto b = g(0) and 
each horizontal segment in the unshaded part, as for example the dotted line, 
is mapped onto the image of g with the parametrization modified propor- 
tionately. For property (iv) we have a diagram as in Fig. VI.ll with the 

‘t ‘t 

Figure V1.10 Figure VI.11 

shaded portion mapping on b and the dotted segments mapping on the 
images off; g, respectively, by a linear change in parameter. In verifying 
properties (i), (ii), and (iv) (Exercise 7) such diagrams are useful. 

We are now ready to give an example of a group “assigned” to a mani- 
fold M, the fundamental group of M (at the basepoint b). It is an important 
algebraic invariant of a topological space or manifold and is often called the 
Poincart group after one of the founders of algebraic topology. 

(6.3) Theorem Let n, (M,  b )  denote the homotopy classes of all loops at 
b E M .  Then n,(M, b)  is a group with product [f][g] = [ f*  g]. I f F :  M + N is 
continuous, then F determines a homomorphism F,: n l ( M ,  b )  + n, (N,  F(b)) 
by F,[f] = [ F  0 f]. I f G  is homotopic to F relative to the pairs ( M ,  b )  and 
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( N ,  F(b)),  then F ,  = G , .  Finally, when F is the identity mapping on M ,  F ,  
is the identity isomorphism, and ( F  0 G ) ,  = F ,  0 G ,  for compositions of con- 
tinuous mappings. 

Proof The product is well defined since (iii) above assures us that 
[ f * g ]  is independent of the representatives f and g chosen from [ f ]  and [g] .  
By (i) it is associative; and (ii) and (iv) give the existence of an identity [eb] 
and inverse. Thus n , (M,  b )  is a group. It follows from (v) that F :  M -+ N 
induces a homomorphism F,,  and the last statement of the theorem is 
immediate from the definitions. Finally if H :  M x I -+ N is a homotopy of F 
and G, then H (  f ( x ) ,  t )  is a homotopy of the loop F ,  f = F 0 f and 
G ,  f = F 0 9. I 

We have some immediate corollaries, the first of which spells out the 
meaning of the statement that the fundamental group is a topological 
" invariant." 

(6.4) Corollary If M1 and M 2  are homeomorphic and b , ,  b2 correspond 
under the homeomorphism, then the mapping F ,  is an isomorphism of the 
corresponding fundamental groups nl(Mlr  b , )  2 n 2 ( M 2 ,  b2) .  

Proof If F :  M ,  -+ M 2  is the homeomorphism and G :  M 2  -+ M ,  its 
inverse, then F ,  and G ,  are isomorphisms, since F ,  0 G ,  and G ,  0 F ,  are the 
identity isomorphisms by the last statement of the theorem. I 

If the identity map of M to M is homotopic to the constant map of M 
onto one of its points b, then M is said to be contractible (to b).  For example, 
any open subset of R" which is star-shaped with respect to a point b is 
contractible since H(x ,  t )  = (1 - t )x  + tb  is such a homotopy. For contrac- 
tible spaces we have the following: 

(6.5) 
element alone. It follows that M is simply connected. 

Corollary If  M is contractible to b, then n, (M,  b )  = {e} ,  the identity 

Proof Iff'is a loop at 6 ,  then it is homotopic to the constant loop eb by 
H (  f (s), r), 0 I s, t I I .  This shows that nl(M, b )  = {I}. To deduce simple 
connectedness from this is exactly Exercise 1. It is even simpler to prove it 
directly from the definition using again the mapping H .  Of course, there are 
simply connected spaces which are not contractible, the sphere S", n > 1, 
being the simplest example (see Corollary 7.14 below). I 

An interesting application of these ideas arises when we consider line 
integrals along piecewise differentiable paths on M .  Let o be a one-form on 
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M and suppose p ,  q E  M .  If S , ,  S ,  are two such paths of M from p to q it is 
natural to ask whether or not 

One knows that in general they are not equal, even in very simple cases (see 
Exercise 10). However, the standard theorems of advanced calculus on 
independence of path may be generalized to manifolds with essentially the 
same proofs. We shall state the results and sketch the proofs. 

(6.6) Theorem Let w be a one-form on a manifold M such that dw = 0 
everywhere, and let S , ,  S ,  be homotopic piecewise differentiable paths from 
p~ M to q E  M .  Then 

f s ,m = fs,o- 
Proof (in outline) If S ,  and S ,  are C' curves homotopic by a differ- 

entiable mapping H of I x I into M ,  then this result is a straightforward 
application of Theorem 5.7 (Stokes's theorem for the unit square. In the 
general case the (continuous) homotopy H of the piecewise differentiable 
curves must be altered as follows. First I x I is subdivided by vertical and 
horizontal lines (Fig. VI.12) so that it is differentiable on each boundary 
segment and so that H carries each subrectangle Qij into a single coordinate 
neighborhood U .  Then the techniques of Section V.4 are used to alter H 
successively to a homotopy fi which is dflerrntiable on each Q i j .  From this 
point the proof follows the usual one of advanced calculus. The argument 
is as follows: 

The new homotopy fi maps the edges of the square Q = I x I into the 
paths S , ,  q, - S ,  , p ,  respectively, as we go around d Q  counterclockwise. The 
images of the left and right vertical edges are the constant paths p and q. (See 
Fig.VI.12.) Since the line integral of w over a constant path is zero, we have 

f i * Q  = jSlw + i-s2w = Jslw - s, w. I, 2 

On the other hand, it is easy to check that if we denote the oriented squares 
of the subdivision by Qij, then line integrals over the same path in opposite 
directions cancel out, and we have 

By Theorem 5.7 and the remarks preceding it, 

f i *w= df i*w.  iQij 'Qij 
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(1.0) 5 

Figure V1.12 

Since &*to = fi* dw = 0, we see that js, w - js, w = 0, which was to be 
proved. I 

Just as in the case of domains of h", this theorem has the following 
corollary: 

(6.7) Let w he a C" one-forni on a .!imply connected nianijold M 
and suppose that (lo = 0 everywhere. Then there is a C" function f on M such 
that Q = (if: l f  f and g are two such jirnctions, then f - g is constant. 

Corollary 

Proof' We choose a fixed basepoint h e  M and define f at any P E  M by 
choosing a piecewise differentiable curve S from h to p and setting 
f ( p )  = js (0. Theorem 6.6 assures us that this defines a function on M .  The 
remainder of the proofdeals with purely local properties; we must show that 
fis a C' function with the property that df = w. If we show the latter fact, it 
will follow that f is C" because we have assumed w to be C". Changing the 
basepoint changes f by an additive constant-the integral of w along the 
path between the old and new basepoints-hence does not change dfat all; 
therefore i t  is enough to show that (if= w at the basepoint. Let U ,  cp be a 
coordinate neighborhood of the basepoint b. We suppose that x l ,  . . . , x" are 
the local coordinates and that cp(b) = (0, . . . , 0) and cp( U )  = B: (0) and we let 

J(.Y', . . . , x") denote the expression forSin local coordinates. Then denoting 
w in local coordinates by = u,(.Y) dx'  + ... + a,(x) dx", we have, by 
definition 

j ' ( x )  = ). cI I (x)  clx1 + ... + a,(x) dx", 

the line integral along any path C from (0, ..., 0) to ( X I ,  ..., x"). We must 
' C  
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show that dflaxj = a j ,  !.= 1, . . . , n, at x = (0, . . . , 0). However, this is im- 
mediate from the definitions: 

1 
(f(0, . . . , h, . . . , 0)  - f(0,. . . , 0) )  

aj(O, . .. , X J  . . .O) dx' 

= aj(O, . . . , 0). 

This completes the proof, except for the last statement, which is obvious: 
d(f -  g) = w - w = 0 so that f -  g = constant on the (connected) mani- 
fold M .  I 

We remark that in terms of the expression of w in local coordinates, 
dw = 0 is equivalent to (da,/dxj) - (daj/dxi) = 0, 1 I i, j I n. For one- 
forms on R", this is usually stated by saying that the curl of the vector field 
a,(d/dx') + ... + a,(d/dx") associated to w vanishes (see Apostol [l]). 

The concept of fundamental group and the techniques of this section are 
intimately related to the notion of covering manifold and of properly discon- 
tinuous group action on a manifold and will allow us to complete the study 
of these phenomena, begun at the end of Chapter 111. We will do this in the 
last section of this chapter. 

1. 

2. 

3. 

4. 

5 .  

6. 

Exercises 

Prove that a necessary and sufficient condition that every closed curve 
in a connected space M be continuously deformable to a point is that 
n l ( M ,  b)  = 1 for some be  M .  
Let a, b be points of a connected manifold M and show that n, (M,  a )  
and nl(M, b )  are isomorphic. 
Show that 7r1 ( M  x N ,  (a, b))  is naturally isomorphic to 

Show that n , ( S ' )  z Zand a,(S2) = {I}.  Use this to show that S2 and T 2  
are not homeomorphic. [To show 7r1(S2) is trivial one must show as a 
first step that any loop at N, the north pole, is homotopic to one 
contained in the punctured sphere S2 - {x} (where x is a point distinct 
from N).] 
Show that if G is a connected Lie group, then n1 (G) is Abelian. Use e as 
basepoin t . 
If F ,  G :  M + N are continuous maps of C" manifolds, F is homotopic 
to G, and F ( p )  = q = G ( p ) ;  then F ,  (nl(M, p ) )  and G ,  (nt(M, p ) )  are 
conjugate subgroups of n,(N, q) .  [Note: We do not assume that the 
homotopy H of F and G is constant on p. ]  

% ( M ,  a )  x n,(N, b). 
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7. Verify properties (i)-(v) used in the proof of Theorem 6.3. 
8. Prove that if we use only piecewise differentiable paths and piecewise 

differentiable homotopies to define n , (M,  b), the group obtained is the 
same as when continuous paths and homotopies are used. 

9. Show that C" homotopy of manifolds (without boundary) is an equivr 
alence relation. 

10. Show that on R2 the following integrals depend on the path chosen: 
(a) the line integral of w = y dx + d y  from p = (0,O) to q = (1, I), 
(b) the line integral of w = ( - y / r 2 )  d.u + ( x / r 2 )  dy ,  rz = x2 + y 2  [in 
the latter case, we exclude (0, O)]. 
In either case is dm = O? 

7 Some Applications of Differential Forms. 
The de Rham Groups 

It  is our purpose in this section to obtain a few results about manifolds 
which are traditionally in the domain of algebraic topology. We do not 
assume a knowledge of this subject, but we have mentioned briefly in the 
Exercises to Section V.8 the following definitions, with some consequences 
which follow from the results of that section. 

(7.1) Definition A k-form w on a manifold M (with possibly nonempty 
boundary) is said to be closed if do = 0 everywhere and is said to be exact if 
there is a (k - I)-form q such that dq = w. 

We recall some facts about the operator d and apply them here. Let 
Z k ( M )  denote the closed k-forms on M ;  since Z k ( M )  is the kernel of the 
homomorphism d :  K ( M )  -+ A k + l ( M )  it is a linear subspace of A k ( M ) .  
Similarly the exact k-forms Bk(M)  are the image of d :  A k - ' ( M )  + A k ( M )  
and thus a linear subspace. Moreover d2 = 0 implies that B k ( M )  c Z k ( M )  
which allows us to form the quotient H k ( M ) .  

(7.2) Definition The quotient space H k ( M )  = Z k ( M ) / B k ( M )  is called the 
lie Rkam group ojdimension k of M .  If n = dim M ,  we denote by H * ( M )  the 
direct sum 

H * ( M )  = H O ( M )  0 ... 0 H " ( M ) .  

Note that H * ( M )  = Z ( M ) / B ( M ) ,  where Z ( M )  and B ( M )  are the kernel 
and image of d :  A(M) -+ A ( M ) ,  respectively (and the direct sums of the 
Z k ( M )  and B k ( M ) ,  k = 0, 1, . . . , n) .  Although called de Rham groups, H k ( M ) ,  
k = 0, ..., n = dim M ,  are actually vector spaces over R and, in fact, it is 
easy to verify that H * ( M )  is an algebra with the multiplication being that 
naturally induced by the exterior product of differential forms. This follows 
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directly from the basic property of d which asserts that when cp E A r ( M ) ,  
$ E A\”(M) ,  then 

d(CpA$)=dCpA$ -b ( - l ) ’ c p A d $  

(from which it follows that Z ( M )  is an algebra containing B ( M )  as an ideal). 
The great importance of the de Rham groups and the de Rham algebra 
H * ( M )  stems from de Rham’s theorem: 

(7.3) Theorem There is a natural isomorphism of H * ( M )  and the cokomo- 
logy ring of M under which H k ( M )  corresponds to the kth coltomology group. 

Since we do not assume any knowledge of algebraic topology the coho- 
mology groups will not be defined here, nor will any proof of this important 
theorem be attempted. The reader is referred to Warner [ l ]  and the refer- 
ences found there. We do remark, however, that among the consequences are 
the facts that whenever M is compact the dimension of H * ( M )  is finite and 
that in any case H * ( M )  together with its structure as an algebra are topolo- 
gically invariant, that is, if M I  and M ,  are homeomorphic, then H*(Ml) and 
H * ( M , )  are isomorphic as algebras. Finally we mention that the duality 
which appears in algebraic topology between homology and cohomology 
groups of a space extends to a duality of homology groups and de Rham 
groups via integration and Stokes’s theorem-a further motivation for the 
earlier sections of this chapter. Of particular interest to us is the fact that we 
can use these de Rham groups, without using algebraic topology, to obtain 
interesting results about manifolds. Samples are given below and in the 
following sect ion. 

It is a basic property of differential forms that a C‘ mapping 
F :  M I  + M ,  defines a corresponding homomorphism F * :  A ( M 2 )  -+ 

A ( M l ) .  Since F*d = dF*,  it follows that F * ( Z k ( M 2 ) )  c Z k ( M , )  and 
F*(Bk(M,) )  c B k ( M , ) .  Therefore F* induces a homomorphism, which we 
also denote by F*, of H k ( M 2 )  into H k ( M , ) .  Since F* is an algebra homomor- 
phism on forms, F*: H * ( M , )  + H * ( M , )  is also an algebra homomorphism. 
In summary, with the above notation we have the following lemma: 

(7.4) Lemma A C“ riiapping F :  M 1  + M 2  induces an algebra homornor- 
phisnt F * :  H * ( M , )  + H * ( M , )  which carries H k ( M 2 )  (linearly) into N k ( M , )  
for all k. If F is the identity inappiny on M ,  then F * :  H * ( M )  + H * ( M )  is the 
identitjs isomorphism. Under coinposition qf mappings we have 
(G F)* = F* G*.  

Using this lemma, we can obtain a weak version of the invariance of 
H * ( M )  under homeomorphism mentioned above. 
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(7.5) Corollary I f  M ,  and M 2  ure d$feomorphic manifolds, then H * ( M , )  
und H * ( M , )  are isomorphic rings. 

Proof Let F :  M ,  -, M ,  be a diffeomorphism and F-'  its inverse. Then 
F-1* F* = (F F-')* and F* n F-l* = (F-' F)* are both the identity 
isomorphism, hence F* is an isomorphism with inverse F- '* .  I 

Although the groups H k ( M )  are difficult to compute using only the tools 
which we have available, which do  not include algebraic topology, we can 
obtain information in special cases-information which we can then use in 
some applications. 

(7.6) Theorem Let M be u C' manifold with u jn i te  number r of compo- 
nents. Theri H o ( M )  = V'. a oector space over R of dimension r. 

Proof l \ ' (M) consists of C"-functions on M and Z o ( M )  of those func- 
tions f for which df  = 0. There are no forms of dimension less than zero so 
B o ( M )  = (0) and H o ( M )  = Z'((M). We have seen previously that d f =  0 if 
and only if  .f is constant on each component M , ,  . . . , M r  . Thus H'(M)  z 
{(u, ,  . . . , q): ui E R ) ,  where (a,, . . . , a,) corresponds to the function taking the 
constant value a; on M i ,  i = 1, ..., I'. I 

(7.7) Remark It follows that H'({p}) z R, ( p )  being a zerodimensional 
manifold; this determines the de Rham groups of a point space-since 
Ak({pj) = 0, Hk({pJ) = 0 for k > 0. 

As an immediate consequence of Corollary 6.7, we have the following 
theorem: 

(7.8) Theorem 
simplj. connected, [hen H ' ( M )  = (0). 

I f '  u compact manifold M or manifold with boundary is 

Proof Suppose o is a closed one-form on M ,  that is, d o  = 0. Then there 
exists a functionfon M such that df = w, thus Q is exact. Since every closed 
one-form is exact, H ' ( M )  = (0). I 

In addition to this information concerning H o ( M )  and H ' ( M )  we may 
also prove the following statement concerning the highestdimensional 
de Rham group H"( M ) ,  n = dim M. 

(7.9) Theorem 
dM = 0. Then H"( M )  # {O). 

Let M be a cornpact orientable manifold of dimension n with 
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Proof Let R be a volume element; it is an n-form, which is never zero at 
any point and which gives the orientation of M .  Then by Theorem 2.2(iii), 
JM R > 0. Suppose R = dw for some ( n  - 1)-form w. Then by Stokes's 
theorem 

s , R =  ' M  1 d o =  l,,w = O 

since dM = Qr. On the other hand dR = 0 since all (n + 1)-forms vanish on 
M .  Thus R determines a nonzero class in H " ( M ) .  I 

The Homotopy Operator 

In order to obtain some further results concerning de Rham groups we 
will introduce a special operator .%, the homotopy operator. Let A t R" be 
either an open set or the closure of an open set; in the latter case we have in 
mind regular domains, cubes, simplices, and so on. Note that for either 
choice of A, I x A is the closure of an open set, its own interior, in 
R x R" = R"". When A is not open, a C" k-form w on A is the restriction 
to A of a k-form & on an open set U ,  A c U-by definition of differentiabi- 
lity of functions (in this instance its components) on A .  Our restrictions on A 
ensure that all derivatives of any C" function f on A are defined at every 
P E  A independently of the open set U and extension7which may be needed 
to define them at boundary points. This is a consequence of the continuity of 
all derivatives of fon  U and of the fact that every P E  A is either an interior 
point-where the derivatives are already defined without any 7-or the limit 
of interior points. It follows that for a C" form w on A ,  do is defined, even at 
boundary points. 

(7.10) Definition The homotopy operator ,f is,defined to be an R-linear 
operator from Ak+'(I x A )  -+ K(A). On monomials .% is defined as fol- 
lows: If w = a(t, x )  d x i 1 r \ . * . ~ d x i k + ' ,  we set . f w  = 0; and if 
w = a(t, x )  dt A dxi l  A * * * A dxik, we define .fw by 

. f w  = (,d a(t ,  x )  df) dxi l  A .  . . A dxik. 

Having been thus defined for monomials, we extend ,9 to be R-linear on 
Ak+'(l x A )  with values in Ak(A). 

We will denote by i , :  A -+ I x A the natural injection i ,(x) = ( t ,  x )  and 
then w, will denote i:w; in particular wo = igw and w1 = i:w. With these 
definitions and notations we find that .% has the following basic properties. 

(7.11) Lemma 
tion to being R-linear has the following properties: 

The homotopy operator 3: Ak+'(I x A )  -+ A k ( A )  in addi- 
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( i )  it commutes with P j u n c t i o n s  which are independent o f t ;  
(ii) for ull W E  Ak+l(I x A )  it sati.$es the relation 

.f do., + d.fw = W' - wo . 
Proof Iffis independent oft, we may consider it both as a function on 

I x A and on A .  Since it is independent o f t  it can be moved through the 
integral sign in the definition of .1, thus Y ~ w  = f. fw.  

For the second property we must verify the equation directly; it is 
enough to do so for monomials since d, 9, i; , and if are all R-linear. First 
we consider the case where o does not involve dt, in other words 
o = a ( t , x ) d x i 1 ~ . . . r \ d x i k t l  . Then . f o  = 0 so that d.fw = 0 and 9 do is 
given by 

. $ d o  = (io' i : d t )  d x i I ~ . * * ~ d x i k + I  = (a(1,x)  - t l ( O , x ) ) d x i l ~ . - . ~ d x i k + l .  

But the right side is then exactly i fw - ixo = w1 - w o ,  which thereby 

Now suppose that w = a(t, x) dt A d x i l  A . * .  A dxik. Computing 9 dw, we 
establishes the equality for this case. 

see that 
n l a a  

.f dw = - ( jo axj d t )  t / x j A  dxi l  A * . .  A dxik. 
j =  1 

On the other hand using the Leibniz rule to differentiate under the integral 
sign (see Exercise 1.6), we may compute d 9 w :  

1 

d,fw = d(  lo a(t, x )  d t )  dxi*  A . .  . A dxik 

Adding these expressions we see that 9 dw + d.fw = 0. On the other hand 
since i; dt  = 0 = iX dt, we have 0 = i f w  - igo = w1 - wo . Thus in all 

The following consequence is usually referred to as Poincare's lemma. 
We continue to denote by A a subset of R" which is either open or is the 
closure of an open set. 
(7.12) Lemma If A is star-shaped, then H k ( A )  = {O}for all k 2 1. Hence 
H*( A )  is isomorphic. to the cohomology ring of a point. 

Proof' We recall that A is star-shaped if it contains a point 0 such that 
for any p E A ,  the segment @ lies entirely in A. By suitable choice of coordin- 
ates we may suppose that 0 is the origin. We define H :  I x A --t A as 

cases (ii) holds. I 

H ( t ,  xl, ...) x") = ( tx ' ,  ..., tx"). 
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If w is a k-form on A, then H*w is a k-form on I x A. In  the definition of 9 
we defined i , :  x + (0, x) and i , :  x + (1, x); therefore H 0 i , :  A + (0) and 
H 0 i , :  A + A is the identity. Applying .f to Ak(l x A )  and using the fact 
that Ak({O}), a point space, is trivial for k 2 1 we have 

d.P(H*o) + 9 d(H*w) = i f (H*w)  - i:H*w, 

so that if d o  = 0, then dH*w = 0 and 

dfH*w = ( H  0 i l )*w - ( H  0 io)*w = w. 

Therefore every closed k-form w on A is exact if k 2 1. If k = 0, then we may 
use the fact that A is connected to see that H o ( A )  z R. I 

In fact, the homotopy operator .f can be defined and used under more 
general hypotheses. We have supposed that A is a particular type ofsubset of 
R", but it is possible to extend the definition to manifolds with or without 
boundary. As a sample we shall prove the following theorem. 

(7.13) Theorem Let M and N be compact manifolds and assume dM = 0. 
Suppose that F and G are C" mappings of M into N which are C" homotopic. 
Then the corresponding homomorphisms F* and G* of H * ( M )  into H * ( N )  are 
equal. 

Proof We shall use our previously defined operator 9 to construct a 
similar operator 9: Ak+'(l x M )  + A k ( M ) .  First we note that M may be 
covered by a finite collection of coordinate neighborhoods, U i  , 'pi  with 
q i ( U i )  = B;(O), n = dim M and i = 1, . . . , r, for which we have a subordin- 
ate C" partition of unity {fi}, suppfi c U i .  Then any (k + 1)-form w on 
I x M can be written as a sum of forms with support in I x U i ,  

w =  p o i ,  w i = f ; w .  
i= 1 

We may consider fi, or any functions on M ,  as being also functions on 
I x M which are independent of t .  We define .f to be additive so that 
.fw = .ami,  which leaves only the problem of defining 9 on forms with 
support in one of the neighborhoods I x Ui. 

When o has support in a neighborhood I x U ,  where U ,  q is a coordin- 
ate neighborhood with q ( V )  = B;(O), we proceed as follows. Let 
@: I x U I x BY(0) be defined by @(t, p )  = ( t ,  cp(p)). Then define .fa on 
I x U ,  using our previous definition of 9 for I x B;(O), by Yo I = 
@*(.f(@-'*w)), the .f on the right side being the operator defined earlier, 
and further, let . f w  = 0 on M - U .  This defines a C" k-form on M ,  the 
image ofa (k + 1)-form on I x M .  By Lemma 7.1 1 for this form w we have the 
relation 9dw + d9w = o1 - wo . Now since 9 d  + dJ is an additioe oper- 
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ator, then for an urbirrur~~ W E  Ak+ '(I x M) we may apply the decomposi- 
tion w = 1 q to obtain 

.f dW + d.#P, = .a d c Wi + d<9 c wj 

= c 9 dwi + c d.fWi = c ((WJ1 - (Wi),) 

= 0 1 - - W O .  

Finally, to complete the proof we let w be any closed k-form on N and we 
must show that G*co - F*w is exact. Now let H :  M x 1 -+ A4 be the homo- 
topy connecting F and G. Then F ( p )  = H ( p ,  0 )  = H 0 i, and G ( p )  = 
H(p ,  1 )  = H 0 il, where i,(p) = ( t ,  p )  as before. Since dH*w = H* dw = 0, 
we have then, 

dtPH*s = itH*w - i$H*o = G*w - F*o ,  

as was to be shown. I 

~ntuit~on tells us that we cannot contract a sphere, or torus, over itself to 
a single point. This feeling is verified by the following corollary to 
Theorem 7.13. 

(7.14) Corollary Let M be a compact orientuble C" manifold (dim M > 0) 
with dM = 0. Then M is not contractible. 

Proof By the previous theorem with M = N ,  if i is homotopic to the 
constant map F :  M -+ {po), then i* = F* as homom~rphisms on the groups 
H k ( M ) .  However, i* is the identity isomorphism and F* is a homomorphism 
of H k ( M )  into H k ( ( p O ) ) ,  which is (0) for k 2 1. This contradicts Theorem 7.9 
if dim A4 > 0. I 

1. 

2. 
3. 

4. 

Exercises 

Let to be a closed one-form on a compact manifold M .  We define a 
mapping F,: n l ( M ,  b )  -+ R by the following method. Let$ [0, 11 -+ M 
be a piecewise C' loop S at b and denote by [ f ]  the corresponding 
etement of nl(M, h). We define F , ( [ f ] )  = js a .  Show that F,  is a homo- 
morphism whose kernel contains the commutator subgroup of the fun- 
damental group. [Hinr:  use Corollary 6.7.1 
Compute H*(S1) and N * ( S 1  x S ' ) .  
Let M be a manifold, N a submanifold of M ,  and R :  M -+ N a C" 
mapping which leaves N pointwise fixed. Show that R*: H * ( N ) +  
H * ( M )  is an injective homomorphism. 
Let M = M I  x M ,  and let Pi:  M -+ M i  be the natural projections. 
Show that P t :  H * ( M , )  -+ N * ( M )  is an injective homomorphism. 



278 V I  I N T E G R A T I O N  O N  M A N I F O L D S  

5. Show that for n > 1, H'(S")  = {O} by applying the Poincari: lemma in 
turn to each of the two coordinate neighborhoods U = S" - ( N }  and 
V = S" - { S } ;  N being the north pole, S being the south pole, and the 
coordinate maps being stereographic projection onto R". 

8 Some Further Applications of de Rham Groups 

In this section we use the information on de Rham groups accumulated 
in the previous section to obtain some very interesting facts which one 
customarily demonstrates by use of algebraic topology. In particular, it is 
proved here that there is no vector field on S2 which does not vanish at some 
point-a fact to which we have frequently alluded. In a very beautiful little 
book, Milnor [2] has shown how many purely topological results can be 
obtained by differentiable methods. Using this idea and the results of 
Section 7, we give a demonstration of the Brouwer fixed point theorem, 
following the author's note (Boothby [ 13). 

We begin our proof of this last mentioned theorem by establishing a 
lemma. Let D" denote @(O), the closed unit ball in R". Then D" is a manifold 
with boundary, dD" = S"-' .  

(8.1) Lemma There is no C" map F :  D" + dD" which leaves aD" pointwise 
,fixed. 

Proof Suppose that there existed such a map F and let G denote the 
identity map of aD" + D". Then F 0 G = I ,  the identity map of aD" + do". 
This implies that G* 0 F* = ( F  0 G)* induces the identity isomorphism on 
H*(aD"). Therefore the homomorphism F*: H"- ' ( d o " )  + H"- ' ( D " )  must be 
injective, that is, ker F* = (0). Since H"- ' ( D " )  = (0) by PoincarC's lemma, it 
follows ker F* = H"- ' (aD")  and therefore that H"- ' (aD")  = {O}. However, 
because aD" = S - ' ,  an orientable and compact manifold without bound- 
ary, Theorem 7.9 shows that H"- ' ( a D " )  = H " - ' ( S " - ' )  # {O}. This contra- 
diction implies that no such map F exists. I 

Using this lemma we may establish (as in Milnor [2]) a very well-known 
theorem of algebraic topology, the Brouwer fixed point theorem. 

(8.2) Theorem (Brouwer) Let X be a topological space homeomorphic to 
D". Then any continuous map F :  X + X has afixed point, that is,jor each F 
there is at feast one xo E X such that F(xo)  = xo . 

Proof As a first step we note that it is enough to prove the theorem for 
D". Let H :  D" + X be a homeomorphism, and let F :  X + X be any contin- 
uous mapping. If H - ' o  F o  H :  D" + D" has a fixed point y o ,  then 
xo = H ( y o )  is fixed by F. 
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Moreover, even in the case of D", it is enough to establish the property 
for C" maps F :  D" -+ D". To see this we suppose every such C" map has a 
fixed point and assume there is some continuous map G :  D" -+ D" which has 
no fixed point. Then l\G(x) - x// is bounded away from zero on the 
(compact) set 5", and we may find an E > 0 such that I/G(x) - XI/ > 3 ~ .  
Using the Weierstrass approximation theorem (Lemma V.4.9), or the 
approximation theorem given in Exercise 2, we approximate G to within E 

by a C" mapping G I ;  then ((G(x) - G,(x)ll < E for all XED". However, 
since the values G,(x) are not necessarily in D" for every x E D", we replace 
G ,  by F ( x )  = ( 1  + ~ j - ' G ~ ( x ) .  Clearly F ( s )  is defined and C" on D" and 
F(D") c D". Since llG(x)l/ 2 I ,  it follows that IlC,(x)ll < 1 + E and 
\lF(x)/\ -< 1 for all x E D", Thus F maps D" into 5" and is C". For x E D", 

I I W  - W I I  = lIG(4 - (1 + E)-'Gl(x)l/ 

= ( 1  + E ) - ' / ~ E G ( x )  + G(x) - G~(x)] /  

5 &llG(x)ll + IIG(x) - G1fx)ll = 2 E *  

From these inequ~lities we obtain a contradiction to the assumption that 
every C" map F :  D" -+ D" leaves some point fixed. Namely, for every x E D" 
we have 

I I W  - XI/ = ll(G(4 - 4 - (Gfx) - W)/l 
2 IIGW - XI/ - I I W  - W l l  
2 3 E  - 2 E  = E.  

This contradiction shows that if every C" map of D" to D" has a fixed point, 
then so must every continuous one. The proof of the theorem is then 
completed by the following lemma. i 

(8.3) Lemma Is F :  D" -+ D" is a C" mup, then F has a f i x e d  point. 

Proof This is again a proof by contradiction. We suppose there exists 
an F :  D" -+ D" which is C" and has no fixed point. We shall use F to 
construc~ a C" map from P: D" -+ SD" which leaves 3D" pointwise fixed. 
Namely, given __- x E 5", let F(x) be the boundary point obtained by extending 
the segment F ( x ) x  past x to the boundary of D" (Fig. VI.13). In particular, if 
x E JD", then F(x) = x and, in any case, F(5") c SO". To see that F is C" we 
express F explicitly using vector notation in R". Namely, F(x) = x + 2u, 
where x denotes the vector from (0, ..., 0) to x = (x', . .., x"), u is the unit 
vector directed from F(x) to x and lying on this segment, more precisely, 
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Figure V1.13 

and where 3, = - ( x ,  u) + [l - ( x ,  x) + ( x ,  u ) ~ ] ~ ' '  denotes the length of the 
vector on u with initial point x and terminal point F ( x )  on dD". Since F is 
C", it is easy to check that F is C". Figure VI.13 represents the intersection 
of D" with the 2-plane determined by three points: the origin 0, x ,  and F ( x ) .  
The scalar 2 is the unique nonnegative number such that IJx + 2ull = 1. 
Since F is C", u is C", so wherever the expression under the radical is 
positive, then & x )  is also C". However, 1 - ( x ,  x) 2 0 with equality only if 
x E S"- l ; and ( x ,  u)' 2 0 with equality only when u is orthogonal to x ,  that 
is, when x - F ( x )  is orthogonal to x .  However, (x, u) = 0 cannot occur 
when ( x ,  x )  = I ,  that is, on a point of Sn-', since in this case F ( x )  would be 
exterior to D". Thus 1 - ( x ,  x )  + (x, u)' > 0 on D" and F is C". The exist- 
ence of F contradicts Lemma 8.1, so F has a fixed point, which completes the 

I proof of Brouwer's fixed point theorem. 

As another application of these ideas we prove the following theorem 
concerning the antipodal map A ( x )  = - x  on the unit sphere S"-' of R". 

(8.4) Theorem r f  n is odd, then there is no C" homotopy between the anti- 
podal map A :  s"-' -+ s"-' and the identity map 0j-S"". 

Proof The sphere is an orientable manifold, in fact we may define the 
oriented orthonormal frames of T,(S"-I) at each X E  S"-' in the following 
fashion. Each x E S"- determines a unit vector x = E, and the elements 
of T,(S"-') correspond to the vectors in the orthogonal complement of x. If 
el, . . . , en- is an orthonormal frame of T,(S"- ') in the induced metric of R", 
then x, e l ,  ..., en-l  is an orthonormal frame of R"-we use the natural 
parallelism to identify vectors at  distinct points of R". Two frames, 
e l ,  . . . , en- and e;,  . . . , eb- at x will be said to have the same orientation if 
the corresponding frames x, e l ,  . . ., en- and x, e;,  . . . , eb- do. Then from 
the canonical orientation of R" we obtain an orientation of S"- ' by choosing 
as oriented that class of frames for which x, el,  . . . , en- is an oriented frame 
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of R". Let R be the unique (n  - 1)-form on S"-' which takes the value + 1 
on all oriented orthonormal frames el, . . . , en- Since A :  S"-' --* S"-' is the 
restriction to S"- of a linear, in fact an orthogonal, map of R" its Jacobian is 
constant and just the map A itself. Thus under A the frame el, . . . , en- at x 
goes to the frame -el, ..., -en- at - x .  It is clear that this will be oriented 
according to our orientation of S"-' if and only if n is even so that 
x, el, ..., en-l and -x, -el, ..., -en-, are coherently oriented frames of 
R". Therefore A*R = ( -  1)"R and when n is odd, R = - A*R. 

If there were a C" homotopy connecting A and the identity, then 
R - A*R must be exact by Theorem 7.13. Since the integral over S"- of an 
exact form is zero by Stokes's theorem, this means that when n is odd, 

21' R =  (. ( R - A * R ) = O .  
s'- 1 .s"-l 

But this is impossible since the integral over S"-' of the volume element is 
positive. [For an alternative proof see Exercise 3.1 I 

We shall deduce two consequences. First, recall that although we have 
discussed orientability of manifolds at some length and have shown that 
some manifolds are orientable, for example, S"-' = do", we have never 
presented an example of a manifold which cannot be oriented. We shall 
remedy this omission now. 

(8.5) Corollary Real projective space P"( R )  is not orientable when n is even. 

Proof Suppose that it is; we know that S" is a (two-sheeted) covering 
manifold of P"(R) which can thus be obtained from S" as the orbit space of 
the group of two elements Z ,  acting on S". This action is obtained by letting 
the generator of Z ,  correspond to the antipodal map A (Example 111.8.2). If 
R is a nowhere vanishing n-form on P"(R) and F :  S" -, P"(R) is the covering 
map, then F*R = R* is a nowhere vanishing n-form on S". Moreover since 
F CJ A = F we see that A*R* = R*, which, as we have seen above, is not 
possible if n + 1 is odd. Thus P"(R) is not orientable when n is even. I 

As a second application ofTheorem 8.4 we prove the following theorem: 

(8.6) Theorem I f n  is even, then there does not exist a C"-vectorjeld X on 
S" which is not zero at some point. 

Proof We suppose that such a vector field exists and show that this 
implies that the antipodal map A and the identity map I on S" are C" 
homotopic. Let X be a C"-vector field on S" such that X is never zero. Then 
X/llXll is a C"-vector field of unit vectors (we use the induced metric of 
R"") so we may suppose to begin with that llXll = 1 on S". If x is a point of 
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S", let X, be the corresponding vector of the field. Treating R"+l as a vector 
space and thinking of x as a radius vector, we have ( x ,  X , )  = 0 for every x ,  
and we define the homotopy H :  S" x I 4 S" by 

H ( x ,  r) = (cos R ~ ) X  + (sin nt)X, . 
Then H ( x ,  t )  is C" and, since IIH(x, t)ll = 1, it defines a map of S" + S" for 
each t .  Thus H ( x ,  0) = x and H ( x ,  1) = - x  as claimed. However, the exist- 
ence of such a homotopy when n is even contradicts the previous proposi- 
tion; therefore in this case no such vector field exists. 

(8.7) Remark We have noted previously that when n is odd, then the 
vector field X, assigning to x = ( X I ,  x 2 ,  . . . , x", x"") E S" the unit vector 

I 

orthogonal to x defines a nowhere vanishing field of tangent vectors to S". It 
follows that in this case A is homotopic to the identity. 

The de Rharn Groups of Lie Groups 

We shall briefly touch on a special case of considerable interest in the 
theory of de Rham groups; in fact it is the case which may have led to their 
discovery. We suppose that G is a compact connected Lie group, for example 
SO(n),  and that 8: G x M -+ M is an action of G on a compact manifold M. 
As usual 8, denotes the diffeomorphism of M defined by 8 , (p )  = O(g, p ) .  A 
covariant tensor cp on M, in particular an exterior differential form, is said to 
be invariant if 8:q = cp for each g E G. Since d(8$cp) = O:(dcp) for every form 
cp (Theorem V.5.2), we see that if cp is invariant, dcp is also. Let K ( M )  denote 
the subspace of A k ( M )  which consists of all invariant k-forms. Then 
d(R M ) )  c R + ' ( M )  as we have just seen; and we may define z k ( M )  = 
{cp E A k ( M )  1 dcp = 0} and Bk(M)  = d ( R ( M ) )  c zk(A4), the closed invar- 
iant forms and "invariantly exact" forms of degree k. We then make the 
following definition. 

(8.8) Definition The invariant de Rham groups of M ,  denoted by f i k ( M ) ,  
are defined by f i k ( M )  = z k ( M ) / B k ( M ) .  

We note that the natural inclusion i of R ( M )  in A k ( M )  takes z k ( M )  into 
Z k ( M )  and Bk(M)  into Bk(M)  and hence induces a homomorphism 
i , :  f i k ( M )  + H k ( M ) .  In order to study this homomorphism we define an 
R-linear operator 9: A k ( M )  -, R ( M ) .  If cp E A k ( M ) ,  then let R denote the 
bi-invariant volume element for which vol(G) = 1 and define Bcp by 

gv(x1, e e . 9  xk) = 1 8,*(P(xl, xk)n* 
G 
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This operator has the following properties: 

(8.9) Lemma 9 takes a k-form to an invariant k-form, that is, 
P ( A ~ ( M ) )  c R(M). Moreooer, 

(i) i f q ~  f i ( M ) ,  then 9cp = cp; 
(ii) (19 = "Pd. 

Proof It is easy to check that , P c p ~ l \ ~ ( M )  and in fact is G-invariant: 

8 y v ( x l ,  ...) x,) = 9d8a*x1 ,  8a*xk) =j e : ~ ( 6 a * X l , . . . 7 8 a * X k ) R  
G 

= jG8:[8:dXl,..., Xk)la = [ 8g*o(P(X1,...r Xk)O 
' G  

= jG8:v(x], . . . , xk)n. 

The fact that iPcp is C" and (ii) are consequences of the Leibniz rule for 
differentiating under the integral sign. If q is G-invariant, then 8:q = cp for 
all g E G, or more precisely at each p E M ,  

~ : ~ O ( g . p ) ( x l p ? . . . ?  Xkp) = ( P p ( x l p , . . - ,  xkp). 

From this it follows that 

.qq(x], ..., xk) = t):q(x], ...) Xk)R = cp(x1, ..., xk)j 0% 
G G 

Since JG R = 1, Pcp = cp and property (i) are established. I 

The lemma leads to the following result for G, M and f i k ( M )  as described 
above: 

(8.10) Theorem The homomorphism i,: f i k ( M )  + H k ( M )  is an isomor- 
phism intofor each k = 0, 1, .. . , dim M .  

Proof Suppose that [3,] is an element of Ak(M) and that 3, is a closed 
invariant form on M belonging to the class [@I. In order to show that i ,  is 
one-to-one we need only see that if 3, = do, o E Ak-'(M), then 3, is the 
image under d of an element of f i -  ' ( M ) ,  that is, that if 3, is exact, then it is 
" invariantly exact." This follows from Lemma 8.9 since 
3, = P@ = 9 do = d(Po) and 9 % ~  R - ' ( M ) .  I 

(8.11) Remark It is also true, but somewhat harder to prove directly, that 
i ,  is onto, that is, f i k ( M )  is isomorphic to H k ( M )  for all k .  For details the 
reader is referred to Chevalley and Eilenberg [ l ]  or Greub et al. [l]. 
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This theorem, coupled with the remark, enables one to reduce to alge- 
braic form many questions about the cohomology of homogeneous spaces. 
In particular, computation of the de Rham groups of such a space can be 
converted to a problem concerning representations of the isotropy subgroup 
of a point. Consideration of these interesting questions would take us too far 
afield, however we touch very briefly on one special case. 

(8.12) Lemma Let Qe be a covariant tensor of order r on T,(G), where G is a 
connected Lie group. lf Ad g*Qe = Qe, that is, if Qe determines a bi-invariant 
tensor on G ,  then for any X , ,  . . . , X , ,  Z E g, we have 

q x l ,  . . ., [ Z ,  X i ] ,  . . . , X , )  = 0. 
i =  1 

Proof Let @ denote the bi-invariant covariant tensor on G determined 
by Oe. Given Z E ~ ,  a left-invariant vector field on G, we have seen 
(Sections IV.5 and IV.6) that Z is complete and that the one-parameter 
group action 6 :  R x G + G which it determines is given by right transla- 
tions by the elements of a uniquely determined one-parameter subgroup 
g( t )  = exp tZ by the formula 0, = R g ( , ) .  We have previously (Theorem IV.7.8) 
established the following formula for Cm-vector fields on a manifold (in this 
case on G): 

If we suppose that p = e and that X is a left-invariant vector field, then 
[ Z ,  XI is just the product in the Lie algebra 9. If we identify 9 with T,(G), we 
may write 

1 

1-0 t 
[ Z ,  X ]  = lim ~ [R,,-,,* X e ( , )  - X,]. 

Since Q is bi-invariant, R z p I ) Q  - Q = 0; thus for any X,, ..., X,E g, 

Q(R: - , ,XI ,  ..., R,* , - , )X, )  - @(Xi, ..., X , )  = 0. 

Adding and subtracting Q ( X l ,  . . ., X i -  1, R Z - r ) X i ,  . . . , R Z - r ) X , ) ,  i = 1, 
. . . , r, then multiplying by l/t and letting t + 0, we obtain the formula. 

(8.13) Corollary Every bi-invariant exterior form on a Lie group G is 
closed. 

Proof Let w be an exterior differential r-form. If w is left-invariant and 
X o ,  X I ,  . . . , X, are left-invariant, then 

r 

d w ( X o , .  . ., X , )  = C O ( X ~ ,  . . ., [ X i -  1, X i ] ,  . .., X , ) .  
i =  1 
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We previously established this formula for r = 2 (Lemma V.8.4). The 
method of proof in the general case is the same (compare Exercise V.8.3). 
The corollary is an immediate consequence. I 

Now we suppose that G acts on itself by both left and right translations. 
More formally, let G = M and let K = G x G, the direct product of Lie 
groups, and define 6 :  K x M -, M for each x E M = G and k = ( g l ,  g 2 )  E K 
by 

WG x) = Il lXIl2 (= Re2 " Lg*(x)). 

Then the K-invariant forms @ on G are exactly the bi-invariant forms. 

(8.14) Corollary Each bi-inruriunt r j u r i n  on a compact, connected, Lie 
group G determines a nonzero element ojH'(G).  

Proof By Corollary 8.13 each 4 E f ir(G),  that is, each bi-invariant 
r-form is closed. We know that if i t  is exact, then it must be of the form dd 
with 6 bi-invariant. But then it is zero, by the corollary again, since d6 = 0. 

I 

(8.15) Example Consider any compact, connected, non-Abeliun Lie group 
G,  for example, SO(n), the orthogonal matrix group (with elements of deter- 
minant + 1) for n 2 3. We claim that H 3 ( G )  # {O}. We consider that the 
exterior three-form q ( X ,  Y ,  Z )  = ( [ X ,  Y ] ,  Z )  on G ;  ( X ,  Y )  denotes the bi- 
invariant inner product. Since X ,  Y E  g implies that [ X ,  Y ]  is left-invariant 
and since Ad(g) is an automorphism of g, it follows readily that cp is bi- 
invariant. The alternating property of cp follows from [ X ,  Y ]  = -[ Y ,  XI 
together with the symmetry of ( X ,  Y ) .  By Corollary 8.14, cp is closed and if it 
is not zero, it determines an element of H 3 ( G ) .  Suppose that cp = 0. Then for 
all X ,  Y ,  Z E ~ ,  we have cp(X, Y ,  Z )  = ( [ X ,  Y ] ,  Z )  = 0. In particular, 
( [ X ,  Y ] ,  [ X ,  Y ] )  = 0 so that [ X ,  Y ]  = 0 for all X ,  Y E  g. This means, accord- 
ing to Section IV.7, that the one-parameter groups of G commute. It follows 
that there is a neighborhood U of e which consists of commuting elements. 
By the connectedness of G it follows that the elements of U generate G, 
which is therefore commutative, contrary to assumption. This means that cp 
determines a nonvanishing element [cp] of H 3 ( G ) .  

Exercises 

1 .  Let A be a closed subset of the metric space R" and$ A + R a contin- 
uous bounded function. Show that there is a continuous extension offto 
all of R" (Tietze-Urysohn extension theorem). 

2. Given 6 > 0, let gn(.x) be a nonnegative C" function on R" such that 
supp ga c B:(O) and JRw ya(x) dx' ... dx" = 1. Letfbe a continuous func- 
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3. 

4. 
5. 

6. 

7. 

8. 

tion defined on an open subset U and let K be compact with K c U .  
Given E > 0, choose 6 > 0 so that: (i) 6 is less than the distance from K 
to R" - U and (ii) for llyll < 6 and x E K ,  I f ( y  + x )  - f ( x )  I < E. 

Show that 

is a C" function and that I g ( x )  - f ( x )  I < E on K. 
Prove Theorem 8.4 by using on S"-' the form R obtained by restricting cj"= 
Show that if n is odd, then P ( R )  is orientable. 
Show that there exists no continuous vector field on S", n even, which is 
nowhere zero. 
Using Remark 8.1 1, prove that if G is a connected compact Lie group of 
dimension n, then H"(G) z R. 
Using Remark 8.1 1 compute Hk(T"), k = 0, 1, . . . , n. Give a formula for 
dim Hk(T") (as a vector space over R).  
Define the center c of the Lie algebra g of the compact connected Lie 
group G by c = { Z  E g I [ Z ,  XI = 0 VX E g}. Prove that it is a subalgebra 
and that if Z E c, then exp t Z  is in the center of G. Show that if c = (03, 
then A' (G)  = (0). 

( -  l y -  ' x j  dx' A " ' A  dxj- h dx"' A a * *  A dx" to S"-'.  

9 Covering Spaces and the Fundamental Group 

The ideas involved in paths, loops, their homotopies, and the fundamen- 
tal group of a manifold M, which were discussed in Section 6 have an inti- 
mate connection with the covering spaces of M and with properly 
discontinuous groups, which were considered much earlier (Sections 111.8 
and 111.9). Clarifying this relationship will enable us to complete the discus- 
sion of Chapter 111 in several important respects. 

Suppose in what follows that M is a manifold, fi a covering manifold, 
and F :  fi + M the (C"") covering mapping. If X is a topological space and 
G :  X + M a continuous mapping, then a continuous mapping G: X + fi is 
said to cover G if F 0 6 = G ;  we also say G is a l i f t  of G.  For example, if 
f: I + M is a path or loop, then f I -, &f is a path which covers it if 
F of ( [ )  =I([) for 0 I t I 1. If a covering3of a given pathfexists at all, then 
it is uniquely determined by its value on a single point, say byf(0). More 
generally, with the notation above we have the following lemma. 

(9.1) Lemma I f  F :  fi + M is a covering and X is a connected space, then 
two (continuous) mappings G1, G2: x + fi covering a continuous mapping 
G :  X + M agree if they have the same value at a single point xo E X .  
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Proof' Let A = {x E X :  G,(x) = G,(x)). Then A is closed by continuity 
of G, and G, . A is also open, for if x E A and if U is a neighborhood of 
G,(x) = G,(x) such that F I U is a diffeomorphism of U to M ,  then it follows 
thatG, andG,mustagreeontheopenset I/ = G;'(U)n~; '(U).Infactif  
Y E  V ,  then F 0 G , ( y )  = F 0 G 2 ( y )  by hypothesis; but since Gl(y) and c, (y)  
are in U ,  on which F is one-to-one, they must be equal. Finally since A is not 
empty and X is connected, A = X. I 

(9.2) Theorem Let f: I -+ M he u path in M with initial point b = f (0). If 
F :  fi -, M is a covering and 6~ F -  ' (b ) ,  then there is a unique pathyin $l with 
initial pointT(0) = 6. 

Proof' Uniqueness is a consequence of the previous proposition. To 
prove existence we suppose 0 = to < t l  < .. .  < t ,  = 1 is any partition of I 
such that for each i , . f ( [ t i ,  ti+,]) lies in an admissible neighborhood with 
respect to the covering. The existence of such a partition follows from the 
compactness of I and the continuity of 1: We let f(0) = h and let 6~ fi 
denote a point over b, that is, F ( 6 )  = b. If  U ,  is the unique connected 
component of F-'(Vl) containing 6, then we define f ( t ) ,  0 I t I t , ,  by 
f ( t )  = ( F  I U , ) - ' ( J ' ( t ) ) .  Thenf(r,)E U ,  n U , ,  where U ,  is the uniquecom- 
ponent of F - ' ( I / , )  containing y( t , ) .  This allows us to define f ( t )  = 
( F  I U,) - ' ( J ' ( t ) )  for t ,  I t I t ,  and thus determineyon [ to ,  t , ] .  Clearly we 
can continue in this fashion to define yon  all of I. (See Fig. VI.14.) I 

F \ 
\ 

Figure V1.14 

Lifting a path from T 2  to its covering R Z .  
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It is important to realize that not only a path but even a homotopy of 
paths can be lifted to a covering fi of M by this procedure. 

(9.3) Theorem Let f, g :  I + M be paths and H :  I x I + M a (relative) 
homotopy off to g leaving endpointsjixed. Suppose1 i j :  I -, fi coverf, g and 
have the same initial point. Then they have the same endpoint and there exists a 
unique homotopy A: I x I -, fi 0f3t0 a covering H .  Endpoints remainfixed 
for  R also. 

Proof We define = I x I + fi using the previous theorem. For each 
fixed t ,  H , ( s )  = H(s ,  t ) ,  0 I s I 1, is a path on M and lifts to a unique path 
A,(s) on fi with A,(O) = T ( O )  = i j (O) ,  the common initial point of3and i j ;  we 
let G(s, t )  = A&). This defines a mapping A: I x I + & with the property 
that H = F 0 A; but it is necessary to show that fi is continuous. Let to E I 
be chosen and going back to the idea of the previous proof, we take a 
partition of the line I x { to}  in I x I by 0 = so < s1 < a . 1  < s, = 1 such 
that each interval {(s, t o )  I si  I s I s i+  ,} is carried by H into an admissible 
neighborhood on M. Then, A(si, t o )  having been defined at some stage, 
this point of fi determines unambiguously a component Ui of F - ' ( V J  
covering and necessarily R(s, to) = ( F  I Ui)- ' ( H ( s ,  t o ) )  for si I s I si+ '. 
However, by the continuity of H ,  there exists 6 > 0 such that for each 
i = 0, 1, 2, ..., n - 1, the image H ( Q i )  c M of the cube Q i  = {(s, t )  I 
si I s I s i + ' ,  to - 6 I t I to + 6 )  lies in y. also. Hence R,(s) = R(s, t )  = 
(n I U i ) -  ' ( H ( s ,  t ) )  on all of Q i ,  which shows that r7 is continuous on Qi . This 
holds for each i = 0, ..., n - 1, which means that fi is continuous on a 
&strip {(s, t )  I I t - to I < 6) around the segment I x { to )  c I x I .  But to  
was arbitrarily chosen; hence 6 is continuous on I x I. To complete the 
proof we notice that R, being continuous, takes { 1) x I into a connected 
set-the set of terminal points of R,(l), 0 I t I 1. Since 
F ( R (  1, t ) )  = H (  1, t )  = f( 1) = g (  l),  a single point, this connected set lies in 
the discrete set n- ' ( f ( l ) )  and is therefore a single point as claimed. We 
constructed fi so that the initial points fi,(O), 0 I t I 1, are allf(O), but the 
existence (as constructed) and uniqueness (by Lemma 9.1) of fi show that 
this was the only possibility. I 

(9.4) Corollary If 6~ fi lies ouer bE M ,  then F , :  nl(fi, b") + nl(M, b )  is 
an injective isomorphism. 

Proof We know F ,  is a homomorphism and, using the previous 
theorem with1 i j  loops at 6, we see that F 07- F 0 i j  impliesf- i j .  This is 

We conclude this section by proving two theorems which give a much 
more precise picture of the relation between coverings of a manifold M and 

equivalent to F ,  being injective. I 
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the fundamental group. They will also enable us to complete our discussion 
of the relation between covering spaces and orbit spaces of a properly 
discontinuous action of a group r on a manifold, which was considered in 
Section 111.9. If fi, and fi, are coverings of a manifold M with covering 
maps F ,  and F , ,  then a homeomorphism G :  M ,  + M, such that 
F ,  = F ,  r, G and F ,  = F ,  0 G -  is called an isomorphism of the coverings. In 
particular, an automorphism, that is, isomorphism, G :  fi + fi is exactly a 
covering transformation, as given in Definition 111.9.2. Using admissible 
neighborhoods, it is apparent that the differentiability of F ,  and F ,  implies 
that of G and G - ' .  We now show that in a sense isomorphism classes of 
coverings of M are in one-to-one correspondence with subgroups of the 
fundamental group. 

(9.5) Theorem Let F , :  A?, + M and F,: fi, + M be coverings of the 
same manifold M .  Suppose that .for b E M ,  6, E M I  and 6, E fi, such that 
F , ( 6 , )  = b = F z ( 6 J  we have F,*n,( f i , ,  6,) = F , , n 2 ( f i 2 ,  6,) [as sub- 
groups of nl(M, b)].  Then there is exactly one isomorphism G :  fi, -, fi, 
taking 6, to 6,. 

Proof Given f i  E fi, we define G(jj)  as follows: Let f ,  be a path such 
that Tl(0) = 6 and TI( 1) = jj. Then the pa th f=  F ,  07, on M has a unique 
lifting to a path?, on fi, coveringfand with initial point&(O) = K 2 .  We 
define G(jj)  = ?,( 1). Of course we must show that the definition is indepen- 
dent of the pathy, chosen, and that G is continuous. On the other hand, once 
these facts are proved, then we see that F ,  = G 0 F ,  and that G(6,) = 6, are 
immediate consequences of the definition, as is the uniqueness of G .  More- 
over this definition is natural since any G with the properties required in the 
theorem must take7, to a pathy, 0 G on M 2  which coversf= F ,  OL and 
runs from 6, to G(jl.). 

Now suppose that.7, and ij, are distinct paths on fi, from 6, to f i . Let 
f = F ,  and y = F ,  c i j ,  and consider the loopf*  g - '  with g - ' ( s )  = 
g ( l  - s), 0 I s I 1. This loop determines an element [ f *  g-'1 of 
F , ,  n,(fi,, 6,) and hence also the (same) element of Fztn2(fi,,  6,). In view 
of the preceding corollary, if we lift this to a path from b ,  , its terminal point 
will necessarily be 6,; and so the lifted paths?, and i j ,  on fi, beginning at  6, 
both end at the same point, that is,?,(l) = i j , (I) .  It follows that by using 
either?, or i j ,  we obtain the same value for G(jj). We also see from this line of 
argument that there is a one-to-one correspondence between points of fii, 
i = 1, 2, and eqtiiivrlence classes (under relative homotopy with endpoints 
fixed) ofpa ths fon  M issuing from h. In fact, let p E M ,  i f ]  a homotopy class 
of paths from b to p ;  [.f] determines a point Prn of MI which lies over p .  
Indeed, the class [ . f ]  lifts to a class [TI, all curves of which issue from the 
point 6,;'and we have just seen that they all have as terminal point trn. 
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If we make this identification, we may let [ f ]  denote Prrl and then F ,  
projects the class of paths [ f]  to the common terminal point of its elements, 
that is, F , ( [  f ] )  = f (1) (and similarly for F , ,  f i 2  of course). The classes of 
loops at b correspond to the points over b, which is to say that the elements 
of n , ( M ,  b)  are in one-to-one correspondence with the points over b. These 
remarks should clarify the intuitive situation and are useful later. The reader 
might find it helpful to think of the example fi = R2,  M = T 2 .  

To continue the proof, it is clear that G is one-to-one onto and that G - '  
is described in a symmetrical way to G so G-'  is C". Now let 
j, = G@,) E fi, and let V ,  $ be an admissible coordinate neighborhood of 
p = Fi(P i )  on M ,  i = 1,2. We also suppose $ ( V )  = &(O) c R" and 
$ ( p )  = 0. Iff is a path from b to p on M which lifts to pathsx joining hi to Pi 
on & f i ,  i = 1,2, then we see that this path may be used in the definition of G 
as described above. For any point q in V we have a radial path (in the local 
coordinates), say g p ,  from p to q and& = f * gq lifts to paths from gi to Qi in 
the component oi of F i 1 ( V )  containing gi, i = 1,2; thus G(ql )  = q,. This 
description being unique, and valid for every q E V ,  we see that G :  8, + 8, 
is one-to-one and onto and in fact may be described as follows: G I 8, = 

( F ,  1 0,)-' 0 ( F ,  10,). Thus G 10, is a diffeomorphism and since fi, is 
covered by open sets of this type, G is differentiable, which completes the 

(9.6) Corollary If F :  fi + M is a covering and fi is simply connected, then 
the covering transformations are simply transitive on each set F - ' ( p ) .  I f  wefix 
6~ fi and b E M with F ( 6 )  = b, then these choices determine a natural isomor- 
phism @: R , ( M ,  b )  + of the fundamental group of M onto the group of 
covering transformations. 

Proof Suppose that q , ,  q2 E F - ' ( p ) .  We apply Theorem 9.5 with 
M I  = M, M ,  = fi to obtain a covering transformation G: fi + fi such 
that G(ql)  = q2 . To see that the hypotheses are satisfied it is only necessary 
to note that because fi is simply connected, n,(fi, qi )  = {l), i = 1,2; hence 
F ,  (n,(fi, 4,)) = { 1) = F ,  (.,[a, 4,)). We remark that by Theorem 111.9.3, 
it now follows that the group r of covering transformations must therefore 
be simply transitive on F -  ' ( p )  for each p E M .  

Having fixed b e  M and 6~ n- ' (b) ,  we may establish an isomorphism of 
n , ( M ,  b )  and as follows. Let [ g ]  E n,(M, b )  and i j  the lift of g E [ f] to &f 
determined by ij(0) = 6. We have seen earlier that any two curves Sl ,  i j ,  
which are lifts of curves of homotopic curves, in particular two loops of [g] 
with ijl(0) = 6 = ij2(0), must have the same terminal point 6, and must be 
homotopic (with endpoints fixed). Since g is a loop, F ( 6 )  = b = F(6, ) .  We 
let @ [ g ]  E f be the covering transformation taking 6 to 6, = i j (  1). This 
defines 0: n , ( M ,  b )  + f .  It is easily checked that @ is a homomorphism 
using the arguments of the preceding theorem. If 0[gJ = 1, then 

proof. I 
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a(0) = 6 = g(1) so that 3 determines an element of 7t,(fi, 6). Since this 
group contains only the identity, we have 6 - e6 by a homotopy A. Then 
H = F n fi is a homotopy of g to eb so [g] = 1 and hence fD is one-to-one. 
We also see that fD is onto: if G, E r, then let 6, = Gl(6). There is a path 8 
from 6 to 6, and since F ( 6 )  = FIGl (K)] by definition of covering transforma- 
tion g = F r' ij is a loop at b. It determines [ g ]  E n, ( M ,  h ) :  and since the 
covering transformation G = @ ( [ f ] )  agrees with G I  on 6, G,(6) = 6, = 
G(6), we must have G = G ,  by the results ofchapter 111 (or by Lemma 9.1). 

I 
(9.7) Theorem Let M be a connected manifold and b a j x e d  point of M .  
Then corresponding to each subgroup H c n , ( M ,  b )  there is a covering 
F :  fi + M such that for some 6 E F -  ' ( b )  we have F ,  7r1(M, 6) = H .  F and fi 
are unique 10 within isomorphism. 

Proof The uniqueness is just the previous theorem, and the proof of 
that theorem also indicates how the space must be constructed. The points 
of fi will consist of equivalence classes of paths from b, two such pathsf, g 
being equivalent if and only iff(1) = g(1) and [ f *  g-'1 E H ,  g- '  denoting 
the path g - ' ( s )  = g(l - s), 0 I s I 1. It follows from the fact that H is a 
subgroup that this is an equivalence; we denote it  b y f z  g and denote by { . f }  
the equivalence class off(or point of fi). The projection map F :  fi + M is 
defined by F((  f } )  = .f( I )  for anyfc {. f} .  Given any { f }  E M, let p = f (  1) and 
V ,  $ be a coordinate neighborhood of p on M with $ ( p )  = 0 and $ ( V )  = 

B;(O), the open n-ball. For each q E  V there is a unique path gq from p to q 
corresponding to a radial line in $(V) .  Then q 4 { f *  g,} defines a map 
Of: V + fi with F 8,(q) = F { f o  g,} = f o  g,(l) = q for all 4 in V .  Suppose 
h is a path from b to q also and that h $ f ,  that is, {h of-'}@ H .  Then it is 
easy to see that U,( V )  n Oh( V )  = 0. Indeed, if for some q E V ,  we have 
{ f *  g,) = (h * 9,); this would require [ f *  gq * (h * g; ')I = [f* h- ' 3  to be 
an element of H ,  contrary to assumption. We leave it to the reader to check 
that the sets Of( V )  with coordinate maps $ 0  F define a manifold structure 
on fi which makes F :  M -, M a covering with { V ,  $} as admissible 
neighborhoods. 

Finally, we must establish that F ,  (n,(fi, 6)) = H ,  where 6 = {eb}, the 
point of fi determined by the constant path at b. Suppose that f ( t ) ,  
0 I t I 1, is a loop at b with [j] E H .  Then f (0) = f (  1) = b and we define a 
one-parameter family .f; of paths from b by .f;(s) = f ( s t ) ,  0 I s, t 1. Let 
f ( t )  = {f;(s)). Then?(t), 0 I t I 1, is a path on I@ with F ( r ( t ) )  =J;( l )  = 

f ( r ) ,  hencefcoversfand is a loop at 6. It  is straightforward to check that this 
actually determines an isomorphism F ,  of n, (A, 6) onto H ;  we may apply 
methods similar to those already used above. This completes the proof. I 

If we take H = { 1 )  we have a very important corollary. 
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(9.8) Corollary Every connected manifold M has a simply connected cover- 
ing which is unique to within isomorphism. Choice of 6~ F- ' (b )  for bE M 
determines an isomorphism of a , ( M ,  b )  onto P the group of covering transfor- 
mations. Then fi/f is diffeomorphic to M ,  that is, M is the orbit space of its 
fundamental group acting properly discontinuously on its unioersal cooering fi. 

Exercises 

1. Show that if F :  fi + M is a covering and M is Riemannian, there is a 
unique Riemannian metric on M such that F is an isometry. 

2. Suppose that the assumptions of Exercise 1 are satisfied and that fi is 
compact. Determine the relation of the volumes of fi and M in terms of 
their fundamental groups. 

3. Determine the meaning, in terms of F :  fi + M (a covering), of 
F ,  (a,(@, 6)) being a normal subgroup of a1 ( M ,  F ( 6 ) ) .  

Notes 

Integration on manifolds has two very important applications both of which are in- 
troduced briefly in this chapter. First, integration on Lie groups with respect to an invariant or 
bi-invariant volume element has been crucial in many areas of research on Lie groups and their 
homogeneous spaces. Weyl used it to prove the complete reducibility of representations of 
semisimple Lie groups, a central fact of representation theory (see, for example, Weyl[2]). We 
have seen how this was done for the compact case; the generalization to noncompact, semi- 
simple groups was accomplished by Weyl's "unitary trick." But the integral is also used c\tcn- 
sively to study function space5 on Lie groups and to prove such basic theorems 11s ilic 
Peter-Weyl theorem. The reader wishing to go further into these ideas should read relevant 
portions of Chevalley [ I ]  and look at the last chapter of Helgason [l]. Many ideas used in the 
study of Lie groups can be exploited in studying the spaces on which they act, especially 
homogeneous spaces-which are essentially coset spaces of Lie groups. I n  this case, too, 
the invariant volume element and related theory of integration is crucial in  many problems of 
current interest in analysis. Again the reader is referred to Helgason [ I ]  for samples of these 
applications. 

The other important application of integration on manifolds is to algebraic topology via 
de Rham's theort md Hodge's theorem (see Warner [l]). This approach to topology was 
particularly useful in the study of the topology of Lie groups and homogeneous spaces, for 
which purpose de Rham's theorem was presumably first conjectured: A survey article by 
Samelson [ l ]  should give the reader some idea ofjust how crucial this was in the early theory. A 
well-known theorem, the Gauss-Bonnet theorem (ONeill [ 11; Stoker [I]) ,  is a beautiful 
example of how integration may be used to obtain relations between the topology of a manifold 
and some of its local geometric invariants: in this case the curvature. A recent treatise by Greub 
er ul. [ I ]  gives a comprehensive treatment of the many relations of differential geometry to 
algebraic topology, including, of course, the generalized Gauss-Bonnet theorem. 
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We begin this chapter by showing very briefly how differential calculus can be applied to 
study the geometry of curves in Euclidean space F (or R"), especially plane curves ( 1 1  = 2) and 
space curves (11 = 3). The geometric concepts which are discussed-arclength, curvature, and 
torsion-will be familiar to many readers as  will the basic tool used, namely differentiation o f a  
vector field along a curve. In the second section differentiation of vector fields along curves is 
used again to define and study differentiation of vector fields on a special class of Riemannian 
manifolds those which are imbedded (or immersed) in F and carry the induced Riemannian 
metric. Thesc same ideas can be used to investigate the geometry of surfaces in E3. which is the 
subject matter of much o f  classical differential geometry. However, our main objective is to use 
this situation as a model in order to define differentiation of vector fields on  an arbitrary 
Riemannian manifold M. This is done in Section 3 where the Riemannian connection V is 
defined and its existence and uniqueness (depending only on the Riemannian metric) is 
demonstrated. We define in essence. a sort of directional derivative of vector fields Y on M, 
V x D  Y giving the rate of change of Y at P E  M in the direction of X,,. It generalizes XJthe 
derivative of a function. which was defined at the beginning of Chapter 1V. As might be 
expected. i t  is more complicated than differentiation in Euclidean space, where we can take 
advantage of the natural parallelism. Conversely. it can itself be used to  introduce a more 
restricted type of parallelism on arbitrary Riemannian manifolds. Once the basic properties of 
V, Y are established. we are ready to apply differential calculus to the study of Riemannian 
manifolds. 

We very briclly and formally introduce the Riemannian curvature tensor-an important 
geometric object which we study in the next chapter. The remainder of this chapter is spent on 

293 
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the study of geodesics, which generalize to Riemannian manifolds the straight lines of Euclidean 
geometry. They have important similarities to straight lines as well as important diKerences. 
For example, like straight lines of Euclidean space, the unit tangent vector is constant (has 
derivative zero) as we move along the curve. Although geodesics in general are not the curves of 
shortest length between any two of their points, they will have this property for nearby points, 
and so on. Only the most basic properties can be proved in such a brief treatment, but enough is 
established to reveal the interesting variety of phenomena which occur for geodesics in general 
manifolds. 

In  the final section some important examples are considered, namely the Riemannian 
symmetric spaces, which have even more similarities with Euclidean space than the usual 
Riemannian manifold. In particular, the space of non-Euclidean geometry is a symmetric space. 
The examples considered here also have important curvature properties which are discussed (in 
part) in Chapter VIII. 

The presentation of Sections 7 and 8 was very much influenced by Milnor [ 11, especially his 
Sections 10. 20. and 21: 

1 Differentiation of Vector Fields along Curves in R" 

In order to clarify the definition of differentiation given later for general 
Riemannian manifolds, we shall first consider some special situations in the 
oriented Riemannian manifold R" (with the standard orientation and inner 
product). In doing so we will make full use of the natural parallelism in R", 
that is, the natural identification of the tangent spaces at distinct points. 

Let C be a curve in R" given by x ( t )  = ( x ' ( t ) ,  . . . , x"(t)) with a < t < b. 
We suppose that Z ( t )  = Z,..,) is a vector field defined along C; thus to each 
t E (a, b) is assigned a vector (Fig. VII.1): 

Figure VILl 

We will suppose Z to be of class C',  at least, which means that the compon- 
ents a'(t) are continuously differentiable functions oft on the interval (a, b). 
The velocity vector of the (parametrized) curve itself is an example-in this 
case ai(t)  = X'(t). 
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Our purpose is to define a derivative or rate of change of Z(r) with 
respect to r ;  it will be denoted Z ( t )  or dZ/dt and will again be a vector field 
along the curve. Of course, in general, neither Z ( t )  nor its derivative need be 
tangent to the curve. Now since in R" we have a natural parallelism (or 
natural isomorphism) of T,( R") and T,( R") for any distinct p ,  q E R", we are 
able to give meaning to Z(ro + Ar) - Z(to), the difference of a vector in 
T,,fo+Af,(R") and a vector in Txcto,(R"). For definiteness we suppose 
Z ( t ,  + At)  moved to or identified with the corresponding vector in T,(,,)(R") 
and that the subtraction is performed there (Fig. VII.2). This allows us to 
define the differential quotient 

1 " d ( t o  + Ar) - ai(ro) a 
[Z( r ,  + Ar) - Z(t , ) ]  = C ~ ~~ ~ 

Ar i =  1 At X ( t 0 )  

Figure V11.2 

The equality is due to the fact that if we write vectors in terms of the basis 
a/axl, . . . , d/dx" which is a field of parallel frames on R", then vectors at 
distinct points, say Z(t, + At)  and Z(to) ,  are parallel if and only if they have 
the same components. Passing to the limit as At + 0 gives the definition 

(1.2) Remark A consequence of this formula is that if we introduce a new 
parameter on the curve, say s, by t = f ( s )  with to = f ( s o ) ,  then 

(dt/ds),, is a scalar; the other terms are vectors. 
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As a simple example consider the curve x ( t )  = (cos t ,  sin t ) ,  a unit circle 
in R2. Suppose Z(t)  = -sin t (d /dx)  + cos t ( d /dy ) ;  this is the velocity vector 
of the point which traces out the circle. Then dZ/dr = -cos t (d/dx) - 
sin t (d /dy)  is a vector at x ( t )  = (cos t ,  sin t )  which has constant length + 1 
and points toward the origin (Fig. VII.3). 

Figure V11.3 

(1.3) Definition A vector field Z(r) is constant or parallel along the curve 
x ( t )  if and only if dZ/dt = 0 for all t. 

Suppose that Z,( t )  and Z,(t) are vector fields of the above type defined 
along the same curve C and that f ( t )  is a differentiable function of t on 
a < t < b. Then f (t)Z(t) and Z, ( t )  + Z , ( t )  are vector fields along C and we 
have the following easy consequences of formula (1.1). 

dZ, dZ, 
(Z, ( t )  + Z,(t)) = ~~ ~ + ~~ 

d 
dt dt dt ' 

( 1.4a) 

(1.4b) 

where ( Z , ,  Z , )  is the standard inner product in R". 
The formula we have given for dZ/dt is in terms of the components of 

Z(t)  relative to the natural field of frames dldx', . . . , d/dx" in R", which are 
constant along x( t ) .  However, we sometimes find it convenient to use some 
other field of frames, say F , ( t ) ,  . . . , F,(t), defined and of class C' at least 
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along .x( t ) .  Then Z ( t )  has a unique expression as a linear combination of 
these vectors at each x ( t ) :  

Z ( t )  = b ' ( t )F , ( t )  + * * *  + b"(t)F,(t). 

Differentiating this expression we obtain, with the aid of (1.4a,b), 

However, since d F j / d t  are vectors along .x(t), they too are linear combina- 
tions of Fk( t ) ,  

This gives the formula 

This includes (1.1) as a special case since ajk(t) = 0 when the frames 
F ,  ( t ) ,  . . . , F , ( t )  are parallel. 

Although we have used a particular coordinate system, the natural one in 
R", in fact 

1 
= lim -- [ Z ( t ,  + Ar) - Z(t , ) ]  

d t  A t - 0  At 
dZ 

is an object which depends only on the geometry of the space; it is indepen- 
dent of coordinates, so it is defined equally well for parametrized curves 
in E". 

The Geometry of Space Curves 

As an illustration of these ideas we derive the Frenet-Serret forrirulus for 
a curve of class C3 in  R3.  We first note that length of the curve from a fixed 
point x0  = x(ro)  is given by s = f:, ((x(t), x(t))'" dt  so that ds/dt = 
( . i ( t ) ,  i ( t ) ) .  If  s is used as parameter, then ds/dt = ds/ds = 1 so that i ( s )  is a 
unit vector tangent to the curve. We let T(s )  = i ( s )  denote this unit tangent 
vector. Because arclength, the parameter s (to within an additive constant), 
and T(s)  are determined by the (induced) Riemannian metric on x(s), not by 
the particular rectangular Cartesian coordinates or origin used, they and the 
derivatives of T ( s )  are geometric invariants of the curve, that is, they will be 
the same at corresponding points for congruent curves. Differentiating the 
identity ( T ( s ) ,  T ( s ) )  = 1 and using (1.4c), we obtain 2(T(s),  d T / d s )  = 0. 
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Therefore dT/ds  is zero, or is a nonzero vector orthogonal to T(s)  at each 
point of the curve. We define the curvature k(s) by k ( s )  = IJdT/dsll ;and when 
k ( s )  # 0, we let N ( s )  be the unique unit vector defined by d T / d s  = k(s)N(s) .  
When k(s) # 0, let B(s)  be the uniquely determined unit vector such that 
T(s),  N(s), .B(s) define an orthonormal frame with the orientation of a/dx' ,  
a /ax2 ,  d/ax3 (see Fig. VII.4). This determines a field of orthonormal frames 

Figure V11.4 

x 3  

along the curve, defined whenever k(s) # 0, which we shall henceforth 
assume is the case at all points of the curve under consideration. This 
assumption is justified since it is the generic or typical situation for a space 
curve. In fact, we have the following fact concerning a curve for which k(s)  
vanishes identically. 

(1.6) Theorem I f  k ( s )  = 0 on the interval of definition, then x(s) is a 
straight line segment on that interval, and conversely, for  a straight line, 
k ( s )  = 0. 

Proof If the curve is a straight line, then it is given in terms of arclength 
by xi (s )  = a' + b's, i = 1, 2, 3, where c?=l (bk)2 = 1. Thus 

and dT/ds  = 0. Conversely, if k(s) = 0, then dT/ds  = 0. Since T = 1 dx'/ds 
d/dx', s being arclength, this implies d2xi/ds2 = 0, i = 1, 2, 3. Thus 
x i ( s )  = a' + b's, i = 1,2, 3, with a' and b' constants, and the curve is a 
straight line. Note that T(s)  and k ( s )  are defined for a curve in R", any n (not 

I 
Now, returning to the study of a curve in three-space, for convenience of 

notation we let F, ( s ) ,  F2(s) ,  F3(s) denote T ( s ) ,  N(s ) ,  B(s), respectively. Since 

just n = 3), and the proposition just proved is still valid. 
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this is a field of orthonormal frames we have (Fi (s ) ,  F j ( s ) )  = 6,. Differentia- 
tion of these equations gives the relations 

( zi, Fj(s)) + ( Fi(s), 2) = 0, i , j  = 1, 2, 3. 

As we pointed out in the derivation, dFj/ds  must be a linear combination of 
the F k ( s )  for every s, so we may write 

This combines with the previous equations to give 

or 

This means that the matrix (aj(s)) is skew-symmetric. By definition dT/ds = 
k ( s ) N ,  that is, a$) = k(s) ,  and so a:(s) = 0 = a:(s). Let az(s) = T ( S )  as a 
matter of notation. Then rewriting in terms of T ,  N ,  B, we have the Frenet- 
Serret formulas : 

ai(s) + aj(s) = 0, 1 I i , j  I 3. 

= -k(s)T 
(1 N 
ds 

+ t(s)B, 

expressing the derivatives with respect to s of T ,  N ,  and B which are called 
the tangent, normal, and binormal vectors, respectively, of x(s), in terms of 
these vectors themselves. Formula (1.7) defines the functions k ( s )  and T ( S )  

along the curve. 

(1.8) Definition k ( s )  is called the curuature and T ( S )  the torsion of the curve 
C at x(s). 

The curvature measures deviation of C from a straight line and the 
torsion measures “twisting” or deviation of C from being a plane curve. Of 
course, T ,  N ,  and B as well as curvature and torsion are independent of the 
coordinates used in the Euclidean space containing C. 
(1.9) Theorem A curue in E3 lies in a plane if and only ~ T ( s )  = 0. 

Proof If  the curve lies in a plane, then from the definition of T ( s )  and 
dT/ds we see that these vectors lie in the plane of the curve for each point 
x(s) of the curve. Thus the unit vector B(s) has a fixed direction, orthogonal 
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to the plane, and so is always parallel to a fixed unit vector orthogonal to the 
plane. Therefore dB/ds = 0 and t ( s )  = 0. 

Suppose that t ( s )  = 0. Then dB/ds = 0 and B is a constant vector along 
the curve. We choose the coordinate axes so that the curve passes through 
the origin 0 at s = 0 and so that B(s) is parallel to a/ax’, the unit vector in 
the direction of the x3-axis. Then x(s) = (x’(s), x2(s), x3(s)) determines the 
vector x(s) from the origin 0 to the point x(s) on the curve. Differentiating 
(x(s), B(s ) ) ,  we have 

so that (~(s),) is constant. Since x(so) = 0, that is, x(so) = 0, the vector 
X(S) [or line Ox(s)] is always perpendicular to B = d/dx3. Thus the curve lies 
in the x1x2-plane. I 

The advantage of using arclength s as parameter on the curve C and the 
frames T ( s ) ,  N(s ) ,  B(s) is that they all have intrinsic geometric meaning, 
depending as they do only on the Riemannian structure of the ambient space 
E3 and the nature of the curve itself and not on any coordinates that we 
might use in E3. Although the formulas for the derivative of a vector field 2 
along the curve are more complicated, since they involve the second terms a! 
in (1.5) which vanish when we use parallel frames along C,  nevertheless the 
advantage of being geometrically determined is quite crucial. Even the 
coefficients a!, which here are kk(s) and kt(s) or zero, have geometric 
meaning as we have seen. In fact it is not difficult to show (see, for example, 
O’Neill [ 11) that k ( s )  and t(s) determine C up to congruence. 

As an illustration of the utility of the Frenet frames T ,  N ,  B we consider 
briefly the dynamics of a moving particle in space whose position p ( t )  is 
given as a function of time t. Let s ( t )  be the length of path traversed from 
time t = 0 to time t ,  s ( t )  = yo ((dpldt, dpldt))”’ dt. Then ds/dt = 
( (dp/dt ,  dp/dt))’ /2  = )Idp/dtI( is the speed with which the particle moves along 
the curve, while its velocity vector is given by 

d p  d p d s  ds 
dt ds  dt dt ’ 

v(t) = - = ~~ = T -  

where T is the unit tangent vector. Differentiating we obtain the acceleration 

Since dT/ds  = k N  this becomes 
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Thus the acceleration decomposes into the sum of two vectors, one in the 
direction of the curve, whose magnitude is the time rate of change of the 
speed d 2 s / r l t 2 ,  and the other normal to the curve and directly proportional to 
both the square of the speed and to the curvature, this latter depending only 
on the curve. If the motion is a straight line motion, then k = 0 so that a has 
the direction of the line. If the particle moves at constant speed, so that 
d2s /d t2  = 0, then the acceleration depends only on the shape of the path. 
The same remarks also apply to the force F acting on the particle, which by 
Newton's second law, F = ma, is proportional to a with the mass m as 
constant of proportionality. 

Curvature of Plane Curves 
Some special comment is required for the case of a curve C lying on an 

oriented plane. Let s + (x(s), y(s)) define the curve, parametrized by 
arclength. Then T = x(s)d/dx + y(s)d/dy is the unit tangent vector. If 
rlT/ds # 0, then y e  may as before define k ( s )  = IldT/dsll, that is, we may 
consider the curve as a space curve (x(s), y(s), 0) whose z-coordinate 
z(s) = 0, and use the same definitions. However, for plane curves a more 
refined definition of curvature is possible: At each point of C choose N so 
that T ,  N have the same orientation as d/i?x, d / d y  (this uniquely determines 
T ,  N ) .  (See Fig. VII.5.) Then define the curvature L(s) so that &)N = dT/ds.  
This allows &(s) to be negative, zero, or positive. The curvature thus defined 
for a plane curve has the previously defined curvature of C (considered as a 
space curve) as its absolute value, k(s) = 1 G(s) 1 .  To carry our interpretation 
somewhat further let O(s) be the angle of T with the positive x-axis 
(Fig.VII.5). Then 

a d 
7(s) = cos O(s) + sin O(s) , 

dX dY 
and 

L______-f; 
Figure VIl.5 



302 VII D I F F  E R E N l i A l l O ~  O N  R I E ~ A N N I A N   MANIFOLD^ 

The unit vector N ( s )  chosen so that T(s), N(s)  is an oriented orthonormal 
basis is Nfs) = -sin 8(a /ax~ + cos @(a/ay), since the determinant of the 
coefficients of T,  N as combinations of a/ax, d/ay is 

= +1* 
cos0 sin@ 

-sin 8 cos0 detf 

Thus k"(s) = 8(s) or dS/ds, the rate of turning of the tangent vector T with 
respect to arclength, Moving along C in the direction of increasing s the 
curvature is positive when the tangent is turning counterclockwjse and nega- 
tive otherwise. Its sign depends on the sense of the curve (direction of in- 
creasing s) and the orientation of the plane, but not on the coordinates. 

Suppose C is a circIe of radius r. Then s --, ( r  cos(s/r), r s i n ~ s / ~ ~ ~  gives the 
curve parametrized by arclength: 

Since 

N =  -cos - --sin - - 
f:):x ' (;)i 

is the unique unit vector such that T,  N has the orienta~ion of a/dx, a/ay, we 
see that k"(s) = i/r. Thus the curvature is a constant. If, as we have assumed 
by our parametrization, the circle is traversed in the countercIockwise sense, 
it is a positive number; in any case its magnitude is inversely pr~portionaf to 
the radius. 

Returning momentarily to the dynamics of a moving particle we see that 
if a particle moves on a circle in such a way that its speed is constant uo , then 
the force F acting on the particle is 

mug 
r 

F = ma = _--- N .  

Since N is the unit normal vector, F is directed toward the center of the 
circle and its magni~ude is mv&k which gives the usual formula for the 
centripetal force necessary to keep the particle in a circular orbit. 

Exercises 

1. Prove that a curve in R3 for which ~ ( s )  = 0 and k(s) is a constant, k # 0, 
is a circle. 
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2. 

3. 

4. 

5. 

6. 

2 

A helix is defined by parametric equations of the form x1 = a cos t ,  
xz = a sin t and x3 = bt, where a, 6 are positive constants. Determine k 
and 5 for a helix. [Hin t :  
Let Z ,  and Z ,  be two vector fields along a curve in R3 and let 2, x 2, 
be their cross product (as defined in a three-dimensional vector space). 
Show that 

First change to arclength as parameter.] 

d ( Z ,  x Z,) = dZ ~~ 1 x z, + 2, x dZ2 - ~ ,  

dt dt dt 

Show that the plane which closest approximates a curve C at p is 
spanned by T and N. This plane is the limiting position of the plane 
through p', p ,  p" on C as p', p" approach p .  
Using the technique of Exercise 4, find the center of the best approximat- 
ing circle and of the best approximating sphere to each point p of C. 
[They should be located relative to the moving coordinate frame 
T ,  N, B.] 
Show that if the plane of T and N goes through some fixed point 0 of E3 
for every point on C ,  then C lies in a plane. 

Differentiation of Vector Fields on Submanifolds of R" 
In the previous section we studied differentiation of vector fields along 

curves, which includes, of course, one-dimensional submanifolds of 
Euclidean space. In this section we do the same for vector fields "along" 
other submanifolds M c R", for example a surface in R3. This is somewhat 
more complicated and certainly not the most direct way of approaching the 
subject of differentiation on manifolds; but it should help our geometric 
understanding. Just as in the case of a curve, we are concerned with a vector 
field Z defined at each point of M but not necessarily tangent to M (see 
Fig.VII.6), that is, to each P E  M ,  we assign Z,,E T,(R"). When Z is such that 

Figure V11.6 
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Z ,  is tangent to M, Z , E  T,(M) c 7',,(R"), then we shall say that Z is a vector 
field on M or a tangent vector field. Only in this case has Z meaning for M as 
an abstract manifold, independent of any imbedding or immersiont in R". In 
any case differentiability of Z may be given meaning since its components 
relative to the canonical frames of R" at points of M will be functions on M ,  
Z ,  = z= d ( p ) ( d / d x a ) , ,  and by definition we shall say that Z is of class C' 
if a"(p), 01 = 1, . . . , n, are of class c' on M .  In particular, the vector fields 
d/dx' ,  . . . , d/dx" of R", restricted to M ,  are C"-vector fields along M (but 
rarely on M ) .  

If P E  M ,  then T,(R") and its subspace T,(M) carry the standard inner 
product of R" so M has the induced Riemannian metric. This allows us to 
decompose any vector Z , ,  p E M ,  in a unique way into Z ,  = Z ,  + Z% with 
Z > E  T,(M) and Z ~ E  T i ( M ) ,  the orthogonal complement of T,(M). This 
reflects the direct sum decomposition of T'( R") into mutually orthogonal 
subspaces: T,(R") = T,(M) 0 T i ( M )  called the tangent space and the 
normal space to M at p .  Let A', A" denote the corresponding projections: 
n'(Zp) = 2, and ~ " ( z , )  = Z:; they are linear mappings of T,(R") onto the 
subspaces tangent and normal to M .  Figures VII.7 and VII.8 illustrate this 
decomposition for a curve and surface in R3.  

Figure V11.7 

Suppose that Z is a vector field along M of class C'. Then d ( Z )  and ~ " ( 2 )  
are also vector fields, which are tangent and normal to M ,  provided that they 
are differentiable. We leave the proof of the following lemma (including the 
assertion of C' differentiability) to the exercises. 

(2.1) Lemma With Z as above d ( Z )  and A"(Z)  define mutually orthogonal 
C'-oectorfields 2, Z along M such that Z = Z + Z ,  that is, at each P E  M ,  

t Since we consider only local questions in this section, we may restrict ourselves to 
imbedded (regular) submanifolds by Theorem 111.4.12. 
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Figure V11.8 

Z ~ E  T,(M) unrl ( Z ; ,  2;) = 0. l j j i . 7  ufuncriori ofcfuss C'on M ,  then n ' ( f z )  = 
j k ' ( 2 )  uiid n''(,fz) = ,fn'(Z). Further, given rwo such oectorjelds Z, ,  Z2,  then 
n'(2,  + Z , )  = n ' ( Z , )  + n'(Z,) and x"(Z, + 2,) = n"(Z1) + n"(Z2). 

As examples we note that a vector field Z along a curve decomposes 
uniquely into the sum of a tangent vector field and a vector field in the 
normal plane: ~ ' ( 2 )  = (2, T ) T  and ~ " ( 2 )  = ( Z ,  N ) N  + ( Z ,  B)B (see 
Fig. VII.7). For the case of an arbitrary C" imbedded manifold M ,  we see 
that n'(?/8sz) applied at each PE M gives a C" tangent vector field to M for 
each c1 = 1, . . . , n. 

Now let Y be a tangent vector field to M c R", that is, for each 
p E M .  Y P e  T,,(M), or equivalently n'( Y )  = Y .  If p ( t )  is a curve on M of class 
C' or higher, defined for some interval of values o f t ,  then Y ( t )  = Yp(t) is a 
vector field along the curve. As such we can ignore M and differentiate Y ( t )  
as a vector field along a curve in R" obtaining d Y / d t ,  another vector field 
along the curve. In general, of course, d Y / d t  will not be tangent to M ;  
however, at each point p ( t )  we may project rlY/dt to a tangent vector 

(2.2) Definition The projection n'(rlY/dt) will be denoted D Y / d t  and will 
be called the coaarianr derivative of the tangent vector field Y on M along the 
curve p ( t )  (see Fig. VII.9). 

Both Y and D Y / d t  are tangent vector fields, and thus have meaning for 
the abstract manifold M .  However, the process by which D Y / d t  is obtained 
from Y and p ( t )  makes use of the imbedding of M in R". Our ultimate aim is 
to obtain for an abstract Riemannian manifold M a definition of derivative 

n'(dY/dt) .  
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Figure V11.9 

of a vector field along a curve which does not make use of an imbedding but 
is intrinsic to the Riemannian and differentiable structure of M itself. In the 
meantime we shall study in more detail the properties of D Y / d t  and will see 
that it has properties similar to the derivative discussed in Section 1. 

It is important to note that Y ( t )  need not be the restriction to a curve p ( t )  
of a vector field Y on M-as above-in order for D Y / d t  to be defined. We 
need only suppose that Y ( t )  is a vector field along p ( t ) ,  so defined that it is 
always tangent to M ,  that is, such that Y ( t ) E  Tp&4). Then, as above, 
D Y / d t  = a'(dY/dt) ,  where d Y / d t  is the derivative of the vector field along a 
curve as defined in the previous section. Now suppose as in (1.4a-c) that we 
have vector fields Y , ( t )  and Yz( t )  along p ( t )  on M and tangent to M. Then we 
have corresponding properties. 

(2.3) Theorem 
we have 

With Y ( t ) ,  Y l ( t ) ,  Y2(t)  as above a n d f ( t )  a C'function o f t  

(2.3a) 

(2.3b) 

D DYl DY2 
-(Y1 + Yz)  = ~ + -, 
dt dt dt 

dt 

The last equation concerns the induced Riemannian metric on M, that is, 
the inner product on T,(M), at  each p E M ,  induced by the inner product in 
Tp(R"). These properties are immediate consequences of the definitions, the 
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properties of n', and of the corresponding statements of (1.4a-c). Applying n' 
to both sides of (1.4a) and using linearity gives (2.3a). Similarly using (1.4b), 
we see that (2.3b) holds: 

d DY (f l) = a' - - ( f y )  = a' 
D 
dt dt 

The last property follows from (1 .4~)  if we remark that 

and that n"(dY,/dt) is orthogonal to T'(,)(M) so that 

(2, Yz)  + (Y, ,?) .  

(2.4) Remark If we change to a new parameter, say s, by t = f ( s ) ,  then 
DY/ds  = (DY/dt ) (d t /ds ) ,  dt/ds =f'(s) being a scalar. This also follows from 
applying n' to the similar relation d Y / d s  = (dY/d t ) (d t /ds )  of the previous 
section. 

(2.5) Definition Given M c R" as above, let Yp(l, be a vector field defined 
at each point of a curve p ( t )  on M and which at  each point is tangent to M ,  
that is, a vector field along p ( t )  tangent to M .  Then we shall say that Yp(l) is a 
constant or parallel vector field if DY/dr  = 0. More generally if Y is a tangent 
vector field on all of M ,  then it is constant or parallel if it has this property 
along every curve on M .  

It is very important to note that DY/dr  may be identically zero even 
though dY/dt  is not, thus a vector field along a curve may be constant 
considered as a vector field on a submanifold M of R" even though it is not 
constant considered as a vector field along the same curve in R". This obser- 
vation is a crucial point in some of our subsequent discussions, so we give a 
simple example. Let M = S', the unit circle in R2.  Then t -, (cos t, sin t )  is 
the parametric representation and it may be considered as defining a curve 
on M .  Let Y ( t )  be the unit tangent vector to this curve. As we have seen 
dY/dr is orthogonal to Y ( t ) ,  that is, normal to M ;  hence D Y / d t  = 
a'(dY/dr)  = 0, although dY/d t  is never zero and in fact has constant length 
+ 1. Since any great circle on the unit sphere S"-' c R" is congruent to the 
great circle r -+ p ( t )  = (cos t ,  sin r ,  0, . . . , 0) on the intersection of S"- and 
the 2-plane x3 = ... = x" = 0 of R", we see that the unit tangent vector to 
any great circle arc p ( t ) ,  parametrized by arclength, has the same property: 

DY dt = d t i d l )  D dp = 0. 
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This is admittedly a special case; in general the derivative of a tangent 
vector field to M along a curve p ( t )  in M has both normal and tangential 
components different from zero. If a curve on M is such that ( D l d t ) .  
(dp l t l t )  = 0, that is, the(c0variant)derivative of the unit tangent vector to the 
curve is zero along the curve, then we shall say the curve is a geodesic of M .  
We have just seen that the great circles on the unit sphere in R" are 
geodesics. In the case in which M is an open subset of R" or all of R", then 
dY/d t  = DY/dt ,  that is, in R" itself, as might be expected, covariant differen- 
tiation is just the usual differentiation. In this special case, according to 
Theorem 1.6, the only curves p ( t )  for which 

dt ( d p )  dt = i t  (3 
vanishes identically are straight lines parametrized by arclength-or with t 
proportional to arclength. Thus geodesics on an imbedded manifold M are 
those curves which in some sense generalize the concept of straight line- 
even though they may not look " straight " when viewed from the ambient 
space R". We shall study these questions in some detail later in this chapter. 

Formulas for Covariant Derivatives 
In order to further study the covariant derivative DY/d t  of a tangent 

vector field Y on M along a curve we will need more detailed computations 
using local coordinates. Suppose dim M = m and that U ,  cp is a local coor- 
dinate system on M with cp( V )  = W ,  an open subset of R". We denote the 
local coordinates by u l ,  . . . , urn and remark that cp- W + R" is an imbed- 
ding of W whose image is, of course, U-an open subset of M .  We have 
previously referred to q- ' as a parametrization of M .  Let u = (u ' ,  . . . , urn), 
then 

gives cp- ' in terms of its coordinate mappings gu(u). [We let a, ,!l, y ,  and so 
on, denote indices that range from 1 to n and i,.j, k, and so on, indices 
ranging from 1 to m.] The coordinate frames will be denoted F , ,  . . . , F,; they 
span the tangent space to M at each point. Since this tangent space T,(M) at 
P E  M is a subspace of T,(R"), these vectors are linear combinations of 
d /dx l ,  . . . , i?/dx". In fact, generalizing earlier formulas for m = 2 and n = 3 
(Example IV.l.10) we have: 

Now suppose that p ( t )  is a curve on M of class C1 and that Y ( t )  = Yp(,) is 
a vector field along the curve which is always tangent to M .  Then Y ( t )  may 
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be written as a linear combination of F , ,  ..., F,, so that Y ( t )  = 

I;, bk(( t )Fk.  Although 

is not tangent to M in general, projecting we obtain 

or 

We know, however, that DFi/dr, i = 1, . . . , m, are vectors tangent to M 
and may be expressed as linear combinations of Fl, . . . , F ,  . Suppose that 
the curve p ( t )  is given in local coordinates by q ( p ( t ) )  = (u ' ( t ) ,  ..., um(t)), 
then in (2 .6 )  the components are (composite) functions (dga/dui),+,[,,(!,) of t 
through u ' ( r ) ,  . .., um(t) ,  and at each p ( t )  

by the ordinary chain rule of differentiation applied to (2.6), and the proper- 
ties of 7c: The derivatives (72y"/duJ dun are functions of ul ,  . . . , urn and are 
evaluated at u ( t )  = (u ' ( t ) ,  . . . , u"(t)) in this formula. 

We have previously remarked that when M is imbedded in R" by a C" 
imbedding-which we shall always assume-then (3/dxa restricted to M is a 
C' vector field along M .  By Lemma 2.1, 7c'(i3/c7xa) defines a C" tangent 
vector field on M ,  which must have then a unique expression of the form 
d(?/dx")  = E=, U t ( U ) F k  on U. The at(.) are C' functions on M which we 
do not compute. Using them and the coordinate functions ga(u) of the par- 
ametrization cp-  ' we define the C" functions rt(u) as 

Symmetry in i,,j is a consequence of interchangeability of the order of differ- 
entiation. We do not explicitly compute these functions now, but we use 
them to write new formulas for D F J d t :  

at each p = p ( t ) ,  the being evaluated at ( u ' ( t ) ,  . .., um(t)).  A particular 
case, the curve given by ui = constant for i # ,j and uJ = t ,  gives the formula 
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for the covariant derivative of the vector field Fi along the j th  coordinate 
curve, convdniently denoted D F i / d d :  

This gives an interpretation of the meaning of rfj(u); it is the kth component 
(relative to the coordinate frames) of the covariant derivative of Fi  along 
that curve in which only thejth coordinate is allowed to vary, that is, along a 
coordinate curve. Using these formulas we may fina!ly write (2.7) in the form 
in which we want it (after appropriate change of indices): 

This formula gives us the analog to formula (1.5) in that DY/dt is ex- 
pressed in terms of the field of frames F , ,  . . . , F, on U c M, frames defined 
independently of either p ( t )  or Y .  The components of the covariant deriva- 
tive are the terms in brackets. The functions rb(u) are defined over all of U 
and in (2.9) are evaluated at points of the curve. Indeed for every coordinate 
neighborhood on M we have frames Fi, i = 1, . . . , m, and functions rfj, 
which give DFi /ad .  From these data DY/dt can then be computed according 
to (2.9) by ordinary differentiation of the components of Y and coordinates 
of PO). 

OX, Y and Differentiation of Vector Fields 

We will now change our point of view slightly in deriving some con- 
sequences of formula (2.9). Let Y be a tangent vector field on M which is 
defined everywhere-not just along some cv-ve. On the coordinate neigh- 
borhood U we write Y = ckm, b k ( u ) F k .  Let p be a point of U such that 
cp(p) = (u ; ,  . . . , uz), and let X, be a tangent vector at p ,  X, = a i F j p ,  uj 
constant for j = 1, . . . , m. Now choose any differefitiable curve p ( t )  what- 
soever with p ( t o )  = p and (dpldt),, = X,, so that in local coordinates it is 
defined by u ( t )  = (u ' ( r ) ,  . . . , zl"'(t)) with ui( to)  = ub and (dui/dt) , ,  = ui. Then 
we may compute (DY/d t ) ,= , ,  as above with a surprising result. First we 
observe that Y ( t )  = C b'(U(t))Fk implies that 

($1 = 
(a , j )  dbk u J = X , h '  . 

10 j = 1  uo 

Taking this into consideration, (2.9) may be written in modified form as 

(2.10) ($I,, = 
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A careful examination of this formula discloses the remarkable fact that 
the right-hand side does not depend on p ( r )  but only on its tangent vector X ,  
at p .  Since (Dydt)," is a vector in T,(M), this formula defines a mapping of 
T,(M) to itself X,? + (DY/dr),,. We introduce the notation V X p  Y for the 
image of X , ,  that is, we define V,, Y = (DY/d t ) , ,  along any curve p ( t )  with 
p ( t o )  = p and (dpldt),, = X,. We have defined previously a "directional 
derivative" X,fof afunctionfwith respect to a vector X,; what we have just 
now done is define in similar fashion a rate of change of the vectorfield Y at 
p in the direction X,. It is measured by a vector V,, Y .  

I t  is worth commenting that along the curve p ( t )  we have at each point 
V , , ,  Y = DY/dr as a consequence of our notation. We summarize the essen- 
tial properties of V, ,  Y in a theorem. 

(2.1 1) Theorem Let M c R" be a submanlfold. For any tangent vectorfield 
Y of class C', r > 1, on M we have at each point p E M a linear mapping 
X ,  -+ V X p  Y qf  T,(M) + T,(M). Then V,, Y ,  being dejined as above, has the 
,following properties: 

/j ' X ,  Y are irecror fields of class C' (of class C"") on M ,  then V ,  Y 
defined by (V,  Y ) ,  = V,, Y is a c'- I (respectively, Cm) vector jield on M .  

The mup T,(M) x X ( M )  -, T,(M) given by (X , ,  Y )  -, V,, Y is R- 
linear in X ,  and Y .  For a functionf, differentiable on a neighborhood of p ,  

(1 )  

(2) 

V x , ( - f y )  = (X, .f Y, + f(P)VXp Y .  

(3) If X ,  Y E  X ( M ) ,  then [X, Y ]  = V ,  Y - V y X .  
(4 )  I f '  Y, and Y2 are vector ,fields und ( Yl ,  Y2) their inner product, then 

Proof Let Y = 1 bkFk and X = 1 akFk in the notation just used. The 
bk are functions of the local coordinates (u', . . . , urn) and so are the ak when X 
is a vector field. Since X ,  bk = (?bk/?uj)aj, the definition V x ,  Y = D vdr 
and (2.10) imply that 

X , ( Y b  Y2) = (VXP y13 Y2J + ( Y I P .  VX, Y2). 

From this formula, valid for each p E U ,  it is clear that properties (1) and (2) 
hold, whereas (4) is just the earlier property (2 .3~)  of D Y / d t .  [Again note that 
X , f  = ilfldr, the derivative off ( p ( t ) ) ,  when we assume X, = dp/dr; in parti- 
cular this holds for J' = ( Y l ,  Y2).] Only property (3) requires more careful 
verification. We will verify (3) by direct computation in a coordinate neigh- 
borhood U ,  cp using our previous notation. With X and Y given on U as 
above we compute [X, Y ] :  
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Using the formula for (DYldt),,, we compute VXp Y - VypX. We have 

However, since l-fj = rji this reduces to the first term in parentheses, the 
second sum being zero. Thus (3) follows. I 

We conclude with several remarks. First, a careful reexamination of what 
we have done will show that VXp Y depends for its definition only on the 
Euclidean structure of R", that is, on E" and on the imbedding of M in E". It 
is independent of local coordinates, although we use them in its definition 
and in the proof above. However, d v d t  and D v d t  = rc'(dY/dt) are geomet- 
ric in nature and so is Vx, Y .  

Secondly, if V x p  Y is axiomatized and defined first, then DYldt  could be 
introduced by DYldt = V,,,,,,,, Y and we could reverse our definitions and 
steps above. 

Finally we note that although there is a partial duality of roles of X and 
Y in the symbol V, Y ,  which in fact defines an R-bilinear mapping of 
X ( M )  x X(M) --+ X ( M )  by (X, Y )  .+ V, Y ,  actually there is an important 
difference in the roles of X and Y .  Namely this mapping is C"(M)-linear in 
the first variable (Exercise 3) but not the second [by (2) of Theorem 2.1 11 .  

In this connection we observe that when X and Yare vector fields on M, 
then the Lie derivative L,  Y = [X, Y ]  gives a rate of change or derivative of 
Y in the direction of X. However, this derivative requires a uectorjeld X, 
not just a vector X, at a single point as does V,, Y .  Thus the two concepts of 
differentiation are essentially different. Property (3) of Theorem 2.1 1 gives 
their precise relationship. 

Exercises 

1. Prove Lemma 2.1. [ H i n t :  The ideas in the next exercise may help.] 
2. Let U ,  cp be a coordinate neighborhood on M c R" and let F , ,  . . . , F,,, 

be the coordinate frames on U-as in (2.6). If  p~ U ,  then show that we 
may complete these frames to C" frames F1, . . . , F, ,  I ,  . . . , F,  of R" on 
some neighborhood V c U of p .  (This means that the components of 
these vectors relative to the frames of R" are C" functions of the local 
coordinates of M.) Using the Gram-Schmidt orthogonalization process, 
show that there is a C" orthonormal frame field F;, ..., F:, on this 
neighborhood V such that for each k = 1 , .  .., n, the vectors F ; ,  ..., F; 
and F , ,  ..., Fk span the same subspace. Use the new :frames to give 
expressions for TC', TC" on I/. 

3. Prove that if X ,  Y E  X(M) andfE Cm(M), then V,, Y = .f V, Y .  Find the 
correct formula for V,(fY). 
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4. Let M be a hypersurface of R" (submanifold with dim M = n - 1). 
Show that if p( t )  is a curve on M c R" and Z ( t )  = Zp(,) is a vector field 
along p ( t )  such that IIZ(t)ll = 1 and Z ( t )  is always normal to M [that is, 
orthogonal to Tp(t,(M)], then DZ/dt is tangent to M .  
Let M be the right circular cylinder x2 + y2 = a2 in R3.  Find all curves 
p ( t )  = ( .x ( t ) .  y ( t ) ,  z(r)) on R3 which are geodesics, that is, for which 
(D/d t ) (dp /dr )  = 0. 

6. Let y =.f(.u), a _< x s b, be a curve in the xy plane and let M c R3 be 
the surface obtained by revolving the curve around the x-axis. Assume 
f(x) is C2 at least and thatf(x) > 0 on the interval. Show that the curve 
y = .f(.u), z = 0, and each curve into which it rotates is a geodesic. Deter- 
mine conditions for the intersection of M and a plane x = constant to be 
a geodesic. 

5 .  

3 Differentiation on Riemannian Manifolds 

We now pass to consideration of abstract Riemannian manifolds- 
manifolds which are not submanifolds of Euclidean space. Our purpose is to 
develop a satisfactory theory of differentiation on such manifolds, having 
properties like those discussed above but intrinsically defined, that is, with- 
out imbedding M in Euclidean space. We will reverse the order of ideas in 
the last section and begin by an attempt to define for M a derivative V,, Y of 
a vector field Y in the direction of a tangent vector X, to M at p .  Of course, 
we use the properties discovered in the previous section as our model. In all 
that follows we shall suppose all vector fields and functions on M to be C". 

(3.1) Definition A C" connection V on a manifold M is a mapping 
V: X ( M )  x X ( M )  -+ X ( M )  denoted by V: ( X ,  Y )  -, V, Y which has the lin- 
earity properties: For allf; g €  P ( M )  and X ,  X', Y ,  Y ' E  X ( M ) :  

(1) v , x + g x ,  y = f P ,  Y )  + d V x ,  yx 
(2) V , ( f Y  + g Y ' )  = f V ,  Y + g v ,  Y' + ( X f ) Y  + ( X g ) Y ' .  

One should not attempt to read anything into the word "connection"- 
it is just an operator like the directional derivative. Note the asymmetry in 
the roles of the first and second vector fields X and Y ;  V is C " ( M )  linear in 
X but not in Y. However, iffis a constant function, then Xj= 0; thus V is 
R-linear in both variables. Of course, we do not know that connections of 
this type exist, although by Theorem 2.11 they do for M imbedded in 
Euclidean space. In addition, according to that theorem we have in this 
special case two further properties: 

( 3 )  [ X .  Y] = V ,  Y - V , X  (symmetry), and 
(4) X ( Y ,  Y ' )  = ( V ,  Y, Y' )  + ( Y ,  v, Y') .  
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(3.2) Definition A C" connection which also has properties (3) and (4) is 
called a Riemannian connection. 

Note that in these definitions it is only property (4) that involves the 
Riemannian metric; thus on arbitrary differentiable manifolds one may 
study C" connections [properties (1) and (2)] or symmetric C" connections 
[properties (lt(3)]. However, only the Riemannian case will be of interest to 

(3.3) Theorem (Fundamental Theorem of Riemannian Geometry) Let 
M he a Riemannian manifold. Then there exists a uniquely determined Rieman- 
nian connection on M. 

us. 

We prove this theorem in several steps in a manner somewhat similar to 
that of the existence proof for the operator d o n  A ( M ) .  Before doing so we 
deduce a consequence of the definition of connection which will resolve a 
minor discrepancy with the last section. In the discussion of differentiation 
on manifolds imbedded in R" we defined the map X, -+ V,, Y from 
T,(M) -+ T,(M) using the vector field Y but without any assumption that X, 
was the value at p of a vector field X. However, given vector fields X and Y ,  
a vector field V ,  Y was then defined by (V ,  Y ) ,  = V,, Y for P E  M, thus 
obtaining a map V of pairs ( X ,  Y )  of vector fields to a vector field V x  Y ,  as in 
our present definition. We have now taken this map on pairs of vector fields 
as the primary notion, and we wish to see that conversely, Y defines a linear 
map of T,(M) -+ T,(M) for each P E  M ,  that is, to see that (V, Y ) ,  depends 
not on the vectorfield X but only on its value X, at p .  The same is not true of 
the dependence on Y as will appear in the corollary below. 

(3.4) Lemma Let X ,  Y E  X ( M )  and suppose that either X = 0 or Y = 0 on 
an open set U c M. IfV is a connection [satisfying properties (1)  and (2) of 
Definition 3.11, then the vectorfield V x  Y = 0 on U .  

Proof Suppose that Y = 0 on U and q E  U .  There is a relatively com- 
pact neighborhood V of q with P c U and a C" functionfsuch thatf= 1 
on V andf= 0 outside U (by Theorem 111.3.4, let K = P and F = M - U ) .  
Since Y = 0 on U ,  fY = 0 on M. However, property (2) implies that V, 
takes the O-vector field to 0; therefore V , ( f Y )  = 0 on M. But then, using 
property (2) again we have 

0 = (VX(fY))q = (X,f)r ,  + f ( q ) ( V x  Y)q = (VX Y ) ,  . 
Since q is an arbitrary point of U ,  this completes the proof when Y = 0 on 

I U .  A parallel proof using property (1 )  applies when X = 0 on U .  

This lemma, together with the fact that V x  Y is C"(M)-linear in X, will 
enable us to establish the equivalence with our earlier definitions. 
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(3.5) Corollary Let p be any point of M .  Zf X ,  X ' E  X ( M )  such that 
X ,  = Xk. then for every vector -field Y ,  ( V ,  Y ) ,  = (V,, Y ) , , .  Denote this 
uniquely determined vector by  V X p  Y .  Then the mappingfrom T,(M) --* T,(M) 
defined by X ,  -, V X p  Y is linear. 

Proof Let U ,  rp be a coordinate neighborhood of the point p ,  I/ a 
relatively compact neighborhood of p with V c U ,  and f a  C" function on 
M which is 1 on P and 0 outside U ,  as in the proof of the lemma. If 
X E K(M), then on U we have 

n 

x = C a , E ,  
i= 1 

with a, E C " ( I / )  and E l ,  . . . , En the vectors of the coordinate frames. We 
define r?, E l ,  ..., & E  X ( M )  and i i , ,  ..., i i , ~  C"'(M) by 2 =fl, & =jEi 
and ii, = fa i ,  i = 1, . . . , n, on U ,  and all to be zero (vectors and functions 
respectively) outside U .  Then we have 

on all of M ;  but on V this reduces to the equation above since = X, 
Ei = E ,  and iii = a, on this set. Applying Lemma 3.4 and property (1 )  of V 
gives 

n 

V x Y  = V i Y  = C i i i V E i Y  on V .  
i= 1 

Hence 

(Vx Y)p  = C %>(VEi Y)p = ai(p)(VEi ' 1 ,  7 

where the right-hand side depends only on the value Y, of the vector field X 
at p .  This proves the first statement and the formula itself shows that the 
mapping X ,  + V ,  p Y  = ( V ,  Y ) ,  is a linear mapping of T,(M) into itself. For 
its value depends linearly on the components al (p) ,  . . . , an(p) of X, relative 
to the basis El  ,, . . . , En, of T,(M). I 

An important consequence of Lemma 3.4 is that it allows us to define 
(unambiguously) the restricrion V u  of a connection V defined on M to any 
open subset U c M .  This is done as follows. Let X ,  Y be C"-vector fields on 
U and let p E U .  We again choose a neighborhood V of p with P c U and 
take a C" function f which is + 1 on I/ and vanishes outside U.  Then 
2 = ,fx and P = ,fY may be extended to vector fields on all of M which 
vanish outside U .  We then set 

(v; Y) , ,  = ( V ,  F), .  
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I n  fact, the left hand side is defined at every point of V by this equation and 
by the lemma this definition is independent of the choices. It is easily verified 
as an exercise that V" is a connection and is Riemannian if V is-using the 
induced Riemannian metric on U .  The importance of this follows from the 
next lemma. 

(3.6) Lemma Suppose that a Riemannian connection V exists for every 
Riemannian manifold. I f  it is unique for manifolds covered by a single coordin- 
ate neighborhood U ,  then it is unique for all manifolds. Conversely, i f  there 
exists a uniquely determined (Riemannian) connection V" for every Rieman- 
nian manifold covered by a single coordinate neighborhood U ,  then there exists 
a uniquely determined Riemannian connection V on every Riemannian 
manifold. 

Proof We suppose that V is a Riemannian connection on M .  By 
hypothesis there is a uniquely determined Riemannian connection P" on 
each coordinate neighborhood U ,  cp of M (with the induced Riemannian 
metric). Let X, Y be vector fields on M and denote by Xu, Y, their restric- 
tions to U .  It is an easy consequence of the definition of V", the restriction of 
V to U ,  that V;,Y, = (V, Y ) ,  . Then on each coordinate neighborhood we 
have (V, Y)" = V;! Yo for, by the uniqueness assumption, P" = V". Since 
M is covered by coordinate neighborhoods, this proves the first statement. 

Now suppose that V" is uniquely determined on every coordinate neigh- 
borhood U ,  cp of M .  If there is defined on M a V with properties (1)-(4) it 
must be unique by the above. We shall define V on M as follows: Let 
X ,  Y E  W(M) and let PE M .  Choose a coordinate neighborhood U ,  cp con- 
taining p and define (V, y),, = Vy, Yu . This defines V, Y not only at p but 
on the neighborhood U .  It is easy to verify properties (1)-(4) since they hold 
for V". Suppose V ,  $ is a coordinate neighborhood overlapping U ;  let 
W = U n V .  Then W is a coordinate neighborhood using either coordinate 
map cp or $ and, Vw being thus uniquely defined, we have at every point q of 
W 

67;" Y"), = (VX", Yw), = ( V L  Y"), . 
This completes the proof of the lemma. I 

Proof of Theorem 3 3  The proof of the existence and uniqueness of a 
Riemannian symmetric connection, Theorem 3.3, is now reduced to the case 
of a manifold covered by a single coordinate neighborhood. Let U ,  cp cover 
the manifold M and let X I , .  .. , x" denote the local coordinates and 
El, . . . , En the coordinate frames. Denoting the inner product by ( X ,  Y )  we 
have as components of the metric tensor the C" functions gij(q) = ( E i q ,  Ejq)  
on U = M .  The matrix (gij(q)) is symmetric, positive definite, hence it has a 
uniquely determined inverse (gij(q)) whose entries are C" functions on U 
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also. We shall show that there exists a unique Riemannian connection V on 
M. First we note that if V can be defined at all, then by properties (1) and (2) 
it is determined by the C" functions rfj on U ,  1 I i, j ,  k I n, defined by 
V E i E j  = rfjEk. In fact, if X = 1 bi (s )Ei  and Y = 1 aj(x)Ej  on U ,  
then from ( 1 )  and (2) and our definition of rf j ,  

Conversely, given functions on U ,  this formula defines a C" connection 
satisfying ( 1 )  and (2). 

However, the r!j are not arbitrary C"' functions since a Riemannian 
connection satisfies the further properties (3) and (4). Because [Ei, E j ]  = 0 
for the coordinate frames, property (3) is equivalent to 

0 = [Ei 9 E j ]  = VE, Ej  - V,Ei = 1 (rfj - rji)Ek 
k 

or, in fact, to the symmetry of rfj in the lower indices: 

(3') r;j = rji . 
Finally, property (4) is equivalent to 

E k g i j  = E k ( E i  7 E j )  = (VEkEi 9 E j )  + (Ei 7 V E k E j )  

or to 

(4') Ekgij  = 1 s  ( r i i i y s j  + r;jgsi), 1 I i,j, k I n. 

Finally, using the matrix (g i j )  inverse to (g i j ) ,  we define r i j k  = Is r i , g s k ,  

which implies that r!j = 1 Ti jsgsk .  Thus the n3 C" functions r!j determine 
the n3 C"' functions r i j k  and conversely. Properties (3') and (4') become 

( 3 7  r.. rJk =I-.. J l k  

and 

(4") $yij/fi.xk = r k i j  + r k j i  9 

respectively, if we write E k g i j  = dgij/r?.uk, that is, if we consider g i j  as func- 
tions of the local coordinates. 

In summary, given a Riemannian connection on M ,  covered by a single 
coordinate neighborhood, then if a Riemannian connection V exists, it deter- 
mines n3 functions rijk of class C" which have the two properties just 
mentioned. Conversely, it is easy to check by reversing these steps that any 
such functions determine a C" Riemannian connection on M .  Thus the 
theorem is completely established by the following lemma. 
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(3.7) Lemma Let W be an open subset of R" and let ( g i j )  be a symmetric, 
positive definite matrix whose entries are C" functions on W .  Then there exists 
a unique family of c" functions r i j k ( X ) ,  1 5 i, j ,  k I n on w satisfying the two 
sets of equations (3")  and ( 4 ) .  

Proof Write Eq. ( 4 )  twice more, each time permuting i , j ,  k cyclically. 
Then subtract the second of these equations from the sum of the first and 
third. Using (3"), r i j k  = r j i k ,  gives the unique solutions 

This completes the last step in the proof of the fundamental theorem 3.3. 
I 

Suppose that U ,  q is a local coordinate system with coordinates 
xl, ..., x". Let E l ,  ..., En be the coordinate frames and Y = 1 akEk be the 
expression on U of the vector field Y .  If P E  U and X ,  = bkEk,, then we 
have the following formula for V x  Y on U .  

(3.8) Corollary For each p E U ,  using the above notation, we have 

(V, Y ) ,  = V x p  Y = 1 
with 

Proof As we have seen in the proof (V ,  Y ) ,  is the same as Vy,, Y,, that 
is, Vu on X ,  Y restricted to U .  For this reason we use the same symbol V for 
all cases. The formula of the corollary follows at once from applying proper- 

Of course, this is the same formula we obtained earlier in the proof of 
Theorem 2.1 1 for a manifold M in Euclidean space. In fact we have an 
obvious corollary of the uniqueness of V: 

(3.9) Corollary In the case of an imbedded (or immersed) manifold in 
Euclideun spuce, the differentiution defined in Theorem 2.1 1 depends only on 
the Riemunnian metric induced by the imbedding (but is otherwise independent 
of the imbedding). 

(3.10) Remark In Sections 1 and 2 we used the concept of differentiation 
of vector fields along curves dY/dt  to define DY/dt  and then V x  Y on sub- 
manifolds of R". In this section we showed quite independently of the earlier 
discussion that there is a uniquely determined Riemannian connection V on 

ties (1) and (2) defining a connection to V, bj,j(C akEk). I 
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every Riemannian manifold M .  Using this result we come full circle and 
define-for a vector field Y and curve p ( t )  on M-the covariant derivative 
D Y / d t  of Y ( t )  = Yp(l) by 

Let Y be given locally by Y = 1 bk(x)Ek and p ( t )  by ~ ( t )  = (x'(t), . . . , x"(t)) .  
Then from Corollary 3.8, with X p ( l )  = 1 i ' ( t ) E j  = cip/dt, it is easy to rede- 
rive formula (2.9) (renumbered here) 

Since dhk/dt depend only on the values of b', . . . , b", components of Y 
along the curve, the formula is valid when Y is defined only at points of the 
curve. Of course on any interval of the curve Y may be extended to a vector 
field on M, but DY/t / t  is independent of the extension by (3.11). 

Constant Vector Fields and Parallel Displacement 

A vector field Y on M is said to be constant if V x ,  Y = 0 for all p E M and 
X,E T,(M). In general there do not exist such vector fields, even on small 
open subsets of M .  However, given a differentiable curve p ( t ) ,  0 I t I T ,  
there will be a vector field X ( t )  = X p ( , )  constanf or parallel along p ( r )  (by 
which we mean DX/rif  = 0). 

(3.12) Theorem Let p = p(O) ,  the initial poinr of the curve p ( t ) ,  0 I t I T ,  
and let X ,  E Tp(o)(M) be given arbitrarily. Tkrn there exists a unique constant 
vecrorjirlti X,(,,  along p ( t )  such that X p ( o ,  has the given value. I f  El,,  . . . , En, 
is an ortkonorn~alfrunie at p(O) ,  then there is a unique, parallel jield of ortho- 
norrnuIficrrnes on p( t )  which coincide with the given one ar p = p ( 0 ) .  

Proof (The proof depends on the existence theorem IV.4.1 which is not 
fully proved in this text. Moreover, we need a special fact about systems 
which are linrur in the unknown functions. The necessary proofs are in the 
references already cited, for example, Hurewicz [ 11.) To prove the existence 
and uniqueness of X ( t )  = X p ( l ) ,  it is enough to demonstrate it for arcs of p ( f )  
lying in single coordinate neighborhoods. For the curve can be partitioned 
into a finite number of such arcs and X ( t )  defined on each in turn beginning 
with r = 0. Now suppose that U ,  cp is such a neighborhood and contains p ( t )  
for c I t I d and that X p ( c ,  is given. We wish to determine X p ( l )  = 1 ak(t)E, 
so that it is parallel, which occurs if and only if 

d X J  
= - C r i j a  dr, k =  1 ,..., n, 

dak 

dt i , j  
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by virtue of (3.1 1). In this system of ordinary differential equations ak(t)  are 
unknown except at t = c, rfj depend on t through x( t ) .  Thus ak(r) satisfy a 
system of first-order equations which we know to have a unique solution 
satisfying arbitrarily given initial conditions X p ( c )  = 1 ak(c)Ek. Therefore 
ak(t )  are defined and unique for some interval of values of t and they are 
necessarily C' if the curve is C'. We need to know that the solutions ak(t)  are 
defined for all values of t in the given interval c I t I d .  This is so (as 
mentioned above) because the equations are linear, that is, the right-hand 
sides are linear in the unknown functions a'(t). 

The second part of the proposition is a consequence of the first and of the 
fact that property (2.3~) holds: We extend each of the Eip(0) to a parallel 
vector field Eip(f )r  then by definition DEJdt = 0, 1 I i I n. Differentiating 
( E i ,  E j ) ,  we find that 

b f ( E " E j ) =  D ( T ' , E j )  + (E ' ,? )  = o .  

Thus ( E i ,  E j )  is for each i, j a constant function along p ( t ) .  Since at p ( 0 )  it is 0 
if i # j and + 1 if i = j ,  the same is true everywhere on p ( t ) .  I 

(3.13) Remark We remark that it is sufficient for the curve to be piece- 
wise differentiable, for then we can move X ,  along each piece separately. 
Therefore it follows from this theorem that given a piecewise differentiable 
curve p(r), there exists an isomorphism, in fact isometry, T ~ :  T, (o ) (M)  + 

T'(,)(M) determined by the condition that T ~ ( X ~ ( ~ ) )  be a parallel (constant) 
vector field along p ( t ) .  It is clear from our initial discussion of dX/d t  along a 
curve p ( t )  in Euclidean space that this would enable us to define the deriva- 
tive of vector fields along curves on a Riemannian manifold M by comparing 
vectors at different points of the curve. The notion of parallel displacement 
along curves is sometimes taken as the starting point in studying differentia- 
tion on manifolds. 

Exercises 

1. Show that if E , ,  . . . , En is a parallel frame field along a differentiable 
curve p ( t )  in M and X ( r )  = X p ( f )  is a vector field along the curve defined 
by X ( t )  = c;=l ai(t)Eip(r) ,  then 

2. Using spherical coordinates we may cover the 2-sphere S of fixed radius 
a minus a single meridian from north to south pole by a single coordin- 
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ate system U ,  cp. The parameter mapping cp-'  takes W = {(u' ,  u') 1 
0 -= u' < 27r, 0 < u' < n) onto the sphere as imbedded in R3 by q: 

cp- '(id', 12) = (a cos u 1  sin u2, a sin u 1  sin u2, a cos u'), 

Find y i j (u ' ,  u 2 )  and compute Tfj (u ' ,  u'). 
Let the upper half plane be considered as a manifold M covered by a 
single coordinate system M = {(x', x') I .x2 > 0) with U = M and coor- 
dinates (x', x'). Ifgij(x) = (.?-' hij, find r f j .  Show that x1 = constant is 
a geodesic. 
Show that isometries of Riemannian manifolds preserve the Riemannian 
connection, that is, if F :  M ,  -, M ,  is a diffeomorphism preserving the 
Riemannian metric, then F*(V$'Y) = V!? *(X) F*(Y) .  
Let M be a Riemannian manifold, W an open neighborhood of ( u o ,  u o )  
on the uu plane, and F :  W + M a C" mapping. Let dF/du  and d F / d v  
denote the vectors tangent to the curves u = constant and u = constant, 
respectively, and let D/&, D / i k  denote the covariant derivatives of any 
vector field along these respective curves. Using (3.1 l), show by direct 
computation that 

D ?F D 8 F  
do d u  i i 1 r  do . 

To which property of the Riemannian connection does this correspond? 

- - 

Addenda to the Theory of Differentiation on a Manifold 

In  this section we insert a brief treatment of two topics which are closely 
related to the previous section, but which we do  not need or use until the 
next chapter. First, we introduce the Riemann curvature tensor, and second, 
we briefly treat connections from the point of view of exterior differential 
forms. 

The Curvature Tensor 

I t  is a standard theorem of advanced calculus that second-order partial 
derivatives are independent of the order of differentiation: 

For functions on manifolds the analogous property X(Yf) = Y ( X f )  does 
not hold in general. Indeed [X, Y] measures the extent by which it fails: 

X( Yf) - Y ( X f )  = [ X ,  Y]f: 

[It still holds if X = Ei and Y = E j ,  since E,fmay be identified with d$'dxk, 
k = 1, . . . , 1 1 ,  if we allowfto denote the expression for the function on M in 
local coordinates XI, . . . , x".] 
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Since interchangeability of order of differentiation is measured by an 
interesting object [X, Y ]  in the case of functions, it is natural to study the 
same question for V, and Vy derivatives of a vector field Z on M with 
respect to vector fields X, Y .  A relatively simple example (Exercise 1) shows 
that in general Vx(Vy Z) - Vy(Vx Z) # 0; hence it determines a vector field 
on M which may be thought of as analogous to [X, Y ] .  In fact, however, a 
more important expression, which involves also the measure of noninter- 
changeability of derivatives of functions [X, Y ] ,  is the following related 
vector field, denoted by R(X, Y ) Z  or R(X, Y )  . Z: 

( 4 4  R ( X ,  Y )  * Z V,(Vy Z )  - Vy(Vx Z) - Vex, y] 2. 

I t  is readily verified that this formula defines a multilinear mapping of 
X ( M )  x X ( M )  x X ( M )  3 X ( M ) ,  that is, R(X, Y) . Z is R-linear in each 
variable. However, from another point of view, in this expression R ( X ,  Y )  is 
an operator, determined by the vector fields X and Y ,  and assigning to each 
vector field Z a new C"-vector field R(X, Y )  . Z .  Note that if [ X ,  Y ]  = 0, as 
is the case when X = E i ,  Y = E j  are vectors of a coordinate frame, then 

R ( X ,  Y )  * Z = V,(VyZ) - Vy(V,Z), 

so that if R(X, Y )  = 0 on M ,  then VEi and VEj are interchangeable for all Z. 
A purely formal reason for the added term -V[,, y1 Z in the definition is so 
that the following important theorem holds. 

(4.2) Theorem At any point p ,  the vector (R(X, Y )  . Z), depends only on  
X,, Y,, Z,, the values of the three vectorfields at p ,  and not their values in a 
neighborhood or on M ;  thus formula (4 .1 )  assigns to each pair of vectors 
X,, Y,E T,(M) a linear transformation R(X,, Yp):  T,(M) + Tp(M).  I n  fact, 
(X,, Y,) -, R ( X , ,  Y,) is a linear mapping ofTp(M)  x T,(M) into the space of 
operators on T,(M). 

Proof From the definition of R ( X ,  Y )  * Z we see that it depends R- 
linearly on each of the three arguments X, Y ,  Z. Moreover if .f is a C" 
function on M (not necessarily constant), we have 

R(JX, Y )  * Z = R ( X , f l ) .  Z = R ( X ,  Y )  .fz = f R ( X ,  Y )  * Z 

as we may easily check by direct computation. 
Now suppose that U ,  cp is a coordinate neighborhood. Let (x', . . . , x") 

denote the local coordinates and El,  . . . , E,  the coordinate frames. We sup- 
pose that X = 1 d E i ,  Y = 1 f l j E j ,  Z = 1 y k E k .  Then by the remarks 
above, 

R(X, Y )  ' Z = 1 Uif l j ykR(Ei  E j )  ' E k  
i. j .  k 
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and we see that at a given point p of U the right-hand side involves first 
R ( E i ,  E j ) .  E k ,  which is independent of the vector fields, and second the 
values of the functions ai, p', yi only at the point p itself, not at  nearby points. 
This proves the theorem. We used only properties (1) and (2) of the connec- 
tion V, but the next fact uses the Riemannian metric. I 

(4.3) Corollary Theformula R ( X ,  Y ,  2, W )  = ( R ( X ,  Y )  . Z ,  W )  de jnes  a 
Cm-couarianr rensor of order 4. This  tensor depends only on the Riemannian 
metric on M :  I f  M1, M ,  are Riemannian manifolds and F :  M1 + M2 is an 
isometry, then F*R2 = R l .  

Proof Since R ( X , ,  Y,) * 2, is defined as an element of T,,(M) for any 
p~ M ,  its inner product (R(X,, Y,) . Z , ,  W,,) with any W,E T,(M) is a well- 
defined real number. Thus for each p ,  R , ( X , ,  Y,, Z , ,  W,) = 
( R ( X , ,  Y,,) . Z , ,  W,)  defines a multilinear function of four variables on 
T,(M), that is, an element of T4( T,(M)). This clearly defines a Cm-tensor 
field since both inner product and R ( X ,  Y ) . Z  are C" for 

We have defined an isometry of Riemannian manifolds to be a 
diffiomorphism which preserves the Riemannian metric, that is, 
F,:  T,(M,) + TF(,,)(M2) preserves inner products (and is an isomorphism 
onto). [If we do not suppose that the C" mapping F is one-to-one onto, but 
only that F ,  is onto and preserves inner products, then it is called a local 
isometry. It is an isometry on some neighborhood of each point (for exam- 
ple, covering spaces).] The last statement of Corollary 4.3 is valid for local 
isometries also. Now since V is uniquely determined by the Riemannian 
metric, F ,  preserves the connection, more precisely F , ( V i  Y) = 
V i * , , , F , ( Y ) .  From this we deduce that R 2 ( F , X ,  F ,  Y) . F , Z  = 
R 1 ( X ,  Y )  . 2. Since inner products are preserved, this implies F*R2 = R , .  

x ,  Y ,  2, W E X(M) .  

I 

(4.4) Definition The operator R ( X ,  Y )  is called the curvature operator and 
the tensor R ( X ,  Y, Z ,  W )  is called the Riemann curvature tensor. [It is not 
difficult to see that each one determines the other (Exercise 2).] 

(4.5) Remark Let El,  . . . , En be a field of frames on U ,  an open set of M .  
Then the Riemann curvature tensor is uniquely determined on U by either of 
the n4 sets of functions Rikl or Rijkr defined by the equations 

and 
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The Riemannian Connection and Exterior Differential Forms 

There is another way of formulating the properties of covariant deriva- 
tives, connections, curvature tensor, and so on, which we shall now touch 
upon-it will be more fully treated later. We suppose that U is an open 
subset of a manifold M which has defined over it a field of C" frames 
E l ,  . . . , E n .  The most usual case is when these are the coordinate frames of a 
coordinate neighborhood U ,  cp. However, in the case of a Riemannian mani- 
fold, which is our present interest, we might find it convenient to consider a 
neighborhood with orthonormal frames (Exercise 4). Corresponding to 
E l ,  . . . , E n ,  we have at each p E U the dual basis 01, . . . ,8" of T,*(M),  charac- 
terized by Oi(Ej) = 6;. It is a field of dual coframes on U and is clearly C". If 
01, . . . , 8" are given, then conversely E l ,  . . . , En are determined (Section V.l).  

Now in defining V, Y on a manifold so as to satisfy properties (1) and 
(2), we saw that it is enough to know VEi E j ;  for V, Y may then be computed. 
In fact, VEi  E j  = x k  r'!j Ek, and we determined the rfj above. If a connection 
is given so that rfj are known on U ,  then we may define n2 one-forms 0: by 
8; = x, rfjO1. Conversely, given these one-forms, then r!j = t9jk(Ei), and 
hence V E i  Ej, and the connection is determined. Indeed one checks at once 
that V x  E j  = xk 6jk(X)Ek, that is, the values of the forms Oj', . . . , O,? on X are 
the components of V, E j  relative to the given frames. Therefore, given U and 
O',  . . . , 8" a field of coframes on U ,  then the connection is determined on U 
by the n2 forms 0;. They are called the connection forms. 

Of course, the n2 connection forms Oj are not arbitrary, they must satisfy 
certain conditions corresponding to properties (1)-(4) of Definition 3.1 if 
they are to determine a connection on U ,  especially in the case of a Rieman- 
nian connection-the one we are interested in. We have the following 
restatement of the fundamental theorem of Riemannian geometry in terms 
of forms-although we restrict ourselves only to the case in which the mani- 
fold is covered by a single coordinate neighborhood or more precisely a 
neighborhood on which is defined a frame field. 

(4.6) Theorem Let M be a Riemannian manifold such that it has a covering 
by  a C" field of coframes O', . . , , 0". Then there exists a uniquely determined 
set of n2 C" one-forms tl:, 1 5 j ,  k I n, on M satisfying the two equations 

(i) doi - $ @ A  0: = 0, 
(ii) dgij = k ( O f g k j  + $ g k i ) ,  

where gii = ( E i ,  Ej),  with E , ,  . . . , En the uniquely determined field of frames 
dual to O , ,  . . . ,On. The forms 0: so determined dejne the Riemannian connec- 
tion satisfying properties (1 )-(4) of the fundamental theorem by  the formulas: 

(iii) V, E j  = Oj"(X)Ek, and 
(iv) V,(fY) = (xf)Y +fV, Y , f E  Cm(U). 
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Conrersely, the Riemannian connection determines 0; as explained above 
and these 83 sutisjj' ( i )  and (ii). 

The proof is basically a duplication of that of the fundamental theorem 
[Theorem 3.31 in the case of manifolds covered by a single coordinate neigh- 
borhood (see Exercises 6-8). I t  can then be extended to general M in similar 
fashion. 

If we recall that a Riemannian manifold M of the type described may be 
covered by an orthonormal frame field El, . . . , En with gi j  = ( E .  E j )  = 6,,, 
then we have a nicer version of the above. In this case we denote 0' by wi and 
0: by ws. Using the fact that g i j  = hij (and hence d g ,  = 0), we obtain the 
following corollary: 

I '. 

(4.7) Corollary Let M he u Rirmunniun inanifold which has a covering by  a 
field w ' ,  . . . , (0" of cojirames whose dual frames E l , .  . . , En are orthonormal. 
Then there exists a unique set of n2 oneforms dj, 1 I j ,  k I n on M satisfying 

These wj" determine the Riemunnian connection (as above) and conversely. 

Finally, we note that since 0; are uniquely determined by O ' ,  . . . , 0" and 
the Riemannian metric-the coframe field and the metric-then the 
exterior derivatives dOj are also uniquely determined, as are their expres- 
sions as linear combinations of the basis 0' A O j ,  1 s i < j I n, of two-forms 
on the domain U of O ' ,  . .. ,On. As we shall see in the next chapter, the 
coefficients in these linear combinations determine the components of 
the curvature tensor. 

Exercises 

1. Using V E ,  E j  = x k  rfjEk and Exercise 3.3, show that for the metric 
qii = ( x ~ ) - ~  i j i i  on ((x', x 2 ) ( x 2  > o) ,  

2.  Show that R ( X ,  Y ,  Z ,  W )  determines R ( X ,  Y )  . Z ,  that is, ifthe values of 
the former on all vector fields are known, the same holds for the latter. 

3. For a local coordinate system, compute Rikl and Rijkr  in terms of rfj 
and g i j .  

4. Show that any coordinate neighborhood may be covered by a C" 
orthonormal frame field. 

5. Suppose that F :  X(M) x ... x X(M) + X ( M )  is a C"(M)-multilinear 
mapping of k vector fields ( X , ,  . . ., xk) on M to a vector field 
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F ( X , ,  ..., x k )  [Cm(M) linear in each vector field separately], M a 
Riemannian manifold. Show that 

@ ( X I , . . . , X k r x k + l )  = (F(X1  , . . . , X  k ) , X k + l )  

defines a covariant (k + 1) tensor. 
Use Lemma V.8.4 to show that [ X ,  Y ]  = Vx Y - V, X is equivalent to 
property ( i )  of Theorem 4.6. Prove that property (ii) is equivalent to 
X ( Y ,  Z) = (V, Y ,  Z )  - (Y ,  V,Z) if we use X f =  d f ( X ) .  
Prove directly, using differential forms, that there exists one and only 
one set of forms 0; satisfying (i) and (ii) as asserted in Theorem 4.6. 
Complete the proof of Theorem 4.6 using the results of Exercise 7 by 
showing that (iii) and (iv) define a Riemannian connection on M as 
claimed. 

Geodesic Curves on Riemannian Manifolds 

As a first example of the use of covariant differentiation on a Riemannian 
manifold-we shall define and study the class of curves called geodesics. Let 
p ( t )  be a curve on M and dpldt its velocity vector, defined for some open 
interval a < t < b of R ;  we suppose it to be of class C2 at least. 

(5.1) Definition The (parametrized) curve p ( t )  is said to be a geodesic if its 
velocity vector is constant (parallel), that is, if it satisfies the condition 
(D/d t ) (dp/d t )  = 0, the equation of a geodesic, for a < t < b. 

As we saw previously, when M = R" with its usual metric this implies 
that the curve is a straight line. But in Section 2 it was seen that for a 
submanifold of R" this can mean something quite different, an example being 
the great circles on S"-' c R". 

The parameter on a geodesic is not arbitrary; the fact that a curve is a 
geodesic depends both on its shape and its parametrization as we may see 
from the example of a (geometric) straight line in R2 given parametrically by 
x 1  = t3 ,  x 2  = t 3 .  We write p ( t )  = ( t3 ,  t 3 ) ;  then 

Since Dldt = d/d t  in R2,  we have 
a a ' )  ax ax2 dt dt a x  a x 2  

D --(() dP = dq(3r Z D  + 3 t 2 -  = 6 t ,  + 6t- # 0. 

Therefore this curve is not a geodesic although the path traversed is the line 
x1 = x2. If p ( t ) ,  0 < t < b, is a nontrivial geodesic (not a single point), then 
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the permissible parametrizations-those with respect to which it remains a 
geodesic-are given by the following lemma. 

(5.2) Lemma Let p(r ) ,  a < t < b, be a nontrivial geodesic and let t' be a 
new parameter. With respect to t' the curve will be a geodesic if and only if 
t = ct' + d, c .f 0 and d constant. In particular, the arclength is always such a 
parameter. 

Proof' If we introduce a new parameter t' by t = ct' + d, c # 0, then 
dpldt' = c dp/dt and (D/dt')(dp/dt') = c2(D/dt)(dp/dt)  = 0; so the curve re- 
mains a geodesic relative to f ' .  Now let s be arclength measured from p(to),  a 
point of the curve. Then ds/dt = (Idp/dt(l. Since dp/dt is constant along the 
curve, by ( 2 . 3 ~ )  its length (Idp/dt(( is constant. Either (Idp/dt(I is identically 
zero with p ( t )  a single point and s = 0 or else ds/dt = I(dp/dt(I = c,  a nonzero 
constant, and s = ct + d. This means that the curve is a geodesic when 
parametrized by arclength. Since any other permissible parameter is related 
to arclength by a similar (linear) relation, any two parameters are linearly 

In order to make general statements about geodesics on manifolds we 
shall need to study the defining equation in some detail using the existence 
theorem (IV.4.1). We can, however, give a few further examples by virtue of 
the following two observations. First, the equation of a geodesic imposes 
only a local condition on the curve. More precisely, if each point of a curve C 
has a neighborhood in which it may be written in the form p( t ) ,  a < t < b, 
with (D/dr)(dp/dt) = 0, then it is a geodesic; for then, using arclength from 
some fixed point as parameter on all of C, it must satisfy the equation 
(D/ds)(dp/ds) = 0 over its entire length. Second, the property of being a 
geodesic is preserved by isometries because covariant differentiation is 
preserved and therefore so is parallelism of a vector field (for example, dpldt) 
along a curve. 

Now we let IL: R2 -+ T 2  be the standard covering discussed in 
Example 111.6.15 and in Section 111.9. We take R2 with its usual Riemannian 
metric. Since the covering transformations are translations, they are isome- 
tries of R 2 .  It follows that we may define on T 2  a Riemannian metric which 
makes the projection IL a local isometry, meaning that IL* is an isometry of 
each tangent space Tp(R2) onto Tn(,,(T2). With this metric the geometry of 
T 2  is locally equivalent to that of Euclidean space. [This Riemannian metric 
should not be confused with the metric induced on a torus imbedded in R3 
by the standard Riemannian metric of R3.] Combining our two observa- 
tions, it follows that even a local isometry, as for example this map IL, carries 
geodesics onto geodesics. This means that the images of straight lines of R2 
on T 2  are geodesics of T 2  (Fig. V11.10). In particular, lines of rational slope 
map to closed geodesics on T 2 ,  lines of irrational slope d o  not-they are 

related. I 
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Figure V11.10 

dense on T 2 .  Nothing like this occurs in R2,  where geodesics can be neither 
closed curves nor dense. Thus " straight lines " even on spaces locally isome- 
tric to Euclidean space present some fascinating variations from what we 
might expect. 

A similar, even simpler example is a right circular cylinder 
M = { (x ,  y,  Z ) E  R3 I x2 + y 2  = 1). The Riemannian metric induced by that 
of R3 is the same as that given by the covering R: R2 -, M (of Exercise 1). In 
this case the covering map is given by rolling up the plane into an infinite 
cylinder each strip of width 27t covering M once. Details are given in the 
exercises. 

In order to study properties of geodesics on a Riemannian manifold M ,  
we pass to local coordinates ( X I ,  . . . , x") on a connected coordinate neigh- 
borhood U ,  cp. Then by (3.1 1) the equation of a geodesic (D/dt)(dp/dt)  = 0 is 
equivalent to the system of second-order differential equations: 

d2xk n dx' dxj 
~~~- + C rfj(X)-- = 0, k = 1, ..., n. 

(5'3) dr2 i ,  j =  dt dt 

A solution is a curve given in local coordinates by n functions 
(x ' ( t ) ,  . .. , xn( t ) )  which satisfy (5.3). As usual let El,. . ., En denote the coor- 
dinate frames. We may apply our existence theorem IV.4.1 to prove the 
existence and uniqueness of a geodesic through each P E  U with prescribed 
tangent direction at p and study its dependence on p and the tangent 
direction. 

(5.4) Lemma Given any qE U ,  we can find a neighborhood V of q with 
V c U and positive numbers r,  S such that for each P E  V and each tangent 
vector X ,  = b'Ei with ((X,I( < r,  there exists a unique solution 
( ~ ' ( t ) ,  . . . , x"(t)) of(5.3), defined for -6  < t < 6, which satisfies x'(0) = x'(p) 
and xi(0) = b', i = 1,. . . , n. Let p ( t )  = cp-'(x'(t), . >. , x"(t))  as just defined. 
Then p ( t ) E  U f o r  It I < 6. 
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Proof' We consider the following system of 2n first-order ordinary dif- 
ferential equations defined on the open subset W = q ( U )  x R" c R" x R" 
= R2": 

k = 1, ..., n, 

The right-hand sides are C" functions of (x, y) = (x' ,  . . . , x"; y', . .. , y") on 
W .  Therefore, according to the existence theorem for ordinary differential 
equations cited above, for each point in W there exists a 6 > 0 and a neigh- 
borhood P of the point with the property that given (a;  b )  = 

(a' ,  . . . , a"; b',  . . . , h") E t, there are 2n unique functions xk = f k ( t ,  a ;  b )  and 
yk = gk(t ,  a ;  b).  k = I ,  . . . , n and 1 t I < 6, satisfying the system of equations 
(5.5) and the initial conditions f k ( O ,  a ;  b )  = ak and yk(O, u ;  b )  = bk, 
k = 1, . . . , n. These functions are C' in all variables and have values in W .  If 
P E  U ,  we consider the point ( c p ( p ) ;  0) = ( x ' ( p ) ,  . .. , x"(p); 0,. . ., 0)' W .  
Then there is a 6 > 0 and a neighborhood t of ( ~ ( p ) ,  0) as described. This 
neighborhood may be chosen to be of the form q ( V )  x B:,(O) for some V 
with V c U compact and r' > 0. Since V is compact, we may find a number 
r > 0 such that if (C g i j (x )b ib j ) l i z  = l/X,Il < r and P E  V ,  then (c (hi)2)"2 < r'. This follows from the inequalities used in the proof of 
Theorem V.3.1. We see at once from the special nature of system (5 .5 )  that 
dfk/dt = gk and hence 

In other words .uk(t) = f k ( t ,  u ;  b )  are solutions of the system of equations 
(5.3), and therefore the equations in local coordinates of geodesics satisfying 
x k ( 0 )  = uk and (d.xk/dt),,o = hk, k = 1, . . . , n. Finally, according to the exist- 
ence theorem cited, the image of I ,  x t under the map 

(I, 11, h )  -, ( f l ( f ,  L I ;  b), . ..,.f'"(t, a ;  h ) ;  y'(r, a ;  b), ..., g"(t,  a ;  b ) )  

is in W which proves that p(t) = cp- ' ( f ( t ,  a ;  h ) ) ~  U .  I 

The lemma has the following corollary, which guarantees the existence 
of a unique open geodesic arc through any given point with prescribed 
direction. 

(5.6) Corollary If' M is u Riernunnian nianifold P E  M and Y, a nonzero 
tangent r~ecror at p ,  then there is a A > 0 and a geodesic curve p ( t )  on M 
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defined on some interval -6 < t < 6, 6 > 0, such that p ( 0 )  = p ,  
(dp/dt),=, = nu,. Any two geodesic curves satisfying these two initial condi- 
tions coincide in a neighborhood of p.  

of p and choose 1 > 0 
so that IlAY,ll < r as in Lemma 5.4; then we apply the lemma. 

To see that this is so we take a neighborhood U, 

(5.7) Remark It is clear from our earlier remarks to the effect that “being 
a geodesic” is a local property of parametrized curves, that if two geodesic 
curves C ,  and C, coincide (as sets) over some interval, then their union- 
suitably parametrized-is a geodesic. Further, we now see that if two 
geodesics have a single point in common and are tangent at that point, then 
their union is a geodesic. This implies that each geodesic is contained in a 
unique maximal geodesic. A maximal geodesic is one that is not a proper 
subset of any geodesic: If it is parametrized by a parameter t with a < t < b, 
then a and b (which can be - co and/or + a) are determined by the curve 
and the choice of parameter. It is not possible to extend the definition of p(t)  
(with the given parameter) so as to include either of these values and so that 
it will still be a geodesic. We shall be interested in determining conditions on 
M which ensure that a = - co and b = + co for every geodesic, or that every 
geodesic can be extended indefinitely in either direction. By Lemma 5.2 this 
property would be independent of parameter. It is easy to see that this is not 
always possible: let M be R2 with the origin removed. Then radial straight 
lines cannot be extended to the origin. However, given a geodesic through a 
point p, clearly we can always reparametrize it so that p = p(0) and p(t)  is 
defined for I t I < 2, say. Making use of this fact, we modify Lemma 5.4 
slightly to obtain our basic existence and uniqueness theorem for geodesics. 

(5.8) Theorem Let M be a Riemannian manifold and U ,  cp a coordinate 
neighborhood of M .  If qE U ,  then there exists a neighborhood V of q and an 
E > 0 such that i f p ~  V and X,E T,(M) with I)X,II < E,  then there is a unique 
geodesic p( t )  = p(t, p ,  X,) dejned for -2 < t < +2 and with p ( 0 )  = p ,  
(dp/dt),,, = X, .  The mapping into M dejned by ( t ,  p ,  X,) + p(t, p ,  X,)  is 
C“ on the open set 1 t 1 < 2, P E  V ,  (IX,(I < E and has its values in U .  

Proof According to Lemma 5.4, we may find a neighborhood V of q 
and numbers r,  6 > 0 such that given any PE V and vector X,E T,(M) with 
llXpll < r, then there is a geodesic p(t)  defined for I t I < 6 and satisfying the 
initial conditions p ( 0 )  = p ,  (dpldt), = X, .  We know that if we change to a 
parameter t = ct’, c # 0 a constant, then $(t’) = p(ct’) is again a geodesic 
with p(0) = p and dP/dt‘ = (dp/dt)(dt/dt’) = c dp/dt; thus (dp/dt’), = c X , .  
Now if 6 2 2, we may use E = r and we have no more to prove; but if 6 < 2, 
we let E = 6r/2. Then, if p E I/ and X ,  is a tangent vector at p with ( (X , ( (  -= E,  

we know from the choice of E that II2XP/61( < r. Thus there is a geodesic p( t )  
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with p ( 0 )  = p and ( d p l d f ) ,  = 2X,/6 defined for I t 1 < 6 at least. The curve 
j ( t ' )  = p(6t ' /2)  is again a geodesic and satisfies j (0)  = p ,  ( d j / d ~ ' ) ~  = (6/2) x 

( d p / d t ) o  = X , .  Moreover it is defined for )6 t ' /2  1 < 6, that is, for 
-2  < t' < +2. This completes the proof; the last statement is already con- 
tained in Lemma 5.4. I 

Exercises 

Show that the mapping n: (u,  u )  (cos u, sin u, u )  carrying R 2  onto the 
cylinder M = {(x, y ,  z) I x2 + y 2  = I }  c R3 is a covering and a local 
isometry onto M with the induced metric of R3, from R2 with the usual 
metric. 
Use Exercise I to show that the geodesics on M are the helices, that is, 
curves which cut each generator at the same angle (or have a constant 
angle with the z-axis), the generators themselves, and the circles of inter- 
section with planes z = constant. Find how many geodesics connect two 
given points p ,  q. 
Show that two isometries F , ,  F,: M + M of a Riemannian manifold 
which agree on a point p and induce the same linear mapping on T,(M) 
agree on a neighborhood of p .  Can you improve this statement? 

The Tangent Bundle and Exponential Mapping. 
Normal Coordinates 

Although it may not have been apparent, the process by which we passed 
from a second-order system of equations (5.3) to a first-order system (5 .5 )  
when we first studied geodesics was to introduce new variables which corre- 
sponded to the components of tangent vectors at points of a coordinate 
neighborhood U ,  cp. These vectors X,, p E U ,  are in one-to-one correspon- 
dence with points (x; y )  of the open set W = cp(U) x R" c R" x R". The 
correspondence, which we denote by 9, is given by @(X,) = 
(cp(p) ;  y ' ,  ..., y"), where cp(p) = (XI, ..., x") are the coordinates of p ,  
X, = C y iEi , ,  and El,  ..., En are the coordinate frames. The differential 
equations of geodesics (5.3) were interpreted as a system of first-order differ- 
ential equations (5.5) on W .  Like all such systems, they correspond to a 
vector field on W (which we discuss in Section 7). 

I n  order to free ourselves from working exclusively with local coordin- 
ates, it is natural to try to think of W being the image under ij of a coordin- 
ate neighborhood d, ij on a manifold. This is possible. It requires that we 
define a manifold structure on the set of all tangent vectors at all points of 
M, which we shall denote T ( M )  (compare Section IV.2). When this is done, 

T ( M )  = {X, E T,(M) I P E MI = u T,(M) 
,EM 
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will become a space, in fact a C" manifold, whose points are tangent vectors 
to M (compare Section 1.5). In view of the introductory remarks, it is clear 
that we shall want the subset 0 consisting of all X, such that PE U to be a 
coordinate neighborhood with @ as coordinate map and W as image, 
@: 0 -+ W .  This virtually dictates the choice of topology and differentiable 
structure. Let A :  T ( M )  + M be the natural mapping taking each vector to 
its initial point A ( X , )  = p ;  then n - ' ( p )  = T'(M). 

(6.1) Lemma Let M be a C"-manifold of dimension n. There is a unique 
topology on T ( M )  such that for each coordinate neighborhood U ,  cp of M ,  the 
set 0 = n - ' ( U )  is an open set of T ( M )  and @: 0 + cp(U) x R", defined as 
above, is a homeomorphism. With this topology T ( M )  is a topological manifold 
of dimension 2n and the neighborhoods 0, @ determine a C"-structure relative 
to which A is an (open) Cm-mapping o f T ( M )  onto M .  

Proof Let U ,  cp and U', cp' be coordinate neighborhood on M such that 
U n U' # 0 ;  then 0 n 0' # 0. Comparing the coordinates of p E U n U' 
and the components of any XPe T,(M) relative to the two coordinate 
systems, we obtain the formulas for change of coordinates in 0 n 0': 

where xli = f i ( x l ,  . . . , x"), i = 1, . . . , n, are the formulas for change of coor- 
dinates cp' 0 cp- '  on U n U' and the change of components is as in 
Corollary IV. 1.8. These are easily seen to be diffeomorphisms of @( 0 n 0') 
onto @'( 0 n 0'). The remainder of the verification is left as an exercise. Note 
that in local coordinates A corresponds to projection of R" x R" onto its first 
factor. We should also note that locally, on the domain 0 of each coordinate 
neighborhood of the type above, T ( M )  is a product manifold, that is, as an 
open submanifold of T ( M ) ,  0 is diffeomorphic to cp(U) x R". In the case of 
Euclidean space, U ,  cp may be taken to be all of M = R" so that T(R") is 
diffeomorphic to R" x R". It is clear that for every manifold M ,  
dim T ( M )  = 2 dim M .  I 

(6.2) Definition 
called the tangent bundle of M ,  n: T ( M )  + M the natural projection. 

T ( M )  with the topology and C" structure just defined is 

Using Theorem 5.8, we may define Exp, the exponential mapping; its 
domain 9 is some subset of T ( M ) .  It is a nontrivial matter to characterize 
exactly what this subset is. However, the range of Exp is M itself, thus 
Exp: 9 --t M maps a vector X, to a point of M .  The name derives from the 
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exponential mapping of matrices (Section IV.6) for reasons which will be 
discussed later. Now let U ,  cp be a coordinate neighborhood of M and 
suppose q e  U .  If a neighborhood V of 4 and an E > 0 are chosen as in 
Theorem 5.8, then for each X ,  with P E  V and IIX,JI < E,  or equivalently, in 
the open subset {X,(pe V ,  I(X,II < E }  of T ( M ) ,  the geodesic p ( t )  with 
p ( 0 )  = p and ( d p / d t ) o  = X, is defined for I t  I < 2. On this open set of T ( M )  
we define Exp as follows. 

(6.3) Exp X, = p (  I), that is, the image of X ,  under the expon- 
eritial mapping is defined to be that point on the unique geodesic determined 
by X, at which the parameter takes the value + 1. 

Definition 

Thus each 4 E M has a neighborhood V such that Exp is defined on the 
open subset {X, Jpe  V ,  JJX,JI < EJ c n- ' (V) .  (Note that E depends on q 
and its neighborhood V.)  This information on 9 may be restated as follows: 
Let M o  be the submanifold of T ( M )  consisting of all zero vectors 0,, pe M .  
Then p + 0, maps M onto M ,  diffeomorphically and n: M ,  + M is its 
inverse. The application of Theorem 5.8 then guarantees that the domain 9 
of Exp contains an open neighborhood of M o  in T ( M ) .  

We also note that since IJdp/dtll is constant along a geodesic p ( t ) ,  its 
length L from p ( 0 )  to p (  1) is 

Thus Exp X, is the point on the unique geodesic p ( t )  determined by X , ,  
whose distance from p along the geodesic is the length of X, (see 
Fig. VII.11). 

Figure VII . l l  
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We shall use the following lemma to obtain identities (6.5): 
(6.4) Lemma Assume that q E  M and that X,E T, (M)for  which Exp X ,  is 
dejined. Then Exp t X ,  is defined at least for each t with 1 t I 5 1 and q ( t )  = 
Exp t X ,  is the geodesic through q at t = 0 with (dqldt), = X , .  

Proof Let q(t)  be the unique geodesic with q(0) = q and (dqldt), = X, 
so that Exp X, = q(1). Given c with 1 c I < 1, consider the geodesic 
(i(t) = q(ct) .  We have 4(0) = q and (dij/dt),=o = cX, which means that 
Exp cX, = ij( 1) = q(c). Replacing c by t in this equality gives the statement 

We now revert once more to local coordinates U ,  cp around q E M and let 
V c U and E > 0 be as in Theorem 5.8 again so that for p E V and ((X,I( < E, 

Exp X, is defined. As in the proof of Lemma 5.4, the geodesic determined by 
p ,  X, is given in local coordinates by 

above. I 

t -+ ( f ' ( t ,  a ;  b), . . . ,f"(r, a ;  b))  

with cp(p) = a = (a' ,  ..., an) and X, = b'E,, + * * -  + b"E,,. This means 
that 

cp(Exp X,) = (f '( 1, a ;  b), . . . ,f"( 1, a;  b))  

and further that for It I < 1 

cp(Exp tX,) = (f'(1, a;  tb), ..., f"(1, a; tb)). 

However, the Lemma 6.4 and the meaning of the functionsf'(t, a; b )  then 
give us the following identities valid for 1 t I < 1: 

(6.5) f'(1, a', ..., a"; tb', ..., tb") =fi(t,  a', ..., a"; b',  . .., b"). 

From these remarks we can draw some conclusions concerning the ex- 
ponential map. First note that the f i  are C" on their domain, hence 
X, + Exp X, is C" on {X, 1 P E  V ,  (IX,(I < E ) .  Second, we may compute the 
Jacobian of Exp, at X, = 0,, the 0 vector at q-for brevity we denote by 
Exp, the restriction of Exp to T,(M) n 9. Now q is fixed, (a', . . . , a") are 
constants, and the Jacobian matrix at this point has as entries df'/d& eva- 
luated at (1, a', ..., a", 0, ..., 0): 

df 1 .  
- = lim - (ft(  1, a ;  0, . . . , h, . . . , 0) - f'(1, a ;  0, . . . , 0)) a& 

Using the identities (6.5), with bj = 1 and bk = 0 for k # j ,  first with t = h, 
then with t = 0, this becomes 

aj-i 1 .  
- = lim ( f ' ( h ,  a; 0, . . . , 1, . . , , 0) - f '(0, a ;  0, . . . , 1, . . . , 0))  

h + O  

=j"(o, a', . . . , a"; 0, . . . , 1, .  , . ,o). 
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Since .xi =f"(t, a' ,  . . . , a"; 0, . . ., 1, . .. , 0), i = 1, .. . , n (with bj = 1 and 
bk = 0 if k # j ) ,  considered as functions of t ,  are the equations of the 
geodesic through q with Ej,  as initial vector, we see that the Jacobian matrix 
reduces to the identity at X, = O,, that is, df '/dbJ = 8;. It follows that for q 
fixed and for some E' < E the mapping X ,  + Exp X ,  is a diffeomorphism of 
the open set fi = (X,l IIX,II < E ' }  of T , ( M )  onto an open set N containing 
q = Exp 0,. Retaining the notation Exp, for Exp restricted to that part of its 
domain in T,(M),  we summarize these results as follows. 

(6.6) Normal Neighborhood Theorem Every point q of a Riemannian mani- 
fold M has a neighborhood N which is the diffeomorphic image under Exp, of a 
star-shaped neighborhood fi of the zero vector 0, of the vector space T,(M) .  

We have defined fi by IIX,J( < E'.  Since the norm in T , ( M )  is given by the 
Riemannian metric, we may choose an orthonormal basis F,, ..., F ,  of 
T,,(M), and then, writing X, = Cy= yiFi, we have IIX,II = ( Y ~ ) ~ .  With 
these choices, the mapping 

t,b: Exp,( f y iFi )  I+ (y', . . . , y") 
i= 1 

takes the open neighborhood N of q diffeomorphically onto &(O) c R". 

(6.7) 
way is called a normal coordinate neighborhood. 

Definition The coordinate neighborhood N ,  t,b of q defined in this 

(6.8) Remark Normal coordinates have special features that make them 
useful in the study of the geometry of the manifold. Of these the most 
important are the following: 

( i )  gij(0) = hij. 
(ii) The equations of the geodesics through q take the form y' = air, 

i = I, ..., n, a' constants. 
(iii) The coefficients of the connection vanish at  q:  

rfj(o) = 0, i ,  j ,  k = 1, . .. , n. 

The first and second statements are immediate consequences of the 
definition and Lemma 6.4. The third follows from the second since for all 
d ,  . . . , a" close to zero, substitution of the solutions y' = a't in the equations 
of the geodesics yields 

C Tfj(0)aia' = 0, 
i. j 

k = 1, ..., n, 

which implies (iii). 
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In fact the same computations used in the proof of the existence of 
normal neighborhoods give us a stronger result which we shall also find 
useful. We again let U ,  cp be a coordinate neighborhood of q E  M ,  let 
El, . . . , En denote the coordinate frames, X ,  = 1 b'Ei, the tangent vectors 
to P E  U ,  and cp(p) = (x', . . . , x") the local coordinates. We have shown that 
there exists a relatively compact neighborhood V of q, P c U ,  and an E > 0 
such that Exp X ,  is defined and in U for each X ,  with P E  V and with 
(lX,ll < E.  Then in local coordinates 

cp(Exp X,) = ( f ' (1 ,  xl, ..., x"; b',  ..., b"), ..., f"(1; xl, ..., x", b ' ,  ..., b")) 

withf'(t, x, b )  being C" in all variables. We held p fixed at q to study the 
map Exp, from T , ( M )  to M. Now, however, we consider the mapping F of 
the open set @ ( { X ,  I P E  V ,  IIX,II < E }  c R" x R" to 

cp(U) x c p ( U ) c  R" x R" 

which is defined by 

F :  (XI ,..., x"; b ' ,  ...) b") t+(x l ,  ..., x";f'(l,x, b)  ,..., f"(1, x, b)). 

This map corresponds to the map X ,  = b'E,, -, (p ,  Exp X , ) ,  with domain 
in T ( M ) .  We have already seen that df'/dbj = Sj when b' = ... = b" = 0. 
Therefore the Jacobian matrix of F is nonsingular at any point (x', . . . , x"; 
0, . . . 0) of R" x {0} for which (x', . . . , x") = cp(p)  with P E  V .  Therefore by 
the inverse function theorem for each pair ( p ,  0,), 0, the zero vector at p E V ,  
there is a neighborhood which is mapped dSffeomorphically onto an open 
subset of U x U c M x M by this mapping, which takes the pair " p  and 
vector X ,  at p" to a pair of points of U ,  (p ,  X , ) H ( P ,  Exp X , ) .  Now V 
was originally chosen as a relatively compact neighborhood of q lying in a 
coordinate neighborhood U ,  cp. It was used to obtain an E > 0 for which the 
open set { X ,  I P E  V and llXpll < E }  of T ( M )  was in the domain 9 of Exp. 
This is also a set on which the mapping (p ,  X , )  -, (p ,  Exp X , )  is given in 
local coordinates by F .  From what we have just said we may restrict V and c 
further (without changing notation) so that the resulting neighborhood 
N ( V ,  E )  = { ( p ,  X , )  I P E  V and I(X,I( < E }  of q, 0, is mapped diffeomor- 
phically onto an open set W c U x U .  Although W is not of the form 
B x B, it does contain the diagonal set { ( p ,  p )  I P E  V } .  We now let B c V be 
a neighborhood of q such that B x B c W .  Then B x B is the diffeomor- 
phic image of some open subset of N ( V ,  E )  which can be described by 
NB = { ( p ,  X,) I p E B, Exp X ,  E B). Putting these facts together gives the fol- 
lowing result. 

(6.9) Theorem Let U ,  cp be a coordinate neighborhood of M and q E  U .  
Then there exists a neighborhood B t U of q and an E > 0 such that uny two 



6 T A N G E N T  B U N D L E  A N D  E X P O N E N T I A L  M A P P I N G  337 

points p ,  p' q f B  can be joined by a unique geodesic of length less than E.  This 
yeodesic i s  of'the jbrm Exp t X , ,  0 I t 5 I ,  and lies entirely in U .  I t  follows 
thatfbr each p E B, Exp, maps {X, I (IX,I( < E }  diffeomorphically into an open 
set N ,  such that B c N ,  c U.  

We remark that our choice of the neighborhood NB does not allow us to 
conclude that whenever ( p ,  X,)E NB,  then ( p ,  t X , ) E  NB for all 0 < t < 1. 
Thus in general €3 does not necessarily have the property that p ,  p' E B are 
joined by a geodesic lying entirely in B. We have made our choices so that 
for each P E  V ,  Exp, maps the E ball {X,l I)X,II < E }  into U diffeomor- 
phically and clearly has B in its image, thus each p E  B has a normal neigh- 
borhood N p  with B c N p  c U .  

With somewhat more effort one can show that it is, in fact, possible to 
select a neighborhood B of each point q on a Riemannian manifold with the 
property that each pair of points p ,  p' E B may be joined by a unique (mini- 
mizing) geodesic segment lying entirely in B. Such neighborhoods are called 
geodesically convex and the proof of their existence is due to Whitehead [l]. 
I t  may be found in several of the references, for example, Helgason [l], 
Kobayashi and Nomizu [I], or Bishop and Crittenden [ 11. 

Exercises 

A section of T ( M )  is a C" mapping F :  M -, T ( M )  such that a 0 F = 

identity on M .  Prove that the sections of T ( M )  correspond precisely to 
C'-vector fields on M .  

2. Show that in a manner quite analogous to the definition of T ( M ) ,  a 
manifold structure can be defined on .Fr(M) for any fixed r and that 
covariant tensor fields of order r correspond exactly to sections of M 
into . P ( M ) .  ("Section" is defined as in Exercise !.) 

3. Show that the set of all unit tangent vectors at all points of M form a 
submanifold of T ( M ) .  Discuss the existence of sections with image in 
this submanifold. 

4. Let M be imbedded in R"' as a submanifold and for each P E  M let 
N ,  c T,(R") be the subspace of vectors orthogonal to T,(M).  Show that 
N ( M )  = Up' N ,  can be given a structure of a C" manifold such that 
the natural mapping a: N ( M )  -+ M given by mapping N,(M)  + p is C". 
Proceed by analogy with T ( M ) .  

5. Show that if G is a Lie group, then T ( G )  is diffeomorphic to G x R", 
n = dim G .  

6. Let F :  M + N be a C" mapping of manifolds. Show that F,:  T ( M )  -, 
T ( N ) ,  defined by the usual mapping F , :  T,(M) -, T,(N), is a C" map- 
ping of manifolds and commutes with the projection mappings. 

1. 
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7 Some Further Properties of Geodesics 

Until now we have considered Exp only locally, restricted to a neighbor- 
hood of the zero vector at each point of the manifold. Our main purpose in 
this section is to prove, following Milnor [ 11, a theorem due to Hopf and 
Rinow [l] which gives conditions that the domain.9 of Exp be the entire 
tangent bundle T ( M ) .  Equivalently, this means that Exp X ,  is defined for 
every p E M and X ,  E T,(M). First, however, we wish to show that in all cases 
the domain 9 is an open set. 

(7.1) Theorem 9 is a n  open  subset of T ( M )  and Exp: 9 -+ M is a C" 
mapping. 

Proof We adopt the notation of the previous section and recall that to 
each coordinate neighborhood U ,  cp of M corresponds a coordinate neigh- 
borhood 0, @ of T ( M ) .  We have 0 = n- l ( U )  and @(0) = cp(U) x 
R" c R" x R". In fact, if ~ ( p )  = (x', ..., x") and E , ,  ..., En are the 
coordinate frames, 

@ ( X , )  = @(I y'E,) = (Xl ,  . . * ,  x"; y 1 , . .. , y"). 

The natural mapping n: T ( M )  -+ M is given in local coordinates by 
cp(n(X,)) = ( x ' ,  . . . , x"); it is an open C" mapping and has rank n at every 
point. Suppose that p ( t )  is a geodesic on M .  Then XP([) = d p / d t ,  its velocity 
vector, defines a curve t -+ X p ( , )  on T ( M )  with n(X,(,J = p ( t ) .  An examina- 
tion of the method by which we passed from the equations of geodesics (5.3) 
to first-order equations (5 .5 )  reveals that on @(0) (denoted by W in 
Lemma 5.4) we considered the first-order system corresponding to the 
vector field 

a a z' = y i  -. + C 1 r!.(x)yiy' ~ - . 
i ax' k ( i . j  " la,* 

Now we define a vector field Z on 0 c T ( M )  so that @ , ( Z )  = Z. If, as in 
Lemma 5.4, the solutions of (5 .5 )  are given by x'(t) = f i ( t ,  a, b )  and y ' ( t )  = 
dx'/dt, i = 1, . . . , n, then on 0 the integral curves (solutions) of the system of 
equations defined by Z are of the form 

where cp- ' (~ ' ( t ) ,  . . . , x"(f)) = p ( t )  is a geodesic in U = n ( 0 ) .  In brief 
X P ( [ ,  = dp /d t  is a solution curve of Z on n- '( U )  c T ( M )  if and only if p ( t )  is 
a geodesic on U .  From its geometric meaning, or by a tedious computation 
for change of coordinates, we see that Z is a vector field defined intrinsically 
on all of T ( M ) ,  independent of the particular expression in a coordinate 
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system, that is, the components (x', . .. , x", xi. Tjjyiy', . -. , xi. Qy'y') 
transform as they should for a vector field when we pass to other coordinates 
so that 2 is globally defined and depends only on the Riemannian connec- 
tion and metric. The geodesics on M are therefore exactly the projections by 
n: T ( M )  -+ M of the integral curves of Z .  Thus the conclusion of the 
theorem follows from Theorem IV.4.5. I 

We have seen that geodesics on Riemannian manifolds generalize 
straight lines in R" in the following sense: Their unit tangent vector as we 
move along the curve is constant. But another basic property which charac- 
terizes straight lines in R" is the famous minimizing property of being the 
shortest curve joining any two of its points. We now examine in some detail 
the extent to which this property generalizes. A few examples will show that 
there are some difficulties. 

One of the more interest in^ is the right circular cylinder M with the 
Riemannian metric obtained by considering the plane R2 with its usua! 
metric as universal covering (see Exercise 5.1). Then the geodesics on the 
cylinder are exactly those curves which go into straight lines if we roll 
the cylinder along the plane: vertical generators and helices. Thus two points 
not on a circle whose plane is orthogonal to the axis will be joined by an 
infinite number of distinct geodesics of different lengths (Fig. V11.12). 

On S 2  the larger of the two arcs of a great circle which join two points p 
and 4 (which are not at opposite ends of at diameter) is not of minimal 
length, even among nearby circular arcs. Finally, for the plane with the 

( b) 

Figure VII.J2 
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origin removed, the points ( -  1 ,O)  and (+ 1 , O )  cannot be joined by a shor- 
test curve at all. In view ofall this it is remarkable that we are able to salvage 
something, in fact almost everything, if we limit ourselves to points close 
together and short geodesics. Let us recall that we have defined the length of 
a piecewise differentiable curve p(t)  (of class D') over a -< t s b by L = 

IIdp/dtII dt;  this is the Riemann integral ofa piecewise continuous function. 
It is, by definition, equal to the sum of the integrals over the intervals of 
continuity [on each of which p(t)  is of class C'].  Then we may elaborate 
Theorem 6.9 as follows. 

(7.2) Theorem For each qE M ,  a Riemannian manifold, there exists a 
neighborhood B and an E > 0 such that each pair of points of B can be joined by 
a unique geodesic of length L < E, and the length I: of any piecewise C' curve 
joining these two points is 2 L. Moreover I: = L if and only if these paths 
coincide as point sets, or equivalently, when parametrized by arclength, are 
identical. 

This theorem is established using Theorem 6.9 and the following two 
lemmas. According to Theorem 6.9, given q E  M, there exists B and E > 0 
such that each pair of points p ,  p' of B can be joined by a unique geodesic of 
length L < E.  In  fact, the equation p(t)  of the geodesic is given by p(t)  = 
Exp tX, ,  0 5 t 1 ,  and )IX,I( = L. The open set B lies in a coordinate 
neighborhood U ,  cp which contains this geodesic, and Exp, is a diffeomor- 
phism of the open ball of vectors X ,  of T,(M) of length )IX,l\ < E onto an 
open set N ,  of U containing B. This means that any sphere {X,I llXpll = r < E }  

maps diffeomorphically to a submanifold of U ,  denoted by S,  (and called 
a geodesic sphere). The following lemma goes back to the work of Gauss. 

(7.3) Lemma Let P E  B and suppose Exp, maps the open &-ball of T,(M) 
diffeomorphically onto N ,  2 B. Then the geodesics through p are orthogonal 
to the geodesic spheres S, determined by Exp, X, ,  llXpll = r, r -= E.  

Proof Let X ( t )  be a curve in T,(M) with IlX(t)ll = 1, a I t 5 b. Any 
geodesic from the point p may be written r 4 Exp, r X ,  0 I r _< E,  with 
)1X)I = 1 and any curve on S,  in the form t --t Exp, rX(t) .  The mapping 
(r, t )  + p(r, t )  = Exp, r X ( t )  maps the rectangle [0, E ]  x [a, b] differentiably 
into M ,  and we will show that the inner product ( J p / J r ,  d p / J t )  = 0 for 
each r o ,  t o .  These are the tangent vectors to p(r, to), the geodesic curve, 
and to p(ro , t )  a curve on the geodesic sphere S, ,  respectively, intersecting at 
p ( r o ,  to). If this inner product vanishes for every (ro , to), this will establish 
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the lemma. We first show that ( i p f r .  i p / i t )  is indcpciidcnt of r .  By a basic 
property of differentiation. 

D i p  i p  i p  I) 

i r  i r  i t  i r i r  i t  i r  ‘ i r  i t  
( , ) = + ( ). 

Of these the ( D / i r ) ( i p / i r )  = 0 since holding r fixed and allowing I’ to vary 
gives a geodesic through 11 with i p / i r  as its unit tangent vector. In the second 
term. if we interchange the order of differentiation (see Exercise 3.5). we 
obtairl ( ; p / i r .  ( D / i t ) ( i p / i r ) )  = i ( D / i t ) ( i p / i r ,  i p / i r ) .  Since ~ l i p / i ~ ’ ~ ~  = 
I1X(t)/l = I. we see that this is also zero and therefore ( i p f r .  i p / i t )  is 
independent of I’. But p(0. t )  =4.  so i p l i t  = O  at r = O  and thus  
( i p / i r ,  i p / i t )  = 0 for all r. Hence for each ( r o .  t o )  the inner product 
( i p / i r .  i p / i f )  = 0. which completes the proof. 

Now we consider a (piecewise) differentiable curve fi( t) ,  (I I t 5 h. in 
N, - ( p l :  it  has a unique expression of the form f i ( t )  = Exp, r ( r ) X ( t ) .  where 
IIX(t)ll = I .  Using this notation, we state the following lemma. 

(7.4) Lemma j: (Itlfi/clrll tlr 2 I r ( h )  - r ( ~ )  1 . Equality /tolls if anrid on!,. if 
r ( f )  i s  riioriotorir uritl X ( r )  i s  coristmit. 

Proof Again we consider the map ( r ,  I )  + p(r, f )  = Exp, r X ( t )  from 
[O. I:]  x [a. h] + U .  The curve j ( r )  connects the spherical shells S, of radius 
r = ~ ‘ ( a )  and r = r ( h )  in U , .  We have f i ( r )  = p(r(t),  t )  and 

clfi ?p ?p 
= r‘(r) + (‘, . tlr ?r 

Since I ’ i p  i r  = X(r)ll  = 1 and (?p/c‘r. c’plc‘t) = 0 (Lemma 7.3). we 
have ’ t l j ,  t l t  ’ = 1 r ’ ( t )  1’ + ~ ~ ? p / ? t ~ ~ ’  2 I r ’ ( t )  1’. Equality holds ifand only if 
;I’ ;I = 0. that is, X ( t )  = constant. Hence. 

In the last inequality. we have equality only if r ( t )  is monotone; thus 
ji (It/fi/tltJI t lr  = I r ( h )  - r ( t i ) I  i f  and only if r ( r )  is monotone and X ( t )  = 
constant. This princs the lemma. 

PrtwJ’ot’ Thcwwn 7.2 We continue the notation of the lemmas. Suppose 
i)(t). 0 I I 5 I .  is a piecewise smooth curve joining p = j ( 0 )  to p’ = f i (  1 )  = 
Esp, I’X,,E N , .  0 -= r c I: and I)X,J( = 1. Let S satisfy 0 < S c c, and con- 
sider the segment of the curve joining the shell of radius S around p to that of 
radius r .  According to Lemma 7.4. the length of this segment is 2 r - 6 with 
equality holding only if the curve coincides as a point set with segment of the 
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radial geodesic from p cut off by these shells, its length being r - 6. Thus the 
portion of the curve between these shells has strictly greater length than 
r - 6 unless it coincides as a point set with a radial geodesic. Letting 6 
approach zero gives the result of the theorem. I 

It is probably quite obvious that the statement of Theorem 7.2 is bound 
up with the notion of distance on M ,  that is, the metric d(p, p ’ )  which we 
considered in Section V.3. Recall that d(p,  p ’ )  is the infimum of the lengths of 
all piecewise differentiable curves from p to p’ and that we showed that the 
metric topology and the usual topology coincided. The theorem just proved 
guarantees that for each point q E M there is an E > 0 and a neighborhood B 
of diameter less than E (in terms of d )  such that for every pair of points 
p, p ’ ~  B there is a unique geodesic segment from p to p’ whose length is the 
distance d(p, p’) .  More generally, we have the corollary which follows. 

(7.5) Corollary I f a  piecewise differentiable path (ofclass D’)from p to q on 
M has length equal to d(p, q), then it is a geodesic when parametrized by 
arclength. 

Note that it follows that the path is C“ ! Of course the hypothesis and the 
definition of d(p, q )  imply that the path has minimum length among all such 
curves. The proof is immediate: any segment of the path lying in a 
sufficiently small neighborhood (as above) must also have as length the 
distance between its endpoints (or it could be replaced by a shorter path) 
and thus it must be a geodesic. Since the curve is a geodesic locally, it is a 
geodesic. 

(7.6) Definition A geodesic segment whose length is the distance between 
its endpoints is called a minimal geodesic. 

Unlike the local situation in Theorem 7.2, we have seen that on an 
arbitrary manifold there may be points p ,  q which are not connected by a 
geodesic at all, for example, RZ with the origin removed. Moreover, even if 
there exist such minimal geodesics joining p ,  q as there do on the sphere, 
they need not be unique-for example, there are an infinite number of 
minimal geodesics joining the north and south poles. The question of uni- 
queness is not simple and we will not go into it here. For details, as well as 
many additional theorems on geodesics, the reader should consult 
Milnor [ 11. 

However, the existence question as well as some other questions we have 
raised are answered in a beautiful theorem of Hopf and Rinow [ 11. Before 
stating this theorem we remember that each geodesic and geodesic segment 
is contained in a maximal geodesic, that is, a geodesic p ( t )  such that p ( t )  is 
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defined for a < t < b and not for any larger interval of values. If a = - 00 

and h = + a,  we say that the geodesic can be extended indefinitely. This is 
always true of a closed geodesic (a geodesic which is the image of a circle, for 
example, a great circle on S2). If every geodesic from p E M can be extended 
indefinitely, then the domain 9 of Exp contains all of T,(M) and conversely. 

(7.7) Theorem (Hopf and Rinow) Let M be a connected Riemannian 
manifold. Then the following two properties are equivalent: 

Any geodesic segment can be extended indefinitely. 
With the metric d(p, q) ,  M is a complete metric space. 

( i )  
(ii) 

The proof will be based on a lemma. Assume any geodesic segment 
r + p ( t ) ,  a I t 5 h, can be extended to a maximal geodesic curve t --* p ( t ) ,  
defined for -m < t -= +a. In order to see that M is complete (every 
Cauchy sequence converges), it is sufficient to show that every closed and 
bounded set is compact; and to prove this we need the following lemma, 
which is of interest in itself. The proof is modeled on that of Milnor [ 11. 

(7.8) I f  M has the property that every geodesic from some point 
p E M can be extended indefinitely, then any point q of M can be joined to p by 
a minimal geodesic [whose length is necessarily d(p ,  q)].  

Proof’ Let q be an arbitrary point of M and let a = d(p ,  q). Any geodesic 
from p may be written p ( s )  = Exp s X ,  with X ,  a unit tangent vector at p and 
s arclength measured from p = p(0) .  We must show that for some X, with 
(IX,(( = 1, p(a)  = Exp a x ,  = q, so that s ~ E x p  sX, 0 I s I a, is the mini- 
mal geodesic segment. We will use the following fact, which is also of some 
interest. 

(7.9) Suppose that p o ,  pl ,  .. ., pn are points of M and that 

Lemma 

(*) 4 P o  * P I )  + d(p1 ,  P 2 )  + ... + d(P,-19 P n )  = d(P0 9 P d  
I f  a piecewise diffrrentiable curue contains p i ,  p i+  . . . , p i + r  and has length 
equal to d ( p i ,  p i + l )  + . . *  + d(pi+,- I ,  p i + r ) ,  then it is a geodesic segment from 
p i  to p i + r .  Conversely, i f  po ,  . . . , p n  lie on a minimal geodesic segment, in that 
order, then (*) holds for them. 

I t  is easily seen that it is enough to verify this for r = 2. The curve C from 
p i  to p i +  to p i + 2  has length L = d(pi ,  p i +  + d(pi+ p i + 2 ) .  By the triangle 
inequality L 2 d ( p i ,  p i + 2 ) .  I f  equality holds, C is a (minimizing) geodesic 
segment from p i  to p i + 2  as required (Corollary 7.5). But this must be the 
case; otherwise we have 

d(pi 7 P i +  1 )  + d(Pi+  1, ~ i + 2 )  > d(p i  1 p i + 2 )  
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by the triangle inequality and then substituting in (*) we have 

 PO 9 P I )  + * * .  + d(pi 3 P i + 2 )  + + d ( ~ n - 1 ,  pn) <  PO 7 ~ n ) ?  

which contradicts the triangle inequality. Finally, the last statement follows 
immediately from the fact that any subsegment of a minimal geodesic seg- 
ment is also minimal. 

To return to the proof of Lemma 7.8, using Theorem 6.9 we suppose 
6 > 0 to be chosen so that S, = (p’  1 d ( p ,  p ’ )  = 6 )  is a geodesic sphere in 
some normal neighborhood of p ,  sufficiently small to ensure that each radial 
geodesic from p to S, is minimal. Then since S,  is compact, there is a p o  E S,  
satisfying 

d(P0 9 4 )  = inf d(P’9 4 ) .  
P E S d  

Let X, be the unit vector at p such that po  = Exp 6X,. We must have 

d(P7 P o )  + d(P0 7 4 )  = d(P,  4)9 

otherwise there is a piecewise differentiable curve joining p to q whose length 
is less than d ( p ,  p o )  + d ( p o ,  q )  = 6 + d ( p o  , q). Since it must intersect Ss at 
some point p’ and its length from p to p‘ can be no less than 6, we have 
d(p‘,  q )  < d ( p o ,  q )  contrary to our choice of p o .  We now consider all s’, 
0 I s’s a, such that the geodesic segment SH Exp sX,, 0 I s I s’, is mini- 
mizing and such that 

d ( p ,  Exp s’X,)  + d(Exp s’Xp 4 )  = d(P ,  4 ) .  

By the continuity of the conditions the collection of all such s’ forms a closed 
interval 0 I s’ I b. If b = a, then Exp aX, = q, which proves the lemma. 
Suppose b < a ;  let p l  = Exp b X , ,  then d ( p ,  p l )  + d ( p l ,  4 )  = d ( p ,  q )  and we 
may obtain a contradiction by repeating the arguments above as follows. Let 
S,, q > 0, be a small geodesic sphere (with radial geodesics minimizing) in a 
normal neighborhood of p 1  = Exp b X ,  and choose a point p 2  on S,  such 
that 

d ( p 2  , q)  = inf d(p”,  4). 
P‘ E s, 

Then, as before d ( p l ,  p 2 )  + d ( p z ,  q )  = d ( p l ,  q )  and therefore 

d(P9 P1) + 4P1, P 2 )  + 4 P 2  3 4 )  = d(P7 P1)  + d(Pl9 4 )  = d(P9 4 ) .  

By (7.9) the geodesic p ( s )  = Exp s X ,  from p to p 1  together with the (radial) 
geodesic in S, from p ,  to pz  is a single (minimizing) geodesic segment from p 
to p 2  of length d ( p ,  p 2 )  > b, which contradicts the definition of b. Therefore 
b = a and the lemma follows. I 
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Proof of Theorem 7.7 We now turn to the proof of the theorem. We 
show first that (i) implies (ii). Let K be a closed and bounded subset of M .  
We will show that K is compact. Suppose p E K and a = sup?. d ( p ,  q ) ;  a is 
finite since K is bounded. By Lemma 7.8, for any q E K there is a minimizing 
geodesic from p to q ;  its length is d(p,  q )  which must be no greater than a. It 
follows that K c Exp, B,, where B, = { Y, I ( 1  Ypll I a}, the closed ball of 
radius a in T,. Since B, is compact and Exp is continuous, Exp, B, is 
compact. K is a closed subset of Exp, B,, so it must be compact. This 
completes the proof that M is a complete metric space according to 
Exercise 6 .  

(7.10) Remark Any manifold M having property (i) has the property that 
the domain D of the exponential function is all of T ( M ) ,  that is, that the 
vector field 2 of Theorem 7.1 is complete. Actually, in proving that (i) im- 
plies (ii), we used only the weaker hypothesis of the lemma: every geodesic 
from some point p E M can be extended indefinitely, that is, 9 3 T,(M) for 
some p E M .  It was not necessary to assume p E K ,  for if K is bounded, then 
for any p E M the distances d(p, q )  are bounded for all q E K .  

Next we show that (ii) implies (i), that is, we suppose that every Cauchy 
sequence on M converges and show that this implies the extendability of 
geodesics. Suppose to the contrary that there is a geodesic ray, p ( t ) ,  
0 I t < to which cannot be extended to t = t o ;  we may assume, changing 
parameter if necessary, that t is arclength. Let {t,) be an increasing sequence 
of parameter values with limn-tm t, = t o .  Denoting byp, the points p( t , ) ,  we 
have d ( p , ,  p , )  I I t ,  - t ,  I since the right-hand side is the length of a curve 
(the geodesic) from p ,  to p , .  Thus (p , }  is a Cauchy sequence and we denote 
its limit by q, q = p n  = limtn+to p ( t , ) .  Now we let B be a neighbor- 
hood of q, and E > 0 be so chosen that each pair of points p ,  p' of B are 
joined by a unique geodesic of length less than E .  Of course this geodesic is 
minimizing, or equivalently its length is d ( p ,  p ' ) .  We let N be an integer 
which is large enough so that for n, m 2 N we have d ( p , ,  p,)  < E and 
d ( p , ,  q)  < E and p , ,  P m E  B. 

Consider n 2 N fixed and suppose m > n ;  then we have 

d(pn * pm) + d ( p m  3 4 )  = ( t m  - t n )  + d(pm 7 4). 

Since t ,  - t ,  is the length of our geodesic from p ,  to p ,  and is less than E, this 
segment of the geodesic is minimal. Now let rn -+ co and by continuity we 
have d ( p , ,  q )  = t o  - t ,  for n > N. Applying this to m > n, we have for all 
m > n > N, 

d(pn 9 P,) + d(pm 9 4 )  = tm - t n  + t o  - t m  = t o  - t n  = d(pn 7 4). 
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Now choosing a fixed m > n, we see that the unique geodesic segment from 
pn  to p ,  of length d ( p , ,  p,) together with the unique geodesic segment from 
pn to q of length d(p,, q )  has length equal to the distance d(p,, q)  and there- 
fore is a single (unbroken) geodesic from pn to q. However, it coincides with 
the given geodesic p ( t )  for t ,  5 t I t , ,  that is, from p,, to p,; thus it is an 
extension of this to a geodesic segment from p to q. This shows that p ( t )  can 
be extended to t = t o .  

We note that it is immediate that a geodesic segment p ( t ) ,  0 I t I t o ,  
can be extended beyond its endpoints; this follows at  once from the fun- 
damental existence theorems. Thus any geodesic on a complete manifold can 
be extended indefinitely, Exp, is defined on all of T,(M) for every p ,  and Exp 
has the entire tangent bundle T ( M )  as its domain, that is, 9 = T ( M ) .  I 

The following corollary depends on the fact that a compact metric space 
is complete. 

(7.11) Corollary If a connected Riemannian manifold M is compact,  then 
any  pair of points p ,  q E M may  be  joined b y  a geodesic whose length is d(p ,  q). 

(7.12) Corollary Let  F , ,  F , :  M + M be  isometries of a complete,  con- 
nected Riemannian manifold. Suppose that F , ( p )  = F z ( p )  and Fl, = F2* on 
T,(M) for some p E M .  T h e n  F 1  = F , .  

Proof Let q E M and let p(s), 0 I s I I, be a geodesic from p to q, 
p = p ( 0 )  and q = p(1). Then F i ( p ( s ) )  is a geodesic from F i ( p )  to F , ( y ) ,  
i = 1,2. Since F , ( p )  = F , ( p )  and Fl*(p(0)) = F2* (p(O)),these geodesics 
coincide and 

I 

Exercises 

Let M be a complete Riemannian manifold and let q E M .  Identify T, (M)  
with R", n = dim M ,  as a manifold by choosing an orthonormal basis at  
q. Then Exp,: T&M) + M is a C" mapping of R" onto M with 0 map- 
ping to q. Suppose M = s", the unit sphere with the usual metric. Prove 
that rank Exp, < n for X, if (IX,IJ = kn, k = f 1, f 2 ,  .. . . 
Show that on a Riemannian manifold M which has R" as a Riemannian 
covering (n is a local isometry), the rank of Exp, is n for all q E  M. 
Let M be a complete Riemannian manifold and R :  fi -+ M a covering. 
Show that there is a unique Riemannian metric on fi such that n is a 
local isometry and show that with this metric fi is complete. 
Give a simple example of a Riemannian manifold diffeomorphic to R" 
but such that no geodesic can be extended indefinitely. 
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5. Show by example that there is a Riemannian manifold on which dist- 
ance between points is bounded, that is, d ( p ,  q )  < a, a > 0 fixed, but on 
which there is a geodesic of infinite length which does not intersect itself. 

6 .  Show that if M is a metric space in which every bounded set is relatively 
compact (has compact closure), then M is complete. 

8 Symmetric Riemannian Manifolds 

(8.1) Definition A connected Riemannian manifold M is said to be sym- 
metric if to each P E  M there is associated an isometry 0,: M -, M which is 
( i )  involutive (0; is the identity), and (ii) has p as an isolated fixed point, that 
is, there is a neighborhood U of p in which p is the only fixed point of o,. 

As examples we cite Euclidean ti-space, in which case op is reflection in p ;  
and S", the unit sphere in R"", with the metric induced by R"+l .  In the case 
of the sphere, op is again reflection in p-for each q, op(q) = q', where q and 
q' are equidistant from p on a geodesic (great circle) through p (Fig. VII.13). 

I cx,, = - x, 

Figure VI1.13 

In the case of S" we note that ap(p) = p and op(p*) = p*, p* denoting the 
point antipodal to p.  Thus, in general, o, may have other fixed points than p .  
Note also that the first example is a noncompact manifold and that the 
second is compact. A symmetric space, as we shall see, is always complete. 

(8.2) Lemma If P E  M, a Riemannian manifold, and op is an involurive 
isometrjl with p as isolated fixed point, then oP*(X,,) = - X ,  and 
ap(Exp X , )  = Exp( - X p )  for all X ,  E T,(M). 
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Proof Since a: is the identity, the same holds for (o, , * )~ on T,(M). This 
means that the eigenvalues of o,,* on T,(M) are k 1. However, if + 1 is an 
eigenvalue, then there exists a vector X, # 0 such that op*(X,) = X,. For 
any isometry F: M - M .  F Exp = Exp F ,  since geodesics are preserved. 
This means that a,(Exp t X )  = Exp tX  so the geodesic through p with initial 
direction X, is pointwise fixed. This means that p is not an isolated fixed 
point of o,,. Thus + 1 is not an eigenvalue and o,* = - I ,  I being the 
identity. Since 0 is an isometry, o,(Exp X,) = Exp op*(X,)  = Exp( -X,). 
This means that op takes each geodesic through p onto itself with direction 
reversed, exactly as in the two examples we have cited. I 

The following corollary is an immediate consequence of Corollary 7.12 
and the lemma: 

(8.3) Corollary Given any complete Riemannian manifold M and point 
p E M ,  there can be at most one involutive isometry 0, with p as isolatedjxed 
point. 

(8.4) Theorem A symmetric Riemannian manifold M is necessarily 
complete, and i f p ,  q E M ,  then there is an isometry 0,-corresponding to some 
r E M-such that o,(p) = q. 

Proof First we show that M is complete by proving that every geodesic 
can be extended to infinite length. Suppose p(s)  is a geodesic ray with s as 
arclength, which is defined for 0 I s < b. We will show that it can be ex- 
tended to a length 1 > b. Let so = $b, and let opp(so) be the symmetry in p(s,). 
It takes the geodesic p ( s )  to another geodesic through p(s,)  whose tangent 
vector at p(s , )  is -(dp/ds),,  and whose length is the same as that of p(s) .  
Since it has a common tangent with p(s)  at p(so) ,  it coincides with p ( s )  on the 
interval f c s < b and thus extends it to a length > i h ,  which proves the 
statement (Fig. VII.14). 

Using this it follows easily that given any p ,  q E M there is an isometry of 
M taking p to q. In fact, let r be the midpoint of a geodesic from p to q. Then 
the isometry or takes this geodesic onto itself and carries p to q. I 

Figure V11.14 
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We remark here that it is easy to verify that the isometries of a Rieman- 
nian manifold M form a group I ( M ) ;  it is a subgroup of the group of all 
diffeomorphisms of M .  A classical theorem due to Myers and Steenrod [l] 
asserts that it is a Lie group and acts differentiably on M .  According to the 
theorem just proved it is also transitive when M is a symmetric space. 

Before developing further the properties of symmetric spaces we prove a 
theorem which gives a rich collection of examples. 

(8.5) Theorem Every compact connected Lie group G is a symmetric space 
with respect to the hi-invariant metric. 

Proof Let $: G + G denote the diffeomorphism which takes each ele- 
ment to its inverse, $(x) = Y1. This map is clearly involutive and in fact it is 
an isometry of G with e, the identity, as isolated fixed point. To establish this 
we recall that to each X,E T,(G) corresponds a uniquely determined one- 
parameter subgroup t H g ( t )  with g(0) = X ,  (Section IV.6). Since $(g(t)) = 
g( - t ) ,  by the chain rule we obtain 

This means that $*e = - I ,  which is an orthogonal linear transformation (or 
isometry) of any inner product on T,(G). Let a E G be arbitrary and denote 
left and right translations by any g E G by L, and R,, respectively. We may 
write 

$(x) = x = ( a - ' x ) - ' o - '  = R,-l 0 $ o La-l(x). 

Hence $*a: T,(G) + T , - , ( G )  may be written 

$*a = (Ra- l*)e  " $*e ( L a - l * ) a 9  

which is a composition of three linear mappings each of which is an isometry 
of the inner product determined by the bi-invariant metric ( R a - l  and 
induce isometries on every tangent space and $*e is an isometry as shown 
above). It follows that I,$: G + G is an isometry. If we consider a normal 
neighborhood of e (as in Definition 6.7 with q = e) ,  then by Lemma 8.2 $ 
is given in local coordinates by reflection in the origin, and hence e is an 
isolated fixed point. 

Now let gE G. We define the isometry og: G + G which has g as an 
isolated fixed point by 0, = L, 0 R, 0 $, that is, o,(x) = gx-lg. It is an 
isometry since R e ,  L,, and $ are isometries, and it is easy to check that it is 
involutive and has g as isolated fixed point. I 

(8.6) Example Let G = SO(n) be the group of n x n orthogonal matrices 
of determinant + 1. According to Example IV.6.7, the tangent space T,(G), 
e = I ,  the n x n identity matrix, may be identified with the skew symmetric 
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matrices A = (a i j )  = - A ‘  in the sense that X, = xi, ai j (d/dxi j )  is tangent at 
I to SO(n) considered as a submanifold of Gl(n, R )  c Rn2. The one- 
parameter subgroups are of the form Z ( t )  = e l A .  In this case we may com- 
pute Ad B :  T,(G) + T,(G) as follows. First one verifies from the definition of 
elA that 

B ~ I A B -  1 = e t B A B - l  

(compare Exercise IV.6.6). Since Ad(B) acting on TJG) is just the linear map 
of the tangent space induced by the mapping Z + BZB-  on SO(n), we see 
that Ad@) takes the component matrix A = (aij) of X, to B A B - ’ .  Now 
define on T,(G) an inner product ( X e ,  Ye) for X, = 1 aij(d/dxij), 
Y, = 1 ci j (d/dxi j )  by 

n 

(X,, ye) = tr A’C = 1 a i j c i j .  
i .  j = l  

It is clearly bilinear and symmetric; moreover, since 

(x,, x,) = tr A’A = 1 a . . a . .  V V = C a2. V ’ 
i .  j 

it is positive definite. Finally for B E SO(n) 

(Ad(B)X, , Ad(B)Ye) = tr((BAB-’)’BCB-’) 

= tr(BACB- ’) = tr AC = (X, , ye). 

This means that this inner product determines a bi-invariant Riemannian 
metric on G (Lemma VI.3.4). By Theorem 8.5, G is a symmetric space with 
this Riemannian metric. A similar procedure may be employed to obtain the 
bi-invariant Riemannian metric for other compact matrix groups. 

We now develop the general properties of symmetric spaces somewhat 
further. Let M be any symmetric Riemannian manifold and p ( t ) ,  
- 00 < t c 00, be any geodesic on M. The symmetry op(I) associated with 
any point of this geodesic maps the geodesic onto itself and reverses its sense. 
If c is a fixed real number, then we denote by t, the following composition of 
two such isometries, rc = op(c) 0 op(c,2). Since tc maps the geodesic onto itself 
and preserves its sense, its restriction to the geodesic must be of the form 
r,(p(t))  = p ( t  + constant). In fact, since tc(p(0)) = op(c) 0 op(c,2)(p(0)) = 
a,,,,p(c) = p(c), we see that the constant is c and r , (p ( t ) )  = p ( t  + c). 

Now we consider how t ,  acts on the tangent space at a point of p ( t ) .  
Suppose in fact that Xp(o, E Tp,o,(M), and define a vector field Xp( I )  along p ( t )  
by the formula X p ( l )  = tI* Xp(o, .  Let Xb(I, be the unique vector field satisfy- 
ing Xb(o, = Xp(o,  which is constant along the geodesic p ( t ) .  We wish to show 
that these two vector fields coincide. Now for any real number t o ,  ap(,o)*Xp(t) 
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is a parallel vector field along p ( t )  since is an isometry. On the other 
hand, oP(,,,)* Xb,ro, = -X)p(fo) since p(ro )  is the fixed point of the symmetry. 
Because -X;(,, is also a constant vector field along p ( r )  and agrees with the 
field o,(~,,)* Xb,,, at one point, it must agree everywhere. Applying this argu- 
ment twice we see that T ~ * X ~ ( ~ ,  = Xb(r+c, for all t and each constant c. 
Letting t = 0 and c = t proves our assertion. We have proved the following 
theorem. 

(8.7) Theorem Let p ( t ) ,  - 00 < t < 00, be a geodesic ofa symmetric mani- 
fold M und T ,  the associated isometry (dejned above) for each real number c. 
Then t c ( p ( t ) )  = p ( t  + c). If X,(,) is any element of Tp(o,(M), then 
X p ( l )  = T, ,  X,,,, is the associated parallel (constant) vector jield along p ( t ) ,  
that is, as t varies r f * :  T,(O,(M) + T P ( J M )  is the parallel translation along the 
geodesic. 

(8.8) Remark Note that if p1 = p(c,)  and p 2  = p(c2) are any two points 
of a geodesic p ( t ) ,  -m < t < 00, then by the same argument 
op2 fi opI ( p ( t ) )  = p ( t  + 2(c2 - c , ) )  and (op2 0 opI)* maps any parallel vector 
field along p(t)  to a parallel vector field. 

Theorem 8.7 will be used to prove a fact about compact Lie groups 
which is not at all obvious; it is given as a corollary to the following theor- 
em. [It is because of this theorem that the notation ExptX is used for 
geodesics in Riemannian manifolds.] 

(8.9) Theorem Let M = G, a compact, connected Lie group with the bi- 
invariant metric and let X,E T,(G). Then the unique geodesic p ( t )  with 
p(0) = e and p(0) = X ,  is precisely the one-parameter subgroup determined by 
X , .  All other geodesics are kji (or right) cosets of these one-parameter 
subgroups. 

Proof Given a geodesic p ( t )  with p ( 0 )  = e, we consider the isometry 
o p ( s ) ~ p ( o ,  of G. By the remark above we see that this maps the geodesic onto 
itself with p ( t )  being mapped to p ( t  + 2s). But using our formula for CT, on G 
together with p ( 0 )  = e, we have 

o p ( s )  n,(n)p(t) = P ( s ) P ( ~ ) P ( ~ ) .  

[The right-hand side is the group product of p(s), p(t) ,  and p(s) . ]  Thus for all 
t ,  s, 

P(s)P(oP(s)  = P(t + 2s). 

Using various r and mathematical induction, this gives for arbitrary s and 
any integer n 

(P(4)” = d n s ) .  
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In particular, if a,  b, c, d are integers with bd # 0, we have 
a d + b c  

P ( i  + 5)  = P($) = P(j$ 4 d P ( & 3 b c  = P(i). p ( ; ) .  

Thus for any rational numbers we have 

Pb.1 + r2) = p(rdp(r2).  

Since p( t )  depends continuously on t we see that this holds for all real 
numbers, and thus any geodesic with p(0) = e is a one-parameter subgroup. 
However, since there is exactly one geodesic and one such subgroup with 
given b(0) = X,, we see that the first sentence of the theorem is true. The 
second follows at  once if we use the fact that either left or right translations 
are isometries, and hence preserve geodesics, together with the fact that a 
geodesic through any g E G is uniquely determined (with its parametriza- 
tion) by its tangent vector at g .  I 

(8.10) Corollary If G is a compacf Lie group, then any g E  G lies on a 
one-parameter subgroup. 

Proof With the bi-invariant Riemannian metric G is a symmetric 
Riemannian manifold. Moreover it is complete and hence any pair of points 
can be joined by a geodesic. If g E G, then the geodesic segment from e to g is 
on a one-parameter subgroup according to the theorem. I 

(8.11) Example If G = SO(n), then the geodesics, relative to the bi- 
invariant metric of Example 8.6 are the curves p ( t )  = el" ( A  any skew sym- 
metric matrix) and their cosets. 

In the case of a group G with bi-invariant metric we can now establish 
a relation between the Lie derivative and the Riemannian differentiation V 
of vector fields, which we shall need in the next chapter. 

(8.12) Theorem If X and Y are left-invariant vector Jields on G and V is as 
above, then we have 

v x  Y = +[X, Y ]  = +LX Y .  

Proof Suppose that Z is any left-invariant vector field. Then we will 
compute VzeZ. If g ( t )  is the uniquely determined one-parameter group with 
g(0) = e and g(0) = Z , ,  then for any vector field Y we have 
Vze Y = (DYg(,,/dt),,o. However, Zg(,, = dg/dt, and g ( t )  is a geodesic. Thus 
DZgcf,/dt = (D/dt)(dg/dt)  = 0 and VzeZ = 0. Since Z and the metric are 
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left-invariant, it follows that VzZ = 0 everywhere on G.  Thus 
V,+,(X + Y )  = 0, from which we conclude that 

V,Y + vyx = 0. 
On the other hand, we know that for any pair of vector fields a Riemannian 
connection satisfies the identity V, Y - VyX = [X, Y ] .  Combining these 

I two identities gives the lemma. 

Exercises 

1. 

2. 

3. 

9 

Let T :  V + V be a linear transformation on a vector space over R which 
is involutive, that is, T 2  is the identity. Show that there is a basis of V 
such that the matrix of T is diagonal with diagonal elements equal to 
- + 1. 
The unitary group U ( n )  consists of all complex matrices A which satisfy 
the relation .AA* = I, A* = ‘A, the transpose conjugate. Show that U ( n )  
can be considered as a compact subgroup of G1(2n, R )  and determine a 
bi-invariant Riemannian metric by giving it explicitly on T,( U ( n ) )  as in 
Example 8.6. 
Let G be a compact Lie group with a bi-invariant Riemannian metric 
and let X,,  Ye, Z, be vectors at the identity. Compute R ( X ,  Y )  * Z by 
extending them to left-invariant vector fields on G and using 
Theorem 8.12. 

Some Examples 

Except for Euclidean space itself, the examples we have given of symme- 
tric spaces have been compact manifolds. We will consider a further exam- 
ple, which is not compact. To do so we must begin, in a rudimentary way at  
least, to develop some additional theory which will show the path toward 
further examples-in fact toward all examples of symmetric spaces. 

As we have noted, symmetric spaces are acted upon transitively by their 
group of isometries. It is natural, therefore, to ask under what circumstances 
can one be sure that a manifold M, acted on transitively by a Lie group G, 
can be endowed with a Riemannian metric relative to which the transforma- 
tions of M by elements of G are isometries. A sufficient condition is given by 
the following theorem. 

(9.1) Theorem Let G be u Lie group acting transitively on a manifold M .  
Then M has a Riemannian metric such that the transformation determined by 
each element of G is an isometry if the isotropy group H of a point P E  M is a 
connected compact (Lie) subgroup of G.  
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Proof We let 8: G x M -, M denote the action, and for each g E  G, 
8,: M + M denotes the diffeomorphic transformation of M onto itself 
determined by g, O,(q) = 8(g, q). If g E H ,  then 8 , (p )  = p so that it induces a 
linear mapping O,*: T, (M)  --f T,(M). Since O , ,  0 8,, = we have 
eel* 0 8,,, = O,,,,, so that g + Be* is a homomorphism of H into the group 
of linear transformations on T,(M). From the fact that 8 is C" it is easily 
verified that this is a C" homomorphism, that is, a representation of H on 
T,(M). Referring to Section VI.6 and, in particular, Theorem VI.3.9, we see 
that since H is compact and connected, there must be an invariant inner 
product, which we shall denote by @,(X,, Y,) on T,(M) .  Now ifq E M ,  there 
is a gE C: such that O,(q) = p .  We define Oq(Xq,  5) by 

'q(xq 7 5) = 8t'p(Xq 1 5) = ' P ( e # * X q  9 

If 8,,(q) = p also, then gg; E H .  Hence 8:,, - 0, = 0, and 

8,: Q, = e;, e;,, - I 0, = 8,: a;, - , e p ,  = ~p, . 

It follows that Oq is well defined; it is positive definite since 8, is a 
diffeomorphism; and it is easily verified that 0 is C" and G-invariant on M .  
Thus defines a Riemannian metric on M with respect to which each 8, is 
an isometry of M .  This completes the proof. I 

In the following theorem we will continue this notation, and suppose as 
above that H is compact and connected and moreover that the action of G 
on M is effective. Then we are able to impose an additional condition which 
will be sufficient to ensure that M ,  with a metric which makes G a group of 
isometries, is a symmetric space. This will open the way to further examples; 
of which we give only one in detail. 

(9.2) Theorem With G, H ,  p and M as above suppose that a:  G + G is  an 
inoolutive automorphism of'G whose j x e d  set is H .  Then the correspondence 
6(O(g, p ) )  = e(a(g), p )  dejnes an inuolutiue isometry o fM onto M with p a s  an 
isolated j x e d  point. 

Proof First we check that 6 actually defines a mapping of M onto itself. 
Let q be an arbitrary point of M .  By transitivity there is at least one gE G 
such that O(g, p )  = q. If g' is a second such element, then g' = gh  and a(g') = 
cr(g)a(h) = a(g)h. Hence 

qe(g'9 P)) = e(49')9 P) = qa(g )h ,  P) = e(a(g),  O h  PI) = qa(Y), P) 

as required. Therefore 6 is defined independently of any choices. Since 6* is 
the identity, 6 is onto. Let us assume for the moment that we have proved 
that 6 is C", has p as an isolated fixed point, and that 6*:  T,(M) + T,(M) is 
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-I, that is, 6 * ( X , )  = -X,. Then, clearly, ti* preserves the inner product @, 
on TJM).  If q E  M ,  q # p, then choose gE G such that 8,(p)  = q. Then 

Hence ti*4: T , ( M )  + q(,@) is given by ti.+,, = Oa(,)* 0 8,- I * ,  both of which 
are isometries on the tangent spaces. Thus, subject to checking the other 
properties, % is an isometry. 

In order to verify the remaining properties we need to use the fact that 
the natural identification of M with G / H  given by the mapping F : G / H  
+ M ,  F(yH) = O([g, p ) ,  is C" and commutes with left translation on G / H .  
Thus we use Section 1V.9, which was an application of Frobenius' Theorem 
[although, in fact, in the examples given below the facts we need here can be 
checked directly without relying on this general procedure]. First we recall 
that if gH E G / H ,  then there is a C" section S defined on a neighborhood V 
of g H ,  S :  V + G with n 81 S = id (n: G + G / H  is the natural projection and 
id the identity on V ) .  Using the diffeomorphism F ,  obtain a C" section 
3 = S 0 F - '  on P = F ( V )  into G which means a C" mapping such that 
8(s(q),  p )  = q for all q E P. Every point of M is contained in the domain P of 
such a section, and i? I is given by 

5(4) = q q S ( q ) ,  P)) = qa(s(d)9 P)? 

which is a composition of C" mappings. It follows that 6 is C". 

a*, - 
ential mapping (Definition IV.6.8) 

Finally we wish to show that 6 has p as an isolated fixed point and that 
- - -I. We use facts demonstrated in Section IV.6 concerning the expon- 

exp: T,(G) + G 

(not to be confused with Exp, the exponential mapping of Riemannian 
manifolds). Given any X,E T,(G), then exp t X ,  = g ( t )  is the one-parameter 
subgroup of G with g(0) = X , ;  and exp X ,  = g(1). By Theorem IV.6.10, 
there is an E > 0 such that an &-ball B:(O) c T , ( M )  is mapped diffeomor- 
phically onto a neighborhood U of e, the identity of G.  Since a :  G + G is a 
Lie group automorphism with a2 the identity, a*:  T,(G) + T,(G) splits T,(G)  
into the direct sum of two subspaces V *  of characteristic vectors belonging 
to the characteristic values k 1 of a * .  Since a(exp tX,)  = exp ta,(X,), 
a*(X, )= X, if and only if X , E  T , ( H ) .  Thus T , ( G ) =  V +  0 V - ,  
V +  = T , ( H ) .  n: G + G / H  defines IL*: T,(G) + T,,,,(G/H) with ker n* = 

T , ( H )  and n* 1 V -  an isomorphism onto. It follows that IL 0 exp maps a 
neighborhood W of V -  n &(O) c T,(G) diffeomorphically onto a neighbor- 
hood of H in G / H .  Composing with F :  G / H  + M gives a diffeomorphism 
onto an open set around p. Thus for X ,  E W ,  the mapping X ,  + B(exp X , ,  p)  
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is a diffeomorphism. Moreover 2(0(exp X,, p ) )  = B(a(exp XJ, p )  = 

0(exp( - Xe), p ) .  It follows that p is the only fixed point of 15 in this neighbor- 
hood and that ti*: T,(M) -, T,(M) is - I ;  each vector is taken to its negative. 
Combining this with what we have already established, the proof is 
complete. I 

The following corollary is immediate, since each 0,: M + M is an 
isometry. 

(9.3) Corollary Under the assumptions of the theorem M is a symmetric 
space with involutive isometries CT, = 2 and oq = 0 , o  2 0 6g-l for q = 0(g, p). 

Much of the above is to enable us to consider somewhat more com- 
plicated examples of Riemannian manifolds, of which the following is a 
sample. 

(9.4) Example Let M be the collection of all n x n, symmetric, positive 
definite, real matrices of determinant + 1, and let G = Sl(n, R )  be the n x n 
matrices of determinant + 1. Then G acts on M as follows: 

0(g, s) = gsg‘, 

where g’ denotes the transpose of g E Sl(n, R). We will let p ,  the base point of 
the theorems above be I ,  the n x n identity. We then note that H = SO(n) 
since 

H = { g E  Sl(n, R )  I 0(g, I) = I} 

is given by the equivalent condition gg’ = I, that is, g E SO(n),  the group of 
orthogonal n x n matrices. Hence M is canonically identified with 
Sl(n, R)/SO(n). 

The automorphism a which we consider is defined by a(g) = (g-l)‘, the 
transpose of the inverse of g E  Sl(n, R). Note that a(g) = g if and only if 
g E S O ( n ) .  Thus all of the conditions of the theorem are met if Sl(n, R )  is 
transitive on M .  However, any positive definite, symmetric matrix q may be 
written in the form q = gg’ = glg’ where g E Sl(n ,  R) by standard theorems 
of linear algebra. From the corollary above M is a symmetric space relative 
to an Sl(n, R )  invariant metric. [Note that 2: M + M can be seen, quite 
directly, to be C“ and to have the identity p = I as its only fixed point on M .  
In fact, using q = sls’, we see that 

qq) = I) = qsf-I, I) = S I -  ~ s - I  = (ss‘)- = 4- l. 

Thus 2: M + M simply takes each positive definite symmetric matrix to its 
inverse. The only such matrix which is equal to its own inverse is the 
identity I.] 
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(9.5) Example A variant oii the ;iho\c. which is a particularly important 
case. is the following. Let .\I = I( Y. , r ) ~  R' I J. > 0). the upper half-plane. 
[Note that it is co\crcd h! ;I single coordinate neighborhood.] We define an 
action of .TI(:. R )  on .\I ;IS follows. We identify R' with C, the complex 
numhcrs. i n  1lic usunl way. Let z = s + ij, and let w = zf + ir, i = J--1. 
When E S/(l .  R ) .  that is, 

(I=(; ;), t d - h c =  + 1 ,  

we then define w = O(gg. z )  = (LIZ + h)/(cz + d ) .  I t  is not difficult to verify 
directly that if  jq = lm(z) > 0, then I' = Im(r\-) > 0 and that O(tgI. O ( f g 2 ,  I)) = 

O(cg, g 2 ,  z ) .  Moreover the Riemannian metric defined (in the local coordin- 
ates (s, y-or I = s + ;!*-which cover M)  by the matrix of components 

is invariant under the action of S/(2, R ) ;  thus this group acts on M as a 
group of isometries of this metric (Exercise 4). 

I f  we let the complex number i which corresponds to (0, 1) in R', play the 
role of p in the general discussion above (Theorems 9.1 and 9.2), we note the 
following two facts. First, the action is transitive. Given any zo = I I  + ~i 
with'r > 0. then an element of G = S/(2. R) taking i to is 

(I= 

giving, in general, 

and. when z = i. 
O(( ] ,  i)  - 1I + i t > .  

Second. the isotropy group of i consists of all g = (: I;) E S / ( u .  R )  such 
that i = (tri  + h)/(ci  + r l ) .  However, this means that ai + h = - c  + di or 
LI = ( I  and h = -c .  Since in addition trd - hc = + I ,  we have also 
t i2  + h2 = 1 ;  hence 

cos 8 sin 8 
-sin8 cos0 
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and H = SO(2) .  I t  follows from our general theory in Section IV.9, that the 
upper half-plane with this geometry and the 2 x 2 positive definite matrices 
of Example 9.4 are equivalent both as manifolds and as homogeneous spaces 
with SI(2. R ) / S 0 ( 2 ) .  This shows that the identification of a homogeneous 
space with a coset space of a Lie group as a prototype is a deeper and more 
interesting result than it might appear to be. In many cases rather concretely 
given geometric spaces can best be studied in the context of coset spaces of 
Lie groups. 

The example we have been considering, the upper half-plane, is a realiza- 
tion (due to Poincare) of the space of non-Euclidean geometry discovered by 
Bolyai, Lobachevskii, and Gauss. Its geometry can be studied using results 
of this chapter. For example, we have earlier asked the reader (Exercise 2.3) 
to check that the lines .Y = constant are geodesics in this geometry. Now we 
propose another problem: Show that the upper halves of circles with centers 
on the x-axis are-when suitably parametrized-also geodesics. This is done 
by showing that each such circle is an image by one of the isometries of G of 
a vertical line. Moreover. since through a point z there is such a circle 
tangent to any direction, these must be all of the geodesics. Using this fact i t  
is easy to see that Euclid's postulate of parallels does not hold in this 
geometry: There are more than one, in fact an infinite number of lines 
through a point 2 not on the line L which are parallel to L. that is. do not 
intersect L at any point of the upper half-plane M. The possibilities are 
shown in Fig. V11.15. where L', and L; indicate parallel lines (geodesics) 
which bound the infinite collection (faint lines) of lines L parallel to L 
through 2. 

Figurr \ ' l l . l S  

(9.6) As II last example of a symmetric space, wc mention the 
Grassmann manifold G(k,  I J )  of li-planes through the origin of E". We have 
noted in Section IV.9 that this is a homogeneous manifold acted on in a 

Example 
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natural way by Gl(n, R) .  I t  is easy to see that the subgroup SO(n, R )  also acts 
transitively on the k-planes in R". In fact, a k-plane contains an orthonormal 
basis f , ,  . . . , f k  which can be completed to an orthonormal, oriented basis 
f,, . . . , f,, of R". Then there exists an orthogonal transformation of determin- 
ant + 1 taking the standard basis e , ,  . . . , e,, to this one. Hence the k-plane Po 
spanned by el, . . . , ek is carried onto any k-plane P by at least one element of 
SO(n, R )  acting in the natural way. The isotropy group H of Po is S(O(k) x 
O(n - k ) ) ,  the matrices in SO(n) of the form 

(i i), A e O ( k ) ,  B E O ( n - k ) ,  d e t A d e t B =  + l .  

We shall not pursue this example further except to mention that in this 
case a is the automotphism a :  XH yxq- ' determined by the element 

= ( -ik Zn0J 

of Gl(i7, R ) ;  then a(.) = x if and only if x E H .  

Many further details on this and other symmetric spaces may be found in 
Helgason [ 13. 

Exercises 

1. 

2. 

3. 

4. 

5 .  

Prove that any positive definite, symmetric n x n matrix P is of the form 
P = A A ' ,  where A is a nonsingular matrix of determinant + 1. Find all 
possible A such that P = AA' for a given P. Show that conversely A A ' ,  A 
an n x I I  matrix, is positive definite if A is nonsingular. 
Show that if P is a positive definite symmetric matrix and P = P -  ', then 
P = I. 
If a, b, c, d are real, compute the imaginary part of (az + b)/(cz + d )  and 
show that it has the same sign as Im(z). 
Prove that S1(2, R),  acting as in Example 9.5, leaves the Riemannian 
metric given there invariant, that is, each transformation of this type is 
an isometry of the upper half-plane. Show that under these isometries 
circles with center on the x-axis go into circles of the same type, or 
vertical lines. 
Show that the mapping A + e A  maps the symmetric n x n matrices onto 
the positive definite symmetric matrices and is one-to-one and onto. Use 
this to show that curves through I given by P(r)  = efA, A symmetric, 
n x n, allow us to identify T, (M) ,  the tangent space at Z to  the manifold 
M of positive definite symmetric matrices of determinant + 1 with the 
symmetric n x n matrices of trace zero. (See Example 9.4.) 
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6. Using Exercise 5 show that if X, and & correspond to symmetric 
matrices A and B, then (X,, &) = tr A B  defines an inner product on 
T, (M)  which is invariant under the action of o h * ,  h E so(n) and 8, as in 
Example 9.4. 

7. Verify that x defined in Example 9.6 is an involutive automorphism of 
SO(n) leaving fixed the subgroup H. 

Notes 

The proper generalization of differentiation from Euclidean manifolds to Riemannian 
manifolds was difficult to discover and came long after the work of Gauss and Riemann. The 
notion of parallel displacement of vector fields along curves generally attributed to Levi- 
Civita [ I ]  furnished the basic idea from which the theory developed. The use of the operator V x  
and its axiomatization are much more recent and are due to Koszul [I]. Many of the references 
contain a more complete theory of connections and of differentiation on manifolds which does 
not depend on a Riemannian metric-and hence is not unique. 

The curvature, which is introduced so briefly here, is in some sense the obstacle to differen- 
tiating exactly as in Euclidean space, for there parallel displacement of a vector field along a 
curve from p to y is independent of the path chosen. In the Riemannian case. however, it is not 
the same along every curve. Thus parallel displacement of Tp(M)  along a closed curve (loop) at 
p yields the identity transformation of Tp(M) if we are in Euclidean space, and a linear transfor- 
mation related to the curvature operator otherwise. 

Once differentiation is successfully generalized, one can begin the study of Riemannian 
geometry itself. We began this with the study of geodesics and, in the next chapter we shall go 
on to a brief study of curvature. Of course, we do not dig very deeply; both geodesics and 
curvature as well as their interrelations are the basis for a considerable amount of interesting 
research. The reader should consult Bishop and Crittenden [I], Kobayashi and Nomizu [I], 
Milnor [I], and other hooks listed in the references for further work and extensive bibliogra- 
phies of these topics. 



VIII CURVATURE 

This chapter continues our brief introduction to Riemannian geometry by defining and 
interpreting the concept of curvature. This is the most important invariant of a Riemannian 
metric on a manifold and completely determines the local geometry. Its definition requires the 
operation of differentiat ion developed in Chapter VII. 

We begin with a brief exposition of the geometry of surfaces in E3. that is, two-dimensional 
submanifolds imbedded in ordinary Euclidean space; E3 comes equipped with a Riemannian 
metric and thus induces one on the surlace. Using differentiation of vector fields along curves on 
the surface M we are able to define a symmetric bilinear form (covariant tensor of order 2) on M 
which is related to the shape of the surface, and a corresponding symmetric (self-adjoint) 
operator on the tangent spaces to M whose trace and determinant are the mean and Gaussian 
curvatures. The latter, denoted by K ,  is of fundamental importance because of the profound 
discovery of Gauss that it is unaltered by modifications of the manner in which M is imbedded 
so long ;IS lengths ofcurves (and hence the Riemannian metric) are unaltered. This is not proved 
until Scction 4: but in Section 3 we deduce the basic symmetry properties of the Riemannian 
curvature R ( X .  Y. Z. W). a covariant tensor of order 4 which was defined in Section V11.4. 
These properties are thcn used in Section 4 to prove Gauss’s theorem and to determine the 
relation of the Gaussian curvature and the Riemannian curvature. This involves the important 
idea of s e c t i o d  c i i r w t w e  in an arbitrary Riemannian manifold, which is defined and discussed 
in Section 4. using the various symmetries of R ( X ,  Y, Z, W ) .  

In Section 5 we extend the differentiation process previously defined for vector fields to 
arbitrary covariant tensor fields and use it to define the notion of parallel vector fields. We state 
(without proof) the local characterization of symmetric spaces as Riemannian manifolds whose 
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curvature tensor is parallel. This includes, in parficular, the manifolds whose curvature is 
constant on all sections, called manifolds of constant curvature. The last section is devoted to a 
discussion of these Riemannian manifolds; they include all of the classical geometries: 
Euclidean, hyperbolic or non-Euclidean, and elliptic (real projective space). 

1 The Geometry of Surfaces in E3 

In  this section we use our earlier definitions of curvature for curves in 
Euclidean threedimensional space to obtain various quantities which mea- 
sure the shape of a surface M near each of its points. All of these will depend 
for their definition on the fact that the surface M lies in Euclidean space; 
however they will be independent of the coordinates used both on M and on 
E3, as will be seen from their definition. Since all properties are local in 
character, we suppose that M is an imbedded surface of which we consider 
only a portion covered by a single coordinate neighborhood U ,  cp with 
W = cp( U )  a connected open subset of RZ, the uo-plane. Thus p E U c M 
has coordinates (u(p) ,  o ( p ) )  = cp(p); and, taking the Euclidean three- 
dimensional space with a fixed Cartesian coordinate system, that is, identify- 
ing E3 with R3, the imbedding or parameter mapping cp-': W -, U c R3is 
given by x i  =J''(u, u), i = 1,2, 3. Let El = cp;'(a/au) and E, = cp;'(a/du) 
denote the coordinate frames and suppose further that M is orientable and 
oriented with U ,  cp giving the orientation. This is an important condition on 
M since we are then able to define, without ambiguity, the unit normal vector 
field N to M ;  it is the unique unit vector at each p E M which is orthogonal 
to Tp(M)  c Tp(R3) and so chosen that El,  E,, N form a frame at p with the 
same orientation as a/axl, a/axz, d/ax3 the standard orthonormal frame of 
R3. Length and orthogonality are defined in terms of the inner product 
(X, Y )  of Euclidean space which, of course, induces a Riemannian metric on 
M by restriction. We shall study the shape of M at p E M by means of the 
derivative of N in various directions tangent to M at p .  

In fact, using the ideas developed in Sections VII.1 and VII.2, let p ( t )  be 
any differentiable curve on M with p ( 0 )  = p and j (0)  = X, E Tp(M). Re- 
stricting N to p ( [ )  gives a vector field N ( t )  = Np( , )  along p ( [ )  which may be 
differentiated in R3 as a vector field along a space curve, giving a derivative 
dN/dt  which is itself a vector field along p ( t ) .  Applying (VII .1 .k)  and using 
( N ,  N )  = 1, we have 

O = - ( N , N ) = 2  dt d (Y,  N ) .  

This means that d N / d t  is orthogonal to N ( t )  at each point p ( t )  and hence is 
tangent to M ,  that is, d N / d t E  T,,(,)(M) (see Fig. VIII.1). 

I f  we restrict our attention to a fixed point p E M ,  and consider various 
curves through it with p ( 0 )  = p and tangent vector X, = b(O), then we have 
the following result. 
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Figure VIII.1 

(1.1) Theorem T h e  uector (dN/d t ) ,= ,  depends only on X ,  and not on the 
curue p ( t )  chosen. Let  S ( X , )  = - ( d N / d t ) , = ,  . Then  X ,  + S ( X , )  is a linear 

Proof Let X ,  = aE, ,  + bE,, be an arbitrary element of T,(M) written 
as a linear combination of the coordinate frame E l , ,  E, ,  of the coordinate 
neighborhood U ,  cp containing p .  Let 

map sf T,(M) + T,(M). 

P ( t )  = ( f ' ( u ( d 5  4 t ) )7 f2 (u( r )9  4t)),f3(u(t)9 4t))) 
be any differentiable curve with p ( 0 )  = p ,  p(0) = X ,  and suppose p ( 0 )  has 
coordinates uo = u(0) and uo = u(0). Since p(0) = X,, we have p(0) = 
aE,,  + bE,,, that is. u(0) = a and u(0) = b. We denote by n'(u, u )  the com- 
ponents of N on U relative to the standard frames in R3 

a a a 
a x  ax2 a X 3  

N = n'(u, u )  ~ + n2(u, u )  + n3(u, u )  ~- 

Then, along the curve 

and 

This shows that S ( X , )  depends linearly on the components of X , ,  and since 
( d N / d f ) , , O  lies in T,(M), we have S :  T,(M) + T,(M) is a linear map. More- 
over only the values (u(O), u(O)), the coordinates of p ,  and u(O), ii(O), the 
components of p(0) = X , ,  appear in the formula. Thus (dN/d t ) ,  depends on 

I p and X ,  and not on the curve used in the calculation. 
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(1.2) Remark The linear map S :  T,(M) + T , ( M )  given at each p E M does 
not depend on the choice of coordinate system U, cp on M nor on the 
Cartesian coordinate system used in Euclidean space. This is because N is 
defined using only the orientations of M and Euclidean space and the inner 
product of the Euclidean space;. the differentiation depends only on the 
existence of parallel orthonormal frames in Euclidean space. Thus N ,  dN/dt,  
and S are independent of coordinates and involve only the geometry of M as 
an imbedded surface in Euclidean space. The operator S has been appro- 
priately called the shape operator, see O'Neill [l], in whose work the reader 
may find a detailed discussion. 

By way of examples, suppose M is the xy-plane. Then N = E , ,  a con- 
stant vector, so that S ( X , )  = 0. On the other hand if M is a sphere of radius 
R,  the unit normal N at (x', x2, x3)€ M is given by 

If we move in any direction tangent to the sphere along a great circle curve, 
parametrized by arclength so that I1XPI1 = 1, then S ( X , )  = -dN/ds  
= ( I / R ) X , .  Further examples will be considered presently. 

We may use the linear map S :  T,(M) 4 T,(M)-more accurately 
denoted S,-which we have determined at each p E M to define a C" covar- 
iant tensor field on M ,  assuming (as we shall henceforth) that M is a C" 
submanifold. We follow a standard procedure from linear algebra : Let 
S :  Y +  Y be a linear operator on a vector space Y with inner product 
( X ,  Y ) .  Then the formula 

wx, Y )  = ( S ( X ) ,  Y )  

defines a bilinear form, or covariant tensor of order 2, on V .  The form Y is 
symmetric if and only if 

( S ( X ) ,  Y )  = CX, S ( Y ) )  

holds for all X, Y E  Y ;  S is then called symmetric or selfadjoint. For the 
linear algebra involved the reader is referred to Exercise 9 and to Hoffman 
and Kunze [ 13. 

(1.3) Theorem S ( X )  i s  a symmetric operator on the tangent space T,(M)for 
each P E  M and Y(X, Y )  is a symmetric covariant tensor of order 2. The 
components of S and Y are C" i f M  is a C" submanifold. 

Proof In order to prove these statements we compute the components 
of Y(X, Y ) .  As above U,cp is a coordinate neighborhood and 
q - ' :  W + U c M is the corresponding parametrization. The components 
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of Y(X, Y )  relative to the coordinate frames El = q ; l ( a / d u )  and 
E2 = cp; ' ( d l d u )  are given by the standard formulas below, in which we use 
a N / d u  and d N / d u  to denote the derivatives of N along the coordinate curves 
on M obtained by holding one coordinate fixed and allowing the other to 
vary (as parameter along the curve): 

If we denote by X = X ( u ,  u )  the position vector from 0 to cp-'(u, u )  

a a a 
a x  a x 2  x = f ' ( u ,  U ) I  +f2(u,  u )  + f 3 ( U ,  u ) p  

then Xu = El and X u  = E 2  are just the vectors whose components are the 
corresponding derivatives of the components of X with respect to u and u, 
that is, Xu = dX/au  = El and Xu = d X / d u  = E 2 .  Remembering that 
( N ,  Xu) = 0 = ( N ,  Xu) and differentiating, we obtain 

These computations show that the components of 'P, and hence of S ,  are C" 
if M is. The second of these relations shows that Y(X, Y )  = Y( Y ,  X) so the 
tensor 'I' is symmetric. The 2 x 2 matrix ( I i j )  = ( Y ( E i ,  E j ) )  of its compo- 
nents will often be written 

(A :) 
where 1 = ( N ,  Xuu) = I l l ,  m = ( N ,  Xuu)  = 112 = I Z l ,  and 

n 6 ( N ,  Xuu)  = 1 2 2 .  
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The bilinear form Y ( X ,  Y )  is called the second fundamental form of the 
surface M ,  and the inner product ( X ,  Y )  thejrs t  fundamental form. Although 
the components of the Riemannian metric ( X ,  Y )  are denoted by gi j  for the 
general Riemannian case, one often uses E, F ,  G in the classical case of a 
surface M in Euclidean space. Thus 

911 = E = ( X u ,  X u ) ,  

g 1 2  = F = ( X u ,  X u )  = (Xu, X u )  = F = 921, 

9 2 2  = G = ( X u ,  X”).  I 

(1.4) Remark It is a classical theorem of differential geometry (which we 
shall not prove) that two surfaces M ,  and M 2  in R3 are congruent if and only 
if they correspond in such fashion that at corresponding points both fun- 
damental forms agree (ONeill [l, p. 297; Stoker [l, p. 1381). Of course the 
“only if” part is immediate from the definitions. This fact shows the impor- 
tance of these two forms in the geometry of the surface. 

The Principal Curvatures at a Point of a Surface 

Having once proved that S ( X )  is a self-adjoint linear operator on T,(M) 
at each p E M ,  we can use standard theorems of linear algebra, together with 
what we have learned of curves in space, to study the geometry of M .  

(1.5) Theorem At each P E  M the characteristic values of the linear trans- 
formation S are real numbers k ,  and k 2  , k ,  2 k ,  . If k ,  # k ,  , then the charac- 
teristic vectors belonging to them are orthogonal; if k l  = k2 = k at p ,  then 
S(X,) = k X ,  for  every vector X ,  in T,(M). T h e  numbers k l  and k ,  are the 
maximum and minimum values of “ ( X , ,  X,) = (S(X,),  X , )  over all unit vec- 
tors X ,  E T, (M) .  

Proof These statements are taken directly from theorems of lineaF alge- 
bra, but we shall sketch a proof for the case k ,  # k 2 ,  leaving the case 
k l  = k2  to Exercises 7 and 8. All vectors are elements of T,(M), p fixed, in the 
following proof. We suppose k ,  > k2  are the characteristic values, which are 
real since S is self-adjoint (Exercise 7), and we let F , ,  F ,  be characteristic 
vectors of unit length corresponding to k l ,  k2  . We have 

kl(F1, F 2 )  = (W,), F 2 )  = ( F , ?  SF,)) = kz(F17 F2)7 

which implies ( F , ,  F , )  = 0 when k ,  # k,, as assumed. Replacing F ,  by 
- F ,  if necessary, we may suppose F , ,  F ,  is an orthonormal basis with the 
same orientation as T,(M). 

Next we show that k ,  and k 2  are the maximum and minimum values of 
(S(X,),  X , )  for unit vectors X,. Any unit vector X,,E T,(M) may be written 
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X ,  = cos 0 PI + sin 0 F ,  . Let k ( 0 )  denote (S(X, ) ,  X , )  = " ( X , ,  X,). Since 
F , ,  F ,  is an oriented, orthonormal frame, we have 

(* 1 
Differentiating gives 

k ( O )  = k ,  cos' 0 + k ,  sin' 0 (Euler's formula). 

= 2 ( k ,  - k , )  sin 0 cos 0. 
dk 
d0 

Hence the extrema of k(0 )  occur when U = 0, fn, n, or $ 7 ~ ;  in other words, 
when X ,  = ? F ,  or f F 2  so that k ,  and k ,  are maximum and minimum 

I values of ( S ( X , ) ,  X, )  as claimed. 

We remark that k ,  and k ,  are the maximum and minimum of the expres- 
sion Y(X,, X , ) / ( X , , ,  X,)  over al l  X ,  # 0 in T,(M). The points p at which 
k ,  = k ,  are called urithilicril points of M if k ,  # 0 and planur points other- 
wise. Note that a sphere of radius R consists entirely of umbilical points with 
k ,  = 1 / R  = k , .  Similarly, if M is a plane, every point is planar with 
k ,  = 0 = k , .  

We shall now interpret k ( 0 )  = Y(X,,, X , )  geometrically. Let p be a point 
of M and X ,  a unit tangent vector at p ;  X ,  and N ,  determine a plane on 
which we may take p as origin and X, ,  N ,  as unit vectors along the axes (in 
that order), thus giving a coordinate system and orientation on the plane 
(see Fig. VIII.2). The plane intersects M along a curve which, of course, lies 

Figure V111.2 

on M and on the plane, and passes through p .  I t  is called the normal section 
at p determined by X , ;  there is clearly such a curve for each X,. The vector 
N ,  is the normal to the curve at p and X ,  is its unit tangent vector. Writing 
this curve as p ( f )  with p ( 0 )  = p and with arclength as parameter, we have 
p( t )  = d p / d t  a unit vector for every t so that p(0) = X , .  Differentiating 
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( N ,  dp/dt)  = 0 along the curve, we find that (dN/dt,  dp/dt)  = 
- ( N ,  d2p/dt2) = -&, the curvature of the plane curve p( t )  as defined at 
the end of Section VII.1. In particular, at p = p(O) ,  (dN/dt ,  X , )  = 
- ( S ( X , ) ,  X,) .  Thus with X ,  = cos 0 F ,  + sin 9 F ,  as above, we find that 
k ( 0 )  = is the curvature of the normal section determined by X , .  For this 
reason k(6)  is called the normal curvature (of the section determined by 
X , ) ;  and k l  and k 2 ,  the maximum and minimum of k(O),  are called principal 
curuatures at p and the corresponding unit vectors F 1 , ,  F l p  (chosen to con- 
form to the orientation) are called principal directions at p .  

To study the surface at p we will now choose an xyz-coordinate system in 
Euclidean space so that the origin is at p .  T,(M) is the xy-plane, and the 
principal directions F , , ,  F 2 ,  and unit normal N ,  at p are d/dx, d/dy, d/dz, 
unit vectors on the x-, y-, z-axes, respectively. Let x = 14,  y = u, and 
z = f ( u ,  o) be the (parametric) equation of the surface. Then we may identify 
the xy- and uo-planes and assume that the parameter mapping 'p-' takes 
some open set W on the xy-plane onto an open set U on M. The conditions 
then imply 

f(0,O) = 0 and f,(O, 0) = 0 =f,(O, 0). 

If  we compute the components of the first fundamental form at p ,  we 
obtain E = 1 = G and F = 0. For the second fundamental form, recall that 
cp- : (x, y) + (x, y,f(x, y)) is the parametric representation of M and thus 
at p ,  1 = (d/dz,fxx d /dz )  =fXXr  m = (d/dz,f,, d/dz) =fxyr and 

n = (a/&f,, W z )  = f,, * 

Now the fact that we have chosen coordinate axes so that d/dx and d/dy 
are principal directions tells us that m = 0 and 1 = k l ,  n = k 2 .  Thus we have 

k ( e )  = f,, cos2 8 + Syy sin2 e at x = 0, y = 0. 

Let f(x, y) be expanded in Taylor series at (0,O).  Then 

z = f(x, V )  = fxx(O, O)x2 + fyy(Ol 0)y2 + R2 , 

where R 2  contains terms of higher order. Letfx,(O, 0) = a andf,,(O, 0) = b. 
Then we see that the normal sections of z = ax2 + by2 have the same sec- 
tional curvatures at p as does the given surface. Therefore the quadric sur- 
faces must give typical examples. 

(1.6) Example z = ax2 + by2,  ab > 0 (see Fig. VIII.3a). This is an elliptic 
paraboloid; the principal curvatures are a and b. If both are positive, it lies 
above the xy-plane; if both are negative, it lies below. In either case when k l  
and k 2  have the same sign, the surface is (locally) on one side of T,(M). 
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ub = 0 ( a  >O,  b =O) 
( b )  

/ / 

a b < O ( a > O ,  b < O )  
( C )  

Figure V111.3 

(1.7) Example z = ux2 + by2, ab = 0 (see Fig. VIII.3b). If both are zero, 
we have the xy-plane as our surface; if one, say b = 0, then we have a 
parabolic cylinder which is above the xy-plane if a > 0. 

(1.8) Example z = ax2 + by2, ah < 0 (see Fig. VI11.3~). In this case we 
have a hyperbolic paraboloid or saddle surface with the xy-plane tangent at 
the saddle. Suppose, for example, a = 1 and h = - 1. Then by Euler’s for- 
mula (*) k ( 0 )  = cos2 0 - sin2 0 and hence k(f3) varies from + 1 to - 1 and is 
zero at f 44, k 3n/4. When k ,  > 0 and k 2  < 0, then the surface must have 
points (locally) on both sides of T’,(M). 

In these exercises we follow the notation of the text. 

Exercises 

1. Show that if  p~ M is not an umbilical or planar point, then there exist 
coordinates U,q on a neighborhood of p such that the curves 
u = constant and D = constant are tangent at each point to the princi- 
pal directions. [These curves are called lines of curvatures.] 

2. Let M be the surface obtained by revolving a curve z = f (x)  around the 
z-axis. Show that the lines of curvature (Exercise 1) are the circles 
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3. 

4. 

5. 

6. 

z = constant on M and the curves obtained by intersection of M with 
planes containing the z-axis. Determine the umbilical points. 
Let U ,  rp be coordinates such that u = constant and u = constant are 
lines of curvature. Show that in the first fundamental form the compo- 
nent F is zero in these coordinates and that the principal curvatures are 
I/E and n/G. 
A direction X, at p~ M such that Y(X,, X,) = ( S ( X , ) ,  X,) = 0 is 
called an asymptotic direction. Show by example that there may be two, 
one, or no asymptotic directions at a point of M. Find the asymptotic 
directions at each point of a hyperboloid of one sheet, 

Show that if there are two distinct asymptotic directions at p E M ,  then 
there exist coordinates U, rp around p such that u = constant and 
u = constant are everywhere tangent to asymptotic directions (they are 
asymptotic lines). Find the asymptotic lines for a hyperboloid of one 
sheet. 
For a surface of the form z = f ( x ,  y )  find the components of the first 
and second fundamental forms and the directions of the lines of curva- 
ture and asymptotic lines. 

(X’la’) + ( y2 /b2 )  - (z’/c’) = 1. 

In the following exercises assume Y is a Euclidean vector space with 
inner product (v, w) and that S :  V + Y is a linear operator. 

7. 

8. 

9. 

10. 

Suppose that S is self-adjoint. Show that its matrix relative to an 
orthonormal basis is symmetric. If dim Y = 2, use this to show that the 
discriminant of its characteristic polynomial is not negative, so that the 
characteristic roots are real. 
When S is self-adjoint and dim Y = 2, show that if u # 0 is a character- 
istic vector of S ,  then so is any v orthogonal to u. Prove, using 
Exercise 7, that if the discriminant is zero, then S is a scalar multiple of 
the identity transformat ion. 
Show that the correspondence S e, (S(v), w) is an isomorphism 
between the space of linear operators on Y and the space of bilinear 
forms on Y. 
Give a precise definition of what would be meant by a C“ field of linear 
operators on a manifold M. If M is Riemannian, show that the collec- 
tion of such fields is isomorphic in a natural way to z 2 ( M ) .  

2 The Gaussian and Mean Curvatures of a Surface 

The negative of the trace and determinant of any matrix of the linear 
transformation S defined in Section 1 are the coefficients of the characteristic 
polynomial of S and are important invariants. The determinant is 
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K = k l  k 2 ,  the product of the characteristic values; it is called the Gaussian 
curvature of the surface. The trace is k ,  + k , ,  the sum of the characteristic 
values; and H = f(k, + k 2 )  is called the mean curvature of the surface. These 
quantities may be computed directly from the components of the fundamen- 
tal forms, using any parametrization of the surface. This we now proceed to 
do. 

(2.1) Theorem 

In - m2 1 GI - 2Fm + En 
K = and H = ~ 

EG - F 2  2 E G -  F2 

Proof Together, 

S ( X , )  = a x ,  + b X ,  , S ( X , )  = c X ,  + d X ,  

give the components of the operator S in terms of the coordinate frames 
E ,  = X u  and E2 = X I ,  naturally given by the parametrization of M near p ,  
that is, on the coordinate neighborhood U ,  cp. Thus we may write 

In terms of X u ,  X , .  we have 

K N = K ( X u  x X u )  = S ( X , )  x S ( X , )  

and 

2H N = 2 H ( X u  x X t , )  = S ( X , )  x X ,  + X u  x S ( X , ) ,  

where x denotes the cross product of vectors in threedimensional 
Euclidean space. 

Now note that ( X u  x X u ,  X u  x X,) = (IX,  x X,1(2 = EG - F Z  and use 
the fact that for any vectors X ,  Y, U ,  I/ of R3 we have the Lagrange identities 

Then we obtain the formulas for K and H by taking the scalar product on 

Since the Gaussian curvature K is the product of the principal curvatures 
k ,  and k 2 ,  we see that K > 0 at p if both k l  and k z  are different from zero 
and have the same sign. This means that either k ,  > 0 and k ,  > 0 and the 
curve of each normal section curves toward the normal so that the surface 
lies entirely on the same side of the tangent plane as the normal N ,  
sufficiently near the point p ,  or k ,  < 0 and k 2  < 0 and each curve goes away 

both sides with Xu x XI, in each of the equations above. I 
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from the normal so that the surface (near p )  lies entirely on the opposite side 
to N ,  . Equivalently, introducing local coordinates in R3 as in Examples 
1.6-1.8, K > 0 if and only if the function z = Ax, y) has a strict relative 
extremum at the point. 

On the other hand, if K < 0, then k l  and k, are different from zero and 
have opposite signs. This means that the surface is like a saddle surface: 
some normal sections are concave toward the normal N and some concave 
away from it. 

When k = 0 one of the principal curvatures must be zero and then little 
can be said. Two examples, in addition to the plane, are z = (x’ + Y ’ ) ~ ,  
which is obtained by revolving z = x4 around the z-axis, and 
z = x(x2 - 3y2), the so-called monkey saddle, which is similar to the usual 
saddle surface except that there are three valleys running down from the 
pass: two for the monkey’s legs and one for its tail (Fig. VIII.4). 

The mean curvature will be of less concern to us than the Gaussian 
curvature for reasons that will appear later. Surfaces for which the mean 
curvature vanishes are of special interest, however. They are minimal sur- 
faces; they are like the surfaces formed by a soap film stretched over a wire 
frame (Fig. VIII.5). They have the defining property of being surfaces of 

Figure V111.4 

Monkey saddle. 

Figure Vlll .5 

Minimal surface. 

minimal area among all surfaces with a given boundary (the wire frame). 
Thus, in a sense, they generalize the geodesics-curves of minimal length 
joining two fixed points. Like the equation of geodesics, the vanishing of the 
mean curvature guarantees the property of minimality only in a local sense. 

(2.2) Example We consider a torus; then intuitively we can see that the 
two circles running around the torus which are the points of contact with the 
two parallel tangent planes orthogonal to its axis divide the torus into an 
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inner portion on which K < 0 and an outer portion at which K > 0. Along 
the two circles K = 0, since along these circles the normal vector remains 
parallel to the z-axis (Fig. VIII.6). 

f 

Figure V111.6 

(2.3) Example Let (u, u )  -, (u, u, uu)  parametrize the saddle surface 
z = xy .  Then Xu = ( d / d x ' )  + u(d/dx3) and X, = @ / a x 2 )  + u(d /dx3)  from 
which 

uu 1 + u2 1 * (; ;) = 

Moreover 1N = ( - u ,  -u ,  1) with 1 = (1 + u2 + u2)1'2 and 
xu, = 0 = x,,,, x,, = d/dx3. It follows that 

From this we obtain 
- uu 

K = -(id), H =  __ 
A 3  . 

The Theorema Egregium of Gauss 

The entire subject of differential geometry was influenced by a very 
profound discovery of Gauss which may be stated as follows: 

(2.4) Theorem (Gauss) Let M, and M 2  be two surfaces in Euclidean 
space and suppose that F :  M ,  -, M 2  is a difSeomorphism between them which 
is also an isometry. Then the Gaussian curvature K is the same at correspond- 
ing points. 

To see the meaning of this theorem we shall consider some examples. 
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(2.5) Example Let M ,  be a plane and M ,  a right circular cylinder of 
radius R in Euclidean space R 3 .  If we roll the cylinder over the plane, we 
obtain a correspondence which does not change the length of curves or the 
angle between intersecting curves, hence it is an isometry. Since K = 0 for 
the plane, according to the theorem the same must be true of the cylinder. 
Note that they do  not have the same second fundamental form, that is, I ,  m, 
and n do  not vanish identically for the cylinder. In fact curvatures of the 
normal sections vary from zero to 1/R. This depends on the imbedded shape 
of the surface, but K does not; it depends only on the Riemannian metric 
induced on M .  

(2.6) Example As a second example, let M ,  be any open subset of the 
sphere of radius R and let M 2  be a plane. Since K ,  = 1/R2 # 0 and K ,  = 0, 
the theorem implies that there exists no diffeomorphism of M ,  into M ,  that 
is an isometry. For example, any plane map of a portion of the globe must 
distort some metric properties (distance or length of curves, angles, areas, 
and so on). [It is interesting to note that Gauss was engaged on a surveying 
commission at the time he discovered his Theorema Egregium (a “most 
excellent theorem ”). The reader is referred to the annotated translation, 
Gauss [I], of Gauss’s famous paper for some historical comments.] 

However, there do  exist surfaces isometric to, but not congruent to, say, 
the upper hemisphere. Suppose this hemisphere to be made of a thin sheet of 
brass. It is intuitively clear that we may bend it by squeezing at the edge 
without introducing any creases (see Fig. VIII.7). This will give a surface 
isometric to the original since length of curves is unchanged. It follows that 
K is the same at corresponding points; however, the surfaces are not 
congruent. hM, ,< --y--7--<--> c------- 

Figure VIII.7 

Surface M ,  isometric to hemisphere M,. 

(2.7) Example Among the more interesting examples of (locally) isomet- 
ric surfaces are the helicoid and the catenoid (Fig. VIII.8). The first surface is 
given parametrically by 

(u,  u )  -, (u cos u, u sin 0, u),  u > 0, -a < u < m. 
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X 

Figure V111.8 

(a) Catenoid; (b) helicoid. 

I t  is similar in shape to a spiral staircase. On the other hand, the catenoid is 
obtained by revolving the catenary x = cosh z around the z-axis. We may 
parametrize it as 

(z,O) + (cos 0 cosh z, sin 0 cosh z ,  2). - co < z -= 00, 0 < 8 < 2n. 

The isometry between these surfaces is given by 

u = sinh z. v = 0, 

The verification is left as an exercise (Exercise 8). 

We emphasize what by now may be obvious, namely, that Theorem 2.4 
implies that the Gaussian curvature K of a two-dimensional Riemannian 
manifold M is determined by its structure as an abstract Riemannian mani- 
fold, not by its particular embedding into R3.  Of course, in our presentation 
of K in the preceding paragraph, the Riemannian metric on the surface is 
given by the imbedding in R 3 ;  it is induced by the standard Riemannian 
metric of R3.  However, according to Gauss's theorem, two very different 
(noncongruent) imbeddings of the same surface, say F ,  : M + MI c R 3  and 
F,: M + M ,  c R 3  have the same Gaussian curvature at each point if each 
imbedding induces the same Riemannian structure on M or equivalently, if 
F = F ,  r F ; ' :  M ,  --* M ,  is an isometry. This leads to the conclusion that 
were the theorem true. K should be computable (on the coordinate neigh- 
borhood [/, cp)  from the components E,  F ,  G of the first fundamental form 
alone. This is the classical proof. (See, for example, Stoker, p. 139 [l].) The 
present proof takes advantage of the subsequent work of Riemann and uses 
the Riemann curvature tensor, introduced briefly in Section VII.4, together 
with consequences of the fundamental theorem of Riemannian geometry- 
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both offspring of the work of Gauss and Riemann. At the same time we shall 
make some first steps toward investing the curvature tensor with geometric 
meaning. 

Proof of Theorem 2.4 We remember that at a point p E M the value of 
the Gaussian curvature K is given by 

In - m2 
EG - F2 ' 

K = ~~ 

where E,  F, G and I ,  m, n are the components of the first and second fun- 
damental forms, respectively, relative to a system of local coordinates u, u in 
a neighborhood U of p .  The value of the ratio K is independent of the 
coordinates chosen although E, F ,  G and 1, m, n are not. Let E l  = X u  and 
E ,  = X , ,  where X = X ( u ,  u )  gives the surface in R3.  Then we have seen that 

and, since E = ( E l ,  E l ) ,  F = (El,  E,),  and G = ( E 2 ,  E2) ,  

EG - F 2  = ( E l ,  E1) (EZ1  E2) - ( E l ,  E,) , .  

Since E, F ,  G are the coefficients of the Riemannian metric, it is enough 
to show that In - m2 = K ( E G  - F 2 )  depends only on the Riemannian 
metric. We shall show that 

In - m2 = R ( E l ,  E , ,  E ,  , E l ) ,  

where R ( X ,  Y ,  2, W )  is the covariant tensor of order 4 defined in 
Section VII.4, in which case K is given by 

(2.8) K = (EG - F 2 ) - ' R ( E l ,  E 2 ,  E , ,  E l )  

The left side is independent of local coordinates; thus, the right side is also. 
In fact it is easily shown that replacing E l ,  E z  at a point by any pair of 
vectors F , ,  F ,  , spanning the same plane, leaves unchanged the expression 
on the right-hand side of formula (2.8), which we shall prove gives K .  This 
expression, defined at each point of an imbedded surface M ,  is thus indepen- 
dent of local coordinates on M ,  and moreover it depends only on the 
Riemannian metric. Clearly this is true of the denominator and we recall 
that by definition 

( R ( E l y  E 2 )  ' E 2  1 E l  ) = (vE,vE,  E 2  - vEzvE, E 2  - € 2 ,  E 2  7 E l ) ?  
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which depends only on the Riemannian metric by the fundamental theorem 
of Riemannian geometry (Theorem VII.3.3). In fact in our present case, since 
E ,  and E, denote coordinate frames of local coordinates u, v,  we know that 
[ E l ,  E , ]  = 0, and so we must show only that 

I n  - m2 = ( v E l  vE2 E 2  - vEz V E l  E 2  9 

in order to prove the theorem. 
We may compute the right-hand side using the definition of V E i Z ,  

i = 1 ,  2 (for any tangent vector field Z ) ,  given originally in Section VII.2; 
namely, we take a Z / h  and aZ/dv, project them to the tangent plane at each 
point of the surface, and obtain DZ/au = VEl Z and DZ/dv = VEz Z .  If N 
denotes the unit normal, and E l  = X u  and E, = X , ,  then this procedure 
gives 

V E ,  E2 = xu, - ( N ,  X,,,)N, V E , E ,  = x,, - ( N ,  X, , )N.  

Differentiating again and projecting onto the tangent plane (by subtracting 
the normal component of the derivative) gives 

V E z ( V E ~  E 2 )  = xw~, - Xuu)Ni~ - c I  N ,  

V E I ( ~ E ~  E.2) = xuiw - ( N ,  X u u ) N u  - c2 N’ 

We need not compute the scalars c 1  and c2 multiplying N since ( N ,  E l )  = 0 
so that these terms vanish in the final computation, in which we take an 
inner product of each term above with N .  This yields for R ( E 1 ,  E , ,  E , ,  E l )  

(vril V E , E ~  - VEZVE, E2 3 E l )  = ( X W I ~  XU) - ( N ,  x u u ) ( N u  3 X U )  

- (X,,U,I 9 X ” )  + “9 XU“)“” 7 Xu). 

This must be seen to be equal to the earlier evaluation of In - m2 above, 
namely, 

Irt - m2 = ( N u ,  X , ) ( N , ,  , X,)  - (Nu, X , ) ( N , ,  Xu). 

Since X,,,,, = Xu, , ,  applying the identities developed in the proof of 
Theorem 1.3, we have ( N ,  X,,,) = - ( N , , ,  X J  and ( N ,  Xu,) = -(Nu, X,). 
This completes the proof. I 

This proof provides an interpretation of the Riemann curvature tensor 
for a two-dimensional Riemannian manifold. Indeed, when F 1 ,  F ,  are 
chosen at I)E M so that they are mutually perpendicular unit vectors, then 
expression (2 .8) .  which we have found for the Gauss curvature K ,  becomes 
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1.  

2. 
3. 

4. 

5. 

6. 

7. 

8. 

3 

Exercises 

Prove the Lagrange identity for the inner product of the cross product of 
vectors of R 3 :  

( X  x Y ,  u x V )  = ( X ,  V ) ( Y ,  V )  - ( X ,  V ) ( Y ,  U ) .  

Show that k ,  and k2 are given by H k ( H 2  - K)'',.  
Show that if K > 0 at p ,  then there are no asymptotic directions, and if 
K < 0 at p ,  then there are two asymptotic directions and the principal 
directions bisect the angles made by the asymptotic directions. 
Show that a surface M is minimal if and only if there are two asymptotic 
directions at each point and they are mutually orthogonal. 
For a surface of revolution formed by revolving z =f(x)  around the 
x-axis determine when K > 0, when K = 0, and when K c 0. Give a 
sufficient condition that the surface be minimal. 
Verify that a diffeomorphism of two Riemannian manifolds which 
preserves lengths of all C' curves is an isometry, that is, it preserves the 
inner product in the tangent spaces at corresponding points. 
Verify that (2.8) is unchanged if E , ,  E ,  is replaced at p by F,, ,  F,,, 
another basis of T,(M). 
Verify that Example 2.7 is a local isometry as claimed. 

Basic Properties of the Riemann Curvature Tensor 

We have previously (Section VII.4) defined the curvature tensor 
R(X, Y ,  Z, W )  of a Riemannian manifold M .  Recall that it is a covariant 
tensor field of order 4 whose value at any point P E  M is determined as 
follows: Let X, Y ,  Z ,  W be vector fields whose values at p are given, say 
X,, Y,, Z,, W,. Then 

R ( X ,  9 y, 7 z,,  W,) = (VxpVyZ - vypv,z - v,x.,,pz' W,). 

We have shown that this is independent of the vector fields chosen and 
defines a C" covariant tensor field. 

In the same way the vector fields X, Y define at each p c  M a linear 
operator, the curvature operator, R ( X , ,  Y,) on T , ( M )  by the prescription 

R ( X ,  3 Y,) * z, = vxpv,z - VYPVXZ - yx, YlPZP 9 

which is-like the curvature tensor-linear in X, Y ,  Z in the sense of a 
C"(M)  module, that is, i f f€  Cm(M), then 

fR(X, Y )  * Z = R(JX, Y )  . Z = R(X,fl) * 2 = R ( X ,  Y )  *jZ. 

Obviously these objects are related by the equality 

R ( X ,  Y ,  z, W )  = ( R ( X ,  Y )  * z, W).  
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As we now prove, the curvature tensor satisfies a number of important 
symmetry relations. 

(3.1) Theorem The ,following symmetry relations hold for the curvature 
tensor and Curvature operator at each point, und hence for all vector jelds.  

(4 R(X,  Y )  . Z + R( Y ,  X )  . Z = 0, 
(ii) R ( X , Y ) . Z + R ( Y , Z ) . X + R ( Z , X ) . Y = O ,  

(iii) ( R ( X ,  Y )  . Z ,  W )  + ( R ( X ,  Y )  . W ,  Z )  = 0, 
0.1 ( R ( X ,  Y )  . Z,  W )  = (R(Z ,  W )  . X ,  Y) .  

Proof Relation (i) follows immediately from the formula above which 
defines the operator R ( X ,  Y ) .  The fact that R(X ,  Y , Z ,  W) is a tensor, in 
particular, the linearity with respect to C" functions, has the following 
important consequence: .It suffices to prove any of these statements for the 
vectors of a field of coordinate frames, say E , ,  ..., E n .  However, for these 
vector fields the Lie products [ E i ,  Ej] = 0 ;  so if X ,  Y ,  Z are chosen from 
among El, . . . , E n ,  then proving (ii) reduces to showing that 

V,(VyZ) - Vy(V,Z) + Vy(V,X) - Vz(VyX)  + V,(V, Y )  - V,(V, Y )  = 0. 

By definition of Riemannian connection, V ,  Y - V y  X = [ X ,  Y ]  = 0. Using 
this, we find that the terms on the left cancel two by two; this proves (ii). To 
prove (iii) we may show that the equivalent statement, ( R ( X ,  Y )  * Z ,  Z )  = 0 
for all X ,  2, is true. Again it is enough to do  so for X ,  I: Z chosen from 
among the vectors of the coordinate frames so that [ X ,  Y ]  = 0. Applying the 
definitions, we see that 

( R ( X ,  Y )  . Z ,  Z )  = (V,(VyZ) - Vy(V,Z), Z )  = 0 

if and only if (Vx(Vy Z ) ,  Z )  is symmetric in X ,  Y .  Now differentiating the 
inner product ( Z ,  Z )  with respect to X and Y ,  we find that 

Y ( X ( Z ,  Z ) )  = 2Y(V,Z, Z )  = 2(VY(V,Z), Z )  + 2(V,Z, VyZ) ,  

from which it follows that 

(Vy(V,yZ), Z )  = +YX(Z ,  Z )  - (VXZ, VyZ).  

Since [ X ,  Y ]  = 0, ( X Y  - Y X )  f = 0 for any functionf, and in particular, 
taking f = (2, Z) ,  we see that the right side is symmetric in X ,  Y and so also 
the left. 

Property (iv) is derived from the first three as follows. By (ii) 

(R(X .  Y )  . Z ,  W )  + ( R ( Y ,  Z )  . X ,  W )  + ( R ( Z ,  X )  . Y ,  W )  = 0, 
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Then, using (it(iii) we obtain the further relations 

( R ( X ,  Y )  . Z ,  W )  + ( R ( Y ,  W )  - Z ,  X )  + ( R ( X ,  W )  * Y ,  Z )  = 0, 

( R (  Y ,  Z )  . X ,  W )  + ( R ( Y ,  W )  * Z ,  X )  + ( R ( Z ,  W )  . X ,  Y )  = 0, 

( R ( Z ,  W )  . X ,  Y )  + ( R ( Z ,  X )  * Y ,  W )  + ( R ( X ,  W )  . Y ,  Z )  = 0. 

For example, (ii) combined with (i) and (iii), gives the first of these last three 
equations, the others are obtained similarly. Now adding the first two of our 
four equations and subtracting the last two gives (iv). I 

In any coordinate neighborhood U ,  cp we have coordinate frames 
E,,  . . . , En and we may introduce (as in Remark VII.4.5) n4 functions of the 
coordinates R i k l ,  1 I i ,  j ,  k ,  1 I n by the equations 

R(Ek,  E l )  ' Ei = c R i k l E j .  
j 

Similarly we may define the components Rijkl of the Riemannian curvature 
tensor by the equations 

Rijkl = (R(Ek 7 7 E j )  = c Rihklghj 9 

h 

where of course gi j  = ( E i ,  E j )  are the components of the Riemannian metric. 
By linearity both R ( X ,  Y )  * Z and ( R ( X ,  Y )  Z ,  W )  are determined on U by 
these locally defined functions. The preceding theorem may be written in 
terms of components as follows. 

(3.2) Corollary For all 1 I i, j ,  k ,  I I n we have 

( i )  R(kl + R(lk = 0, 
(ii) R j k l  + RLli  + Rlljk = 0, 

(iii) Rijkl Rjikl = 0, 
R . .  = R 

Rijkl + Riklj + Riljk = 0. 
(iv) l j k l  k l i j i  

(V) 

We remark that (v) is an immediate consequence of Rijkl = x h  Rihklghj, 
the symmetry of gi j  and (ii) and (iii). 

The Riemann curvature tensor ( R ( X ,  Y )  * 2, W )  is used to define the 
sectional curvature, which plays an important role in the geometry of 
Riemannian manifolds. At any p E M we denote by II a plane section, that is, 
a two-dimensional subspace of T,(M). Such a section is determined by any 
pair of mutually orthogonal unit vectors X ,  Y at p. 

(3.3) Definition The sectional Curvature K ( I I )  of the section II with 
orthonormal basis X, Y is defined as 

K ( n )  = - R ( X ,  Y ,  X ,  Y )  = - ( R ( X ,  Y )  . X ,  Y ) .  
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From the symmetry and linearity properties it is easy to see that replac- 
ing X ,  Y by any pair of vectors X’,  Y’ ,  where X = crX’ + fir’ and 
Y = yX’ + 6 Y ’  gives the relation 

( 1 / A 2 ) ( R ( X ’ ,  Y ’ )  X ,  Y ’ )  = ( R ( X ,  Y )  . X ; Y ) ,  

where A = ah - fly, the determinant of coefficients. If X ’ ,  Y‘ is also an 
orthonormal pair, then A = f 1 so that the definition of K(n) is independent 
of the pair used. If it is just any arbitrary linearly independent pair, then 
using A 2  = ( X ’ ,  X ’ ) (  Y’ ,  Y ’ )  - ( X ’ ,  Y ’ ) 2 ,  we have 

( R ( X ’ Y ’ )  * X ’ ,  Y ‘ )  K ( n )  = - ___ -~ ~~- ~ 

( X ’ ,  X ‘ ) (  Y’ ,  Y ’ )  - ( X ‘ ,  Y’)* ’ (3.4) 

In local coordinates, using ( E i ,  E j )  = gij and the notation above, 

where summation is over i ,  j ,  k ,  I and X ’  = xi a’&, Y’  = c. fi’Ej.  
Although it is not obvious, the symmetry properties of the Riemann 

curvature tensor imply that both ( R ( X ,  Y )  . 2, W )  and R ( X ,  Y )  * Z are com- 
pletely determined for arbitrary X ,  Y ,  Z ,  W if K(n)  is known for all 
sections n. 

(3.5) Theorem If dim M 2 3 and the sectional curvature is  known on all 
sections of T,,(M), then the Riemann curvature tensor is uniquely determined 
at p. 

Proof Let R ( X ,  Y ,  Z ,  W )  and a ( X ,  Y ,  Z ,  W )  be two tensors with the 
symmetry properties of Theorem 3.1 and let A ( X ,  Y ,  Z ,  W )  be their differ- 
ence. I t  will also be a tensor with these symmetry properties. Our assump- 
tion is that for all X ,  Y ,  R ( X ,  Y ,  X ,  Y )  = R ( X ,  Y ,  X ,  Y ) ,  or equivalently, 
A ( X ,  Y ,  X ,  Y )  = 0. We must show that this implies that A ( X ,  Y ,  Z ,  W )  = 0 
for all X ,  Y ,  Z ,  W ,  that is, that A = 0. Let p E M and F , ,  . . . , F ,  be a frame or 
basis of T’,(M). We denote by A i j k r  the components of A and by ai, p j  the 
components of vectors X ,  Y relative to this basis. Then by hypothesis, for 
any a ’ ,  . .  ., a” and B’, ..., /P, 

1 Aijk,aifljakPl = 0. 
i. j .  k .  I 

We shall make special choices of the ai and P j .  Let hi, denote the Kron- 
ecker 6, that is, + 1 if i = j and 0 if i # j .  When ai = dini and f i j  = h j o j ,  the 
equation above gives Ainjninjn = 0 for all 1 5 i o , , j o  5 n. If we let ai = biOi and 
pl, = f l k o  = I and f i j  = 0 for all otherj, then by property (iv) of Corollary 3.2 
we have Aiojninkn = 0. Finally letting both ai and /?’ vanish except at two 
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values of i and two ofj at which it has the value 1, and using property (ii) and 
the results just established, we obtain 

Thus Aijkr = 0 for all 1 I i , j ,  k ,  1 I m, which proves the theorem. I 

This theorem does much to establish the importance of the sectional 
curvature in the study of Riemannian geometry. We can also use sectional 
curvature to give a geometric interpretation of curvature in terms of the 
Gaussian curvature K of surfaces. However, to do this we will first need to 
complete our treatment of the equations of structure, which will be done in a 
later section. 

We shall say that a Riemannian manifold M is isotropic at a point p E M 
if the curvature is the same constant K ,  on every section at p and isotropic if 
it is isotropic at every point. Of course a two-dimensional Riemannian 
manifold is (trivially) isotropic. 

(3.6) Corollary If p is an isotropic point of M and U ,  cp is a coordinate 
neighborhood with coordinate frames El, . . . , En and Riemannian metric 
gij = ( E i ,  E j ) ,  then 

R i j k l  = -Kp(gikgjl - gilgjk) at p .  

Proof It is easy to check that the right side defines a tensor of order 4 
on T,(M) with the same symmetry properties as R(X,  Y ,  Z ,  W )  and with 
constant value on all sections. The corollary then follows from the unique- 

(3.7) Definition An isotropic Riemannian manifold is called a manifold of 
constant curoature if K ,  is the same at every point. 

ness theorem (Theorem 3.5). I 

An example is Euclidean space where K ,  = 0. This concept will be dis- 
cussed more fully in a later section. 

We saw in Chapter V that there exist algebraic operations on tensors on 
a vector space Y which yield new tensors on Y. Addition and multiplication 
of tensors as well as the operators d and Y are examples. The systematic 
study of these operations is a branch of linear (or multilinear) algebra. It is 
important to differential geometry because each such operation has an im- 
mediate counterpart in tensor fields on a manifold. This is treated system- 
atically in many of the references, at the very beginning, for example, in the 
books of Sternberg [l] and Kobayashi and Nomizu [l]. We will content 
ourselves with examples showing how the curvature tensor yields other 
related tensors. 
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Let R ( X ,  Y, 2, W )  denote the curvature tensor on a Riemannian mani- 
fold M .  We shall use this curvature tensor to define a (covariant) tensor field 
S ( X ,  Y )  of order 2 and a (scalar) function on M .  Let P E  M and let 
F , , ,  . .., F n p  be an orthonormal basis at p .  Then it is left as an exercise to 
verify that 

n n 

S p ( X p  9 yp) = C R(Fip 7 X p  9 Y p  9 F i p )  = C (R(Fip 7 Xp)  . Y p  9 F i p )  
i =  1 i=  1 

is independent of the choice of orthonormal basis and defines a symmetric, 
C", covariant tensor field S on M .  

(3.8) Definition The tensor field S ( X ,  Y )  is called the Ricci curvature of 
M .  I f  there is a constant c such that 

S ( X ,  Y )  = C(X, Y ) ,  

that is, S ( X ,  Y) is a constant multiple of the Riemannian metric on M ,  then 
M is called an Einstein manifold. The function r on M ,  defined by 

n n 

r(p) = C R(Fip 9 F j p  9 F j p  9 F i p )  = 1 S ( F j p  7 F j p ) ,  
i , j = 1  j =  1 

is called the scalar curvuture of M .  

Spaces of constant curvature are examples of Einstein manifolds 
(Exercise 6) .  A further example is given by the corollary to the following 
theorem. 

(3.9) Theorem On u compuct Lie group G with a bi-invariant Riemannian 
metric, the sectionul curvatures at e (hence everywhere) are given by the 
formula 

K ( x p )  = - R ( X , ,  Ye, X , ,  Yp) = +a([x, Y], [ X ,  Y ] ) ,  

where X ,  Y ure an orthonormal pair of lqji-invariant vectorfields spanning the 
section nL, at e. The curvature operator is similarly given at e, hence at all 
points by 

R ( X ,  Y )  . Z = - i [ [ X ,  Y ] ,  Z ]  

with X ,  Y ,  Z left-invariant vectorjelds. 

Proof We proved in Theorem VII.8.12, that for left-invariant vector 
fields X, Y, the connection of a bi-invariant metric on G given by 
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V x  Y = +[X, Y ] .  Applying first the definition and then the Jacobi identity, 
we obtain 

R(X, Y )  . z = VXPY Z )  - VY(VXZ) - V[X, YlZ 

= +[X, [ Y ,  211 - $ [ Y ,  [X, Z ] ]  - $[[X, Y ] ,  Z ]  

= + [ Z ,  [X, Y ] ]  = -+“X, Y ] ,  Z ]  

We also know that for left-invariant vector fields CJ, I/, W on G the follow- 
ing identity holds, according to Lemma VI.8.12, 

( [ C J ,  V ] ,  W )  = (CJ, [K Wl).  

Thus, if X, Y are left-invariant and are an orthonormal basis at e of n, a 
plane section, the sectional curvature is 

K(n)  = -R(X, Y ,  X, Y )  = $([[X, Y ] ,  X1, Y )  = $([x, Y ] ,  [X, Y ] ) .  I 

If g is a Lie algebra and X E 9, then ad(X) denotes the linear mapping of 
g defined by ad X (  Y )  = [X, Y ] .  By Exercise VI.8.8, ad X = 0 if and only if 
X E c, the center of g. We shall say that a compact Lie group G is semisimple 
if the center of its Lie algebra is {0} or, equivalently (Exercise 5) ,  if the center 
of G is discrete. 

(3.10) Corollary Let G be as above and X, Y ,  Z be left-invariant vector 
Jields. Then the Ricci tensor S ( X ,  Y )  is given by the formula 

S ( X ,  Y )  = -$ tr(ad X 0 ad Y )  

and is positive semi-dejnite and bi-invariant on G.  Each compact semisimple G 
is an Einstein manifold relative to  any bi-invariant Riemannian metric. 

Proof Using the formula above we see that the linear operator 
Z -+ R(Z,  Y )  X on G is defined at e for the left-invariant vector field by 

R(Z,  Y )  . X = -i(ad X)(ad Y )  . Z .  

According to Exercise 3, an alternative definition of S ( X ,  Y )  is that it is the 
trace of the linear mapping Z + R(Z,  X )  . Y on the tangent space at each 
point. Then, since S(X, Y )  = S( Y ,  X ) ,  the formula of the theorem holds. On 
the other hand, if F , ,  . . . , F ,  is an orthonormal basis of left-invariant vector 
fields, then the formula 

(ad X * F i ,  F j )  = ([X, Fi] ,  F j )  = (Fi, [X, F j ] )  = ( F i ,  ad X . F j )  

shows that the matrix (ai j )  of ad X, relative to this basis, is skew symmetric. 
Hence 

tr ad X ad X = C aijali  = - C a ; .  
1. I i ,  i 
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It follows that S ( X ,  X) = - tr ad X ad X = at. 2 0 with equality holding 
only when ad X = 0. Hence S ( X ,  Y )  is positive semidefinite. Moreover, 
if G is semisimple, it is positive definite. It is clearly left-invariant: when 
X, Y ,  Z are left-invariant so is R ( Z ,  Y )  * X and S ( X ,  Y ) ,  its trace. This means 
that S ( X ,  Y )  is a bi-invariant Riemannian metric on a semisimple G. How- 
ever two bi-invariant metrics can differ only by a scalar multiple. It  follows 
that with a bi-invariant metric, G is Einstein. Note that this corresponds, 
except for a constant factor, to the metric on SO(n) of Example VII.8.6. I 

1. 

2. 

3. 

4. 

5. 

6. 

4 

Exercises 

Prove that expression (3.4) depends only on the plane n determined by 
the vectors X ' ,  Y' .  
Show that for any orthonormal basis F, ,  . . . , F,  at P E  M ,  the values of 
S ( X , ,  Y,) = I:=, R(Fi , ,  X i , ,  Y,, Fip )  is independent of the choice of 
the orthonormal basis and that this formula defines a C"-tensor field 
S ( X ,  Y )  as claimed in Definition 3.8. Verify that S ( X ,  Y )  = S( Y ,  X). 
Show that S ( X , ,  Y,) is the trace of the linear operator taking Z p e  T,(M) 
to R ( Z , ,  X , )  . Y,E R , ( M )  and use this to show that S ( X ,  Y )  is C" for all 
Ca-vector fields X, Y .  
Show that on a compact Lie group G with a bi-invariant Riemannian 
metric, the curvature is identically zero if and only if G is Abelian. 
Show that if g is the Lie algebra of a Lie group G (compact or not), then 
the center of G is discrete if and only if the center of g, 
c = { X E ~  I [X, Y ]  = 0 V Y E  g}, is (0). 
Show that a Riemannian manifold of constant curvature is Einstein. 

The Curvature Forms and the Equations of Structure 

We now return to the viewpoint of Section VII.4. Let U be a neighbor- 
hood on the Riemannian manifold M such that on U is defined a C" family 
of coframes O', . . . , O n  and thus, automatically, a dual C" family of frames 
El, ..., En. They may or may not be coordinate frames of a coordinate 
neighborhood U ,  cp. The components of the Riemann metric on U are still 
denoted by g i j  = ( E i ,  E j )  however, and according to Theorem VII.4.6, there 
exist uniquely determined one-forms Oi on U satisfying 

(i) dOi = Cj OJ A Oj,  
(ii) dgij = x k  @gkJ + x k  g i k $  

1 I i I 11, 

I I i, j 5 n. 

[We remark that by defining Oij = Ck Of&,, the equations (ii) assume the 
simpler form dgij = Oij  + dji.] In the special case where the frames are 
orthonormal, that is, g i j  = h i j ,  we will use mi, w{ instead of 8'- O i j .  Then (ii) 
becomes 0 = (4 + Q:, 1 I i, j I n. 
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The forms 13; determine, and are determined by the Riemannian connec- 
tion. Thus if vEi E j  = c k  Ek, then ej = e k  rii ek equivalently, 
V x  E j  = ck Ojk(X)Ek . The one-forms e;, 1 I j ,  k 5 n, are called the connec- 
tion forms. (A word of caution: = rji only if E l , .  . ., En satisfy 
[ E i ,  E j ]  = 0, as is the case for coordinate frames. This symmetry was derived 
from V E i  E j  - V E j  Ei = [ E i ,  E,], which we have made part of the definition of 
Riemannian connection; it is equivalent to  (i) above.) 

Now suppose that Rijkl, 1 I i ,  j ,  k,  1 I n are the components of the 
curvature (as an endomorphism) relative to the given frames, that is, 
R ( E k ,  E l )  . Ei = cj Rijkl E j .  Then we define n2 two-forms Q;, 1 I i, j I n by 

n 

@ = 1 R,jk1ekAegl  = c R;kIekA6'. 
lsk<lbn k .  I =  1 

It follows that 
n n 

1 !&(Ek, E1)Ej = 1 RijklEj =R(Ek, El)  ' Ei 
j =  1 j =  1 

and by linearity this extends to any vector fields X, Y so that 

R ( X ,  Y )  * Ei = c Qj(X, Y ) E j ;  
j 

thus (ni(X, Y)) is the matrix of the curvature operator relative to the basis 
El, . . . , E n .  Note that the properties of R(X, Y) Z imply that Q { ( X ,  Y )  at p 
depend only on the values of X and Y a t  p, not on the vector fields; ob- 
viously Qj(X, Y) = -Qj(Y, X). These n2 forms on U j  are called the 
curvature forms; they depend on the Riemannian metric and on the particu- 
lar frame-field we use on U .  The following result shows the relation between 
these forms and the connection forms. 

(4.1) Theorem 
the equations 

Using the notation above, the forms 0; on U are dejined by 

(4.2) = d@ - C ; = , @ ~ e j , ,  1 1 i , j 1 n .  

Proof It is sufficient to verify that on any vector fields X, Y on U the 
value of the two-forms on each side of the equation is the same. This is 
equivalent to showing that 

R ( X , Y ) . E i = e ( ( d e j - ~ e ~ h R 1  k E j ,  i =  1 ,..., n. 
j 

By definition, 

R(X, Y )  . E i =  VX(VYEi) - V y ( V x E i )  - VEX.  YIEi 9 
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which may be rewritten 

Since Oj(  Y )  and O j ( X )  are functions, the right-hand side is equal to 

c (X(Oj( Y ) )  - Y ( B j ( X ) )  - Oi([X, Y ] ) E j  
j 

Applying Lemma V.8.4, this becomes 

which shows that, as claimed, 

R ( X ,  Y )  . Ei = 1 dB{ - C 0: A O i  

I 
j ( k  

This completes the proof. 

(4.3) Remark In  summary, we have the following facts. Let U be any 
open subset of a Riemannian manifold M on which is defined a field of 
coframes B', ..., 0". Let E l ,  ..., En denote the uniquely determined dual 
frame-field and let gij = ( E i ,  E j )  on U .  Then there exist n2 uniquely 
determined one-forms 0; on U satisfying conditions (i) and (ii) of the first 
paragraph of this section. They determine the two-forms Rj, and hence the 
curvature on U ,  by (4.2). Equations (i), (ii), and (4.2) are known as the 
equutions qfstrucrure; they are due to Elie Cartan, who made extensive use 
of them. As noted above, it is often convenient to write Bij = Is B;g, so that 
( i i )  takes a simpler form. We may define, similarly, zTij = ~ , R f g s j ;  then 
Qij = f Ck, RijklOk A 0' since we have previously seen that 
R i j k l  = Is qj, R f k l ,  where RijkI = R ( F k ,  F , ,  Fi,  F j )  by Definition VII.4.5. 
The symmetry properties of Corollary 3.2 imply that Rij = -aji. 

I n  the event that the frame-field is orthonormal, that is, consists of vec- 
tors El ,  . . . , E,, with (Ei, E j )  = hi,, then as noted above, (i) and (ii) simplify; 
moreover, R, = Ri, Rijkr = Rijkl and (4 = w i j .  Recapitulating the remarks 
above we have the following corollary. 

(4.4) Corollary 
determine irniqirely u set of one-forms (4, 1 I i ,  j s n, satisfying 

The forms ol, . . . , o" dual to afield of orthonormal frames 

( i )  hi = c W ~ A W '  
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and 

(ii) 4' + w)  = 0 
and we have 

(iii) d ~ '  - E L  O ~ A W ~  = xk<l  R i j k l w k ~ w l  = Ri = R. .  IJ  . 

Relative to these frames the matrix (R,(X, Y ) )  of the curvature operator 
R ( X ,  Y )  is a skew-symmetric matrix. 

(4.5) Corollary Let rfj denote the coeficients of the connection forms rela- 
tive to coordinate frames El, . . . , En of a coordinate neighborhood U ,  cp, that is, 

0; = r!jO1 with O',  ..., 0" being dual to El, ..., E n .  Then rlj = r:i and 

Proof According to the theorem 
a{ = do{ - 1 ei; 

h 

hence 

Now rf. = rjki since [Ei, E j ]  = 0 for coordinate frames, and it follows that 
do1 = 0' = -0' A O j ) .  Therefore 
the second equation above may be written as 

O ~ A  0; = xi, TljOjr\ 0' = 0 (since 

1 
- - 1 1 rjh - r:i ri,,)ek A el. 

k . 1  h 

Since we have made the coefficients on both left and right skew-symmetric in 
the indices k ,  I ,  these equations imply equality of coefficients. We use the 
symmetry of rfj in i, j ,  the fact that Ok A 0' = -8' A Ok, and change of index of 
summation where necessary to obtain the (standard) formula of the corol- 
lary. I 

Consider the special case in which dim M = 2 and assume, moreover, 
that only orthonormal frames are used. 

(4.6) Corollary 
the Gaussian curvature of M .  

ffdim M = 2, then d o :  = R: = + Kw' A wz, where K is 
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Proof In proving Gauss's Theorema Egregium we saw that if El, E ,  are 
orthonormal unit vectors, then 

K = - R ( E , ,  E , ,  E l ,  E 2 )  = - ( R ( E i ,  E , )  * Ei, E z )  = - R i z i z .  

On the other hand, since g i j  = (Ei,  E j )  = dij we have 

Sincewi+wj=O,wi =O=wS.ThusC,2_1W:Aw:=Oanddw:=R: by 

Note that these equations are independent of the particular orthonormal 
frame field on U c M .  We shall now use this to give a geometric interpreta- 
tion of sectional curvature. Let II be a plane section at a point p of M ,  a 
Riemannian manifold, and let N ,  be an open, two-dimensional submanifold 
of M consisting of geodesic arcs through p and tangent at p to the section n. 

(4.7) Theorem If we use on N ,  the Riemannian metric induced by that of M ,  
then the sectional curvature K ( n )  is equal t o  the Gaussian curvature of N ,  at  p .  

Proof Let U = exp, E, be a normal neighborhood of p ,  that is, we 
choose E > 0 such that E, = ( X , E  T,(M) I I)X,)) < E }  is mapped diffeomor- 
phically onto an open set U c M .  The plane section n corresponds to a 
two-dimensional subspace V, c T,(M) and we may suppose that N ,  is the 
image of V, n E, . Since U is a normal neighborhood, it is covered simply by 
the geodesics of length E issuing from p ;  they are given by exp,tX,, 
0 I t I E ,  for each X ,  with llX,ll = 1. Now choose an orthonormal basis 
El,, ..., En, of T,(M), with El,,  E, ,  a basis of V,. Then (XI, ..., x") + 

exp,(C xi&) establishes a system of normal coordinates on U ,  the coordi- 
nate map cp being the inverse of the above. Thus N ,  is described by 
x3 = ... = xn = 0, and U n N , ,  cp is a coordinate system on N ,  with x', x2 
as coordinates. Let El, . . . , E,  denote the coordinate frames; they agree at p 
with the given frame and El, E ,  are tangent to N ,  everywhere on N , .  We 
denote the dual coframes by 01, . . . , On, with 0; = ci rfjOi as connection 
forms. Note that rfj(0) = 0, that is, 0; = 0 at P E  U.  This was proved in 
Remark VII.6.8. 

From those frames, by the Gram-Schmidt process we obtain a family of 
orthonormal frames F , ,  . . . , F ,  in U with the property that F , ,  F ,  are a 
linear combination of El,  E ,  and thus tangent to N ,  at each of its points. We 
denote by w l ,  ..., w" the dual coframes to F , ,  ..., F ,  and by @ the corre- 
sponding connection forms; they satisfy the equations 0; + wj = 0 and 
dw' = Ck 0: A wk. We shall see that for j > 2, di = di =, 0 at p .  First recall 
that at p ,  V x p  Ei  = C j  Oj(Xp)Ej = 0 and V x ,  F i  = 1 d ( X , ) F j .  Now for 
i = 1,2, F i  = a!E,  + a:E, and so 

V x , F i  = ( X , a ! ) E ,  + (X,a?)E,  + a ! V x p E I  + a ? V X p E 2  

= 0 1 2  = -R1212w1 Am2. 

Corollary 4.4. This completes the proof. I 



390 V l l l  C U R V A T U R E  

Since rfj(0) = 0, the last two terms vanish so that for i = 1, 2, V x , F i  is a 
linear combination of El and E , ,  and hence of F ,  and F , .  Thus 
V x ,  F i  = w!(X,)F,  + wZ(X,)F, for i = 1,2  and wi(X,) = 0 for i = 1,2  and 
j > 2 as claimed. 

Now we denote by I:  N ,  + M the imbedding and let Gi = I*wi, 
+ = I*M'. Since I* is a homomorphism of A ( M )  + A ( N p )  and commutes 
with d ,  we know that dGi = xk & L A  Gk and +' + &j = 0. Moreover, Gi = 0 
for i > 2, since F , ,  F ,  spans the tangent space to N ,  and Gi(Fj)  = (I*wi)(Fj) 
= wi(I*Fj)  = wi(Fj) = 0 if j = 1 or j = 2 and i > j .  Thus &', 6' are 
dual to F , ,  F ,  restricted to N ,  and together with 6: = &; satisfy equations 
(i) and (ii) (of Remark 4.3), which determine the connection forms uniquely. 
It follows from Corollary 4.6 that d 6 :  = K 6 '  A &'. On the other hand, we 
have on M 

and applying I* to both sides and evaluating at p yields the equality (at p ) :  

d&: = R l Z l 2 & '  ~6'. 

It follows that the sectional curvature K(n) = - R , , , ,  = K , ,  the Gaussian 
curvature at p of the surface N , .  This completes the proof. I 

(4.8) Corollary Let M be an n-sphere of radius a in R"' with the Rieman- 
nian metric induced from R"". Then M has constant sectional curvature l /aZ.  

Proof If p is a point of M ,  then the geodesics through p tangent to a 
plane n in T,(M) are great circles and form a 2-sphere of radius a. We have 
seen that the Gaussian curvature of such a 2-sphere is l/a2 so the corollary 
follows from the theorem. I 

We have made a distinction between isotropic manifolds and manifolds 
of constant curvature. A theorem of Schur [l] shows that this distinction is 
artificial. 

(4.9) Theorem If M is a connected, isotropic Riemannian manifold and 
dim M > 3, then M has constant curvature. 

Proof Ifwe let K ,  be the value of the sectional curvature at p-the same 
on all sections by hypothesis-then we must show that this function on M is 
constant, that is, dK = 0. Let U be a neighborhood of p E M with an ortho- 
normal frame field and let wl, . . . , w" be the dual coframe field. Using the 
expression for Rijkl in Corollary 3.6, which now becomes 
Rijkr = K(6ik 6jl - biI bjk), We have fii = f i i j  = Kw' A d', in which K 



5 D I F F E R E N T I A T I O N  O F  C O V A R I A N T  T E N S O R  F I E L D S  391 

depends only on p, not on the (orthonormal) frames used. Taking the exte- 
rior derivative of the structure equation 

d ~ . =  ~ W ~ A O I i  + @, 

we obtain 

0 = x ( d W f A C U i  - w:Ad&) + d K A W ' A t U '  -I- K d O ' A d  - K d A d d .  

Substituting for dwf,  dw', and so on, from Corollary 4.4 and simplifying gives 

~ K A W ' A ~ ~  = 0, 

which holds for every i, j = 1, . . . , n. Since d K  = K ,  w1 + ... + K,w", a 
linear combination of wl, . . . , w", and since w1 A w i  A d' # 0 if I ,  i, j are dis- 
tinct, this can only hold if d K  = 0 on U ,  a neighborhood of p. Because p is 
arbitrary, d K  = 0 and K is constant. I 

According to Corollary 4.8, the sphere of radius a with the Riemannian 
metric induced by the Euclidean space with contains it has constant positive 
curvature. Euclidean space itself with its standard Riemannian metric has 
curvature identically zero, since with the usual coordinates rfj = 0 and 
R i j k l  = 0. I t  remains to give an example of a manifold of constant negative 
curvature of arbitrary dimension. This will be done in Section 6, which is 
devoted to spaces of constant curvature. In the meantime, the reader should 
try Exercise 1. 

Exercises 

1. Show that the two-dimensional manifold M = {(x, y) I y > 0}, the upper 
half-plane, with Riemannian metric in the xy-coordinates which cover 
M given by y,, = l/y2 = gZ2 and g , 2  = 0 = g2,,  has Gaussian curva- 
ture K = - 1. 
Let 8', . . . , O n  be n linearly independent one-forms defined on an open 
subset U c R" and let ( g i j ( x ) )  be a symmetric positive definite matrix 
whose entries are Ca, functions on U .  Show by direct computation that 
there exist uniquely determined functions ri,k, 1 I i , j ,  k I n such that 
the t i2  forms O j k  = Cy= r i j k  8' satisfy the two systems of equations: 

2. 

(i) dOk = I O j  A Ojl  gk', and 
(i i )  dyij = 0, + Oji.  

5 Differentiation of Covariant Tensor Fields 

Until this point we have used covariant differentiation D/dr on Rieman- 
nian manifolds and the associated Riemannian connection V only to differ- 
entiate vector fields-either along curves or in various directions X, at a 
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point p of the manifold M. However, once this has been done, it is a rela- 
tively simple matter to extend the procedure to tensor fields; for the basic 
difficulty-lack of a method to compare vectors, tensors, and so on, on 
tangent spaces at nearby points q to a given P E  M-has somehow been 
surmounted. In Euclidean space, of course, we compare T , ( M )  and T , ( M )  by 
parallel translation; we have also used the local one-parameter group of 
transformations generated by a vector field X to define the Lie derivative 
L x .  Neither procedure is available in the general case; but we do have 
parallel transport along a curve from p to q and that is what we now apply. 
For convenience, and since it is all that we need, we restrict our considera- 
tion to covariant tensor fields. Just as in our earlier treatment of differentia- 
tion of vector fields on a Riemannian manifold, we first differentiate a 
covariant tensor field along a curve and then, later, determine its derivative 
in various directions X, at a point p of the manifold. 

We consider, then, a covariant tensor field @ of order r on the Rieman- 
nian manifold M ,  @E F'(M), and we suppose given a curve p ( t ) ,  a I t I h, 
on M of differentiability class C' at least. Let QP(,) denote the restriction of @ 
to p ( t ) .  Then E Fr(TP(,,(M)), that is, is a tensor field along p ( t ) .  
Using Theorem VII.3.12 and Remark VII.3.13, we denote by 7, parallel 
translation along p ( t )  from a fixed point p ( t o )  of the curve: 

This is an isomorphism of these tangent spaces and is uniquely determined 
by the curve p ( t )  and the Riemannian structure. It is exactly what is needed 
to define the derivative of @ at p ( t o ) .  

(5.1) Definition With the preceding notation, the derivative D@/dt of the 
tensor @ along the curve is defined at the point p ( t o )  by 

As thus defined (D@/dt)to is a covariant tensor of order r on the vector 
space T,,,,,(M). In fact, given any set of r vectors Xi(,,), . . . , X;(!,)E T,,,,,(M), 
then D@/dt at p ( t o )  is the 1imit.as t + to  of the expression 

which for each value oft  near to is a multiple [by l/(t - to)] of the difference 
of two tensors T:@,(,) and Q p ( , )  on T,,,,,(M). Since both are covariant r 
tensors on the same vector space, it follows that the limit is also such a 
tensor. Repeating this procedure at each to on the interval (a, b )  gives a 
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covariant tensor field D@/dt along p ( t ) ,  provided that suitable differentiabil- 
ity conditions are satisfied. We mean by this that for any Ck family of vector 
fields X i  = Xb(l,, i = 1, . . . , r, defined along the Ck curve p ( t ) ,  the value of 
DO/dt on them, 

D@ 
dt ( X ; ,  . .., X : ) ,  a < t < b, 

should be a function of class C k - '  (C" when k = 00)  of the variable t. In 
particular, this should be true in the most frequent situation: Xi, . . . , X' are 
Cm-vector fields on M and X,', . . . , X ;  are their restrictions to the curve p ( t ) .  
In order to see that this is indeed a consequence of our definition and to 
derive computational formulas, we prove the following lemma. For 
convenience-and since it is the most important case-we suppose @ is C". 

(5.2) Lemma Let @ be a C"-covariant tensorjield of order r on M and let 
p ( t ) ,  a < t < b, he u curve of class Ck, k 2 I ,  on M .  If X,' ,  . . ., X;E TP(JM) 
are vector fields of class Ck along the curve, then for each to on the interval 
(a, b )  we have 

Proof Before beginning the proof we note that it will indeed establish 
the fact that D@/dt evaluated on Ck-vector fields along the curve is differen- 
tiable of class Ck- at least. If k = co, as will often be the case, then D@/dt 
will be a COc-tensor field along the curve, that is, its value on Cm-vector fields 
will be a C" function oft. Although @ itself has been assumed C", in fact it is 
sometimes convenient to consider curves of lower differentiability class, 
which in turn lowers the class of D@/dt. The assertion of the lemma is easy to 
prove. By definition we have 

Then for each i = 1, . . . , r in turn we subtract and add 
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Rearranging and collecting terms and using both linearity at p ( t )  and the 
continuity of the tensor @, we may rewrite the defining equation 

1 + lim __ (@p(r)(X,', . . . , X:)  - @p(Io)(X:o , . . . , X;o)). 
r - t o t  - t o  

We now use the fact that for any Ck-vector field XI along p ( t ) ,  

Therefore passing to the limit in the expression for (D@/dt),, completes the 

We can verify from the formula itself that (D@/dt),,depends R-linearly on 
the values of the vector fields Xi, . . . , X :  at p ( t o )  so that the formula does 
define an R-linear function, that is, a covariant tensor of order r on the 
vector space T,,,,,(M). This is made even clearer, however, by the following 
corollary-which uses the notation above. 

(5.4) Corollary Let Xb, . . . , XL E TP,,,,(M) be given and suppose that 
X:, . . . , X ;  are the uniquely determined parallel vector jields along p ( t ) ,  
a < t < b, which take these values at p ( t o ) .  Then formula (5.3) becomes 

proof of formula (5.3) of the lemma. I 

Proof This follows from (5.3) since by definition of X i  we have 

This corollary makes it clear that (D(D/dt),, depends only on the tensor 
field @ and on the curve p ( t ) ,  a < t < b. In fact, it is easy to verify from the 
formulas above that it depends on the tangent vector Yp(ro) = p ( t o )  to the 
curve, but not on the curve itself, more precisely, two curves through p ( t o )  
with the same tangent vector at  that point will define the same element 
(D@/dt),, of .Fr(T,~Io,(M)). We shall state this in the form of a lemma. 

(5.5) Lemma Let @ be as above and let p E M .  W e  suppose that X ', . . . , X' 
are Cm-vector jields on some neighborhood U of p and let X:, . . . , XL denote 
their value at p .  Let F( t ) ,  - E  < t < E ,  and G(s), -6 < s < 6, be two C' curves 
on M such that F (0 )  = p = G(0) and p(0) = Y, = G(0) is their common tan- 
gent vector at p .  Then 

I DXi/dt = 0, i = 1. ..., r .  

. . . 1  X,) ' = (?lo ~ (XL,  . . . , XL), 
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Similarly restricting,f'to G(s). differentiating with respect to s. and evaluating 
at s = 0 gives Y,,f.' Applying this to the function 

f(y) = @,(X:. .... Xi). 

we see that in formula (5.3) the first term in case of either curve (and 
derivative of 0) is the same, namely Y,(@(X', . . . , X')). On the other hand, 
by our original definition of V y , X  for a vector field X in Chapter VII we 
have V y l , X  = ( D / t / t ( X b , , , ) ) ,  = ( D / ~ S ( X ~ ( . ~ , ) ) , ;  hence the other terms in 
formula (5.3) agree also, which establishes the lemma. I 

We denote the covariant tensor of order I' on T,(M) which we have thus 
defined from differentiation of @ along curves through p with Y, as tangent 

(5.6) Definition The covariant I' tensor on 7 J M )  just defined. 
V y l , Q ) ~  .F'(T',(M)), is called the coiwitriit tleriratiw of 0 at p in the 
direction Y,, . 

at P by V Y I 9  

According to the facts in the proof above. the covariant derivative is 
given by the formula 

(5.7) VYl,@(X', ..., X') = Y,(@(X', ..., X ' )  
r 

- c @,(X:, , . . ., Vyl,X'. . . . , XL)), 
i =  I 

N here .\ I .  . . . . X' are vector fields on a neighborhood ofp. Only their values 
a t  11 affect the value of Vyl,@ on T,(M). 

(5.8) Theorem G i i ~ n  0 E .F'( M )  ( I S  dmv. rhru we 1 ~ ~ i . 1 9  tlqfirie 011 M a 
c7 -c80r~iI'ilr11t ft"r?.~Or',fiPld y 01 OI'l/t'l* 1' 4- 1 hj. ~ h ~ , f O ~ i J l l I / l /  

Yp(.Y/!. .... .q: Yp) = (v,l,@)(X;, .... XTp). 

Proof' I n  \ ic\\ c d '  ;ill l l iut  has been shown above it is only necessary to 
prove two iiiorc liicts: lirst that for each p~ M, is linear in the last 
viiriiihlc - with the others fixed. Second, that for any C'-vector fields 
. \ I .  . . .. X';, 1; the formula above defines a C'  function of p. 
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The first fact is a consequence of the linearity in Y, of each term of (5.7) 
as a real-valued function on T,(M). Thus, if we fix the vector fields X ' ,  . . . , X', 
then the mapping T p ( M )  -, R defined by (5.7) 

Y, + (V up @)(x;  7 . . ., x;)  
is linear. On the other hand, it is clear that for C -vector fields X ' ,  . . . , X r ;  
Ythe function Y ( X ' ,  ..., X'; Y) = ( V Y ( D ) ( X l ,  ..., X,) is C". I 

It is not difficult to give formulas in terms of the components of (D in local 
coordinates for the components of Y. We shall give the formulas and leave 
their verification as an exercise. We suppose that U ,  q~ is a local coordinate 
system with local coordinates XI,. .., x", coordinate frames El,  .. ., E n ,  and 
with V E i  E j  = x k  r ! j E k .  Let @ be as above and let Oil  ... i, = @(Eil, . . . , E,) 
be its components. 

(5.9) Corollary With the notation above, the coriiponenfs 

yji. .... j , + i  = ' Y ( E j i 9  . . * 1  E j , + , )  

of" on U are given by theformulas 

i =  1, ..., r .  

(5.10) Definition A tensor field (DE 7 ( M )  is said to be parallel along a 
cwue p ( f )  if D@/dt = 0 along the curve. It is said to be parallel if DO/dt = 0 
along every curve on M. 

We remark that if V X p @  = 0 for every X, E T,(M) and all p E M, then it is 
parallel; so in fact if it is parallel along geodesics, for example, then it will be 
parallel. This follows from Lemma 5.5 and the fact that there is a geodesic 
tangent to any given vector X , .  

We also note that if p ( r ) ,  a I t I b, is a curve of class C' ,  say, then (D is 
parallel along p(t)  if and only if it satisfies 

d 
dt 
- -  ((D(X(l,  * .  . , x;,) = 0 

for every set X;, . . . , X :  of parallel vector fields along the curve p ( f ) .  

(5.11) Example Let M be a Riemannian manifold of constant curvature 
K .  Then, by definition, for any orthonormal pair of vectors X , ,  Y, the 
sectional curvature R(X,, Y,, X,, Y,) = - K .  Suppose p ( r )  is any curve 
through p with, say, p ( 0 )  = p .  Let X p ( r ) ,  Yp(r) be the uniquely determined 
parallel fields such that X, = X,(,, and Yp = Y,(,,. Then Xp(r)r Yp(r) is 
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orthonormal at each p ( t )  and R(X, , , , ,  Y,(,), X p ( , ) ,  Y,,,,) = - K, a constant 
independent of t .  It follows that for any parallel vector fields along p(r) say 
X ( ,  i = 1, 2, 3,4, that 

rl 
~ R ( X : ,  X: ,  X: ,  X f )  = 0. 

dt 

Indeed the values of all of the sectional curvatures uniquely determine the 
curvature; thus the curvature is parallel if it is constant on parallel sections 
n, along any curve p ( t ) .  

We might think that this is the only case in which the curvature tensor 
R ( X ,  Y .  2, W )  is parallel, but in fact this is not the case as we shall now see. 

(5.12) Theorem (Cartan) I f  M is a Riemannian symmetric space, then the 
curvature teiisor is parallel. 

Proof We know that any isometry of a Riemannian manifold preserves 
parallelism; it carries parallel vector fields, sections, and so on, along a curve 
to parallel vector fields, sections, and so on, along the image. Moreover 
isometries preserve the curvature, 

Finally isometries carry geodesics to geodesics. This is because each of these: 
parallelism, curvature, and geodesics is defined in terms of the Riemannian 
metric. Now to show that the curvature is parallel, it is enough to show that 
it is constant on parallel vector fields along geodesics. However, if p ( t )  is a 
geodesic, then the vectors X P ( , ) ,  Y,,!, , Z,( , ) ,  WP(,) of the parallel vector field 
determined by X,,,, , Y,,,,,, . . . are given by isometries 7c of M according to 
Theorem VII.8.7. Therefore the curvature is constant on parallel fields along 
the geodesic p ( t ) ,  which proves the result. I 

It  is important to realize that this is more general than constant curva- 
ture. We have seen an example of a symmetric space-a compact semisimple 
Lie group G with bi-invariant metric-in which the curvatures on various 
sections nL, at the identity vary between 0 (if there is an Abelian subgroup of 
dimension two) and a positive maximum value (see Theorem 3.9). Thus G is 
not isotropic, hence not of constant curvature in this metric, but it does have 
parallel curvature. This raises the interesting question of how those Rieman- 
nian manifolds with parallel curvature may be otherwise characterized or 
described. The answer to this is given by the following two theorems which 
will not be proved in this text but are quoted for use in the next section and 
for their general interest. Proofs are given by Wolf [l ,  pp. 30,421. 
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(5.13) Theorem (Cartan) Let M be a ~iemannian man~old with parallel 
curvature. Then M is locally symmetric, that is, each point p E M has a neigh- 
borhood U such that there is an involutive isometry 0,: U -+ U with p as its 
only j x e d  point. 

Of course, a manifold may be locally symmetric without being globally 
symmetric, that is, symmetric in the sense of our original definition of sym- 
metric space. For example, Euclidean space or a sphere--with its usual 
Riemannian metric-is no longer a symmetric space if a single point is 
removed, since we have seen that a symmetric space is necessarily complete; 
but it is still locally symmetric. Even if completeness is assumed, together 
with parallel curvature, we still cannot be quite sure that the space is 
symmetric-some restrictions on the fundamental group may be involved. 
However, if the Riemannian manifold is complete and has parallel curva- 
ture, then we may be sure that its universal covering (with the naturally 
induced Riemannian metric) is a symmetric space. This is a consequence of 
the theorem which follows. A proof of a more general version due to Hicks is 
given by Wolf [ 13. 

(5.14) Theorem (Cartan-Ambrose) Let M and N be complete, connected 
Riemannian mun~olds of the same dimension, each with parallel ci{rvature, and 
suppose further that M is simply connected. If p c  M and q e  N and 
q: T,(M) 4 T, (N)  is any linear ~app ing  whjch preserves the inner prod~ct 
and the curvature; i.e., for arbitrary X, ,  Y,, Z,, W p c  T,(M), we have 
( ~ ( X P ) ~  94 Y p ) ) ,  = fX,+ Y p f p  and 

R,(4P(X,), d Y , ) *  cp(Z,t. d W,) = R,(X, 9 y ,  9 z, 1 Wp,). 
then there is a unique C" mapping F :  M -+ N which has the properties: 
(i) F ( p )  = q, (ii) F,:  ~ , ( M )  -+ T , ( N )  is the same as 9, and (iii) F is a ~ ~ e m u n -  
nian covering (that is, it is a covering such that F ,  is an isomerry on each 
fangent space- t~~s  a locul isometry). 

Exercises 
1. Verify the formula of Corollary 5.9. 
2. Let @ ( X ,  Y )  be the Riemannian metric on M .  Prove that V Z p @  = 0 for 

every vector Z ,  at every point p E M.  
3. Let a be a field of linear operators on M ,  that is, an element of X ; ( M ) ,  

so that at each p ,  0,: T,(M) 4 T,(M) is a linear mapping. Suppose for 
any X E X(M) that 5 ( X )  E X(M) also. Define a derivative Vyp a for G at a 
point p in the direction 5.  Show that it will define a tensor field of type 

4. Using Exercise 2 and the special expression in local coordinates which 
was given in Corollary 3.6 for Itijkr on a manifold of constant curvature 
K ,  show that the curvature tensor is parallel on any such manifold. 

T ? ( M ) .  
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5. 

6. 

6 

Show that if an alternating covariant tensor 0 is parallel, then the exte- 
rior differential form to which it corresponds is closed. Is the converse 
true? 
Let X be a C -vector field on a Riemannian manifold and 0 be a tensor; 
for definiteness let 0 be the Riemannian metric tensor. Make a suitable 
definition of the Lie derivative L X @  and interpret LxO = 0. 

Manifolds of Constant Curvature 

The manifolds of constant curvature, which we have introduced briefly in 
previous sections, are on the one hand the simplest Riemannian manifolds 
and yet on the other hand are sufficiently complicated to present a fascinat- 
ing object of study. Classically they are the oldest known examples in the 
sense that they include Euclidean space, the non-Euclidean spaces dis- 
covered by Bolyai and Lobachevskii, and the spherical and elliptic spaces, 
whose geometry was studied by Riemann (as examples of spaces in which no 
parallel geodesics existed). In fact locally, the geometry of any space of 
constant curvature is equivalent to one of these classical geometries as we 
shall see. What makes these spaces particularly intriguing is that questions 
about them can often be reduced to purely algebraic problems of an inter- 
esting nature. In the short scope of this paragraph we can only give an 
indication of the special flavor of this subject, but the books of Kobayashi 
and Nomizu [ l ]  and Wolf [ I ]  contain many details for the reader who 
wishes to go further. 

We recall that a Riemannian manifold M is said to have constant curva- 
ture if all sectional curvatures at all points have the same constant value K. 
This implies that the curvature tensor is parallel and hence that the manifold 
is locally symmetric according to Theorem 5.13, but the converse does not 
hold since there are many symmetric spaces, for example any non-Abelian 
compact Lie group with the bi-invariant metric, which are not spaces of 
constant curvature. According to Corollary 3.6 and to Theorem 4.9, or at 
least to its proof, it should be possible to give a characterization of Rieman- 
nian manifolds of constant curvature in terms of differential forms. To this 
end we suppose M to be a Riemannian manifold and let mi, 1 I i I n, 
denote the field of coframes dual to an orthonormal frame field E , ,  . . . , En on 
an open set U c M, with 4', 1 I i, j I n, denoting the corresponding con- 
nection forms. We then state the following lemma, whose proof is contained 
in Theorem 4.9 and Exercise 1. 

(6.1) Lemma 
Q j  = d d '  + '& w: A o i  are given by 

I f  M has constant curvature K ,  then the curvature forms 

= Ko' A mi. 



400 V l l l  CURVATURE 

Conversely, if on a neighborhood U of' each point of M there is an orthonormal 
frame field E l ,  . . . , En for which the uniquely determined a', 4. satisfy this 
equation, then M has constant curvature K .  

We shall use this presently to give an example of a manifold of constant 
negative curvature. Before doing so we recall that Euclidean space with its 
standard Riemannian metric is a space of zero curvature and that the n- 
sphere of radius u in R"" with the induced Riemannian metric has constant 
curvature K = l/u2. Thus for every nonnegative real number K ,  we have 
already found an example of Riemannian manifold of arbitrary dimension n 
with constant curvature K .  We shall next give an example of an n- 
dimensional Riemannian manifold of constant curvature K = - 1.  A slight 
variation (Exercise 2) will produce an example for any K < 0. 

(6.2) Example (Hyperbolic space) Let M be the open upper half-space 
of R" defined by M = { x  E R" I x n  > 0 )  with the Riemannian metric given by 
the line element (see Section V.3) 

( d x y  + ... + (dX")2  

(X")*  
ds2 = 

More precisely, we note that, as a manifold, M is covered by a single coor- 
dinate system with local coordinates x l ,  . . . , x" and coordinate frames 
d / d x ' ,  . . . , d/dx". This is because, as a manifold, M corresponds to an open 
subset of R". In these local coordinates, the components of the Riemannian 
metric are given by 

We use Lemma 6.1 to see that this manifold has constant curvature K = - 1 
as claimed. (When n = 2, this is the Riemannian manifold of 
Example VII.9.5.) 

Let Ei = x"(d/dx'),  i = 1, . . , , n;  these define an orthonormal frame field 
on all of M .  We denote by wl, . . . , w" the dual coframes which are given by 
(0' = ( l /x" )  dx', i = 1, ..., n. It is easy to verify that the forms 
wi = hnjwi - d n i r d  satisfy the equations 

n 

do'= C W ' A W ;  and w j + w j = O ;  

hence they must be the connection forms since these are uniquely 
determined by these conditions. Finally, taking the exterior derivative of 4' 
we obtain 

j =  1 

= dtO{ - CO:AOg = - d A f d .  
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Then from Lemma 6.1 it follows that M has constant curvature K = - 1. 
We call this hyperbolic space and denote it by H" (for its underlying space, 
the " half-plane"). 

Thus we have examples of spaces of positive, zero, and negative constant 
curvature. Note that all three examples are simply connected: when K > 0, 
our example was the compact manifold S" and, when K = 0 or K = - 1, the 
corresponding manifolds E" and H" are diffeomorphic to R". For conve- 
nience, in what follows we suppose that S" has radius + 1 and hence K = + 1. 
Since S" is compact, it is complete; we also know E" to be a complete 
Riemannian manifold; and we shall prove later that H" is complete. The 
importance of these facts stem from the following theorem (which goes back 
to much earlier work of Killing and Hopf). 

(6.3) Theorem Every complete, simply connected Riemannian manifold M 
of constant curvature K = + l , O ,  or - 1 is isometric to one of the three 
examples above, in fact to S" i f K  = + 1, to E i f K  = 0, and to  H" i f K  = - 1. 
More precisely, given p E M ,  and q in either S", E", or H" according to whether 
K = + 1. 0, or - 1, and given a prescribed linear map of T , ( M )  onto the 
tangent space at q which preserves the inner product, then there is exactly one 
isometry F of M to the corresponding space of constant curvature taking p to q 
and such that F ,  corresponds to the given linear mapping on T,(M).  

This is an immediate consequence of Theorem 5.14 once we know that 
H" is complete-which is proved later. We remark that using Exercise 2 and 
spheres S" of arbitrary radius, we may extend this theorem without difficulty 
to spaces of any constant curvature. Although Theorem 5.14 is not proved in 
this text, this consequence of it will be used. We have the following obvious 
corollary of Theorem 6.3. 

(6.4) Corollary Let M be S", E", or H" and let El,, . .., En,, E l , ,  . . ., En, 
be orthonormal frames at two arbitrary points p ,  q of M .  Then there is a unique 
isometry of M raking p to q and Ei, ro E,,, i = 1, ..., n. 

This shows that the group of isometries is transitive on M and makes it 
plausible that in each of these cases it is a Lie group. We already know this 
however for S". whose group of isometries is O(n + 1) and for E, whose 
group of isometries consists of rotations and translations and their products 
(Example 111.7.6). The group of all isometries of H" will be studied only in 
the special case n = 2, although some indication will be given of the general 
situation. 

In order to carry our study of these spaces somewhat further we make 
some comments concerning covering spaces. If M is a Riemannian manifold 
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and fi a covering manifold with covering mapping F :  fi + M ,  then there is 
a unique Riemannian metric on fi such that F is a local isometry. When fi 
has this metric, the covering will be called a Riemannian covering. The fol- 
lowing facts are quite easily verified from the definitions: (i) F carries 
geodesics to geodesics and each geodesic on M is covered by a unique 
geodesic on a; (ii) If M is complete, then fi is also complete (convergence 
of Cauchy sequences is a local phenomenon); and (iii) the covering transfor- 
mations are isometries of fi. With the aid of these facts one may reduce the 
determination of manifolds of constant curvature to a group theoretic 
problem-or at least make the first step in that direction. 

(6.5) Theorem Let M be a complete manifold of constant curvuturr 
K = + 1,0, or - 1. Then the universal covering manifold fi is isometric to S", 
E", or H", respectively, and M is the orbit space of a subgroup r of the group oj 
isometries of fi which acts freely and properly discontinuously on fi. 

The theorem follows from the fact that fi is complete, simply connected, 
and (since the covering mapping is a local isometry) has the same constant 
curvature as M .  We know from the theory of covering spaces that M = fi/r 
and that the covering transformations r act freely and properly discontin- 
uously (as a group of isometries). We give some indication of how this may 
be used by considering some examples. 

Spaces of Positive Curvature 

In order to find Riemannian manifolds of constant positive curvature 
K = + 1, it is necessary to find subgroups r of the group of isometries of S", 
the unit sphere, which act freely and properly discontinuously on S". The 
isometries of S" are contained in O(n + 1) which acts in the usual way on the 
unit sphere in R"+',  hence r c O(n + 1). The assumption that r acts freely 
means that no element of r, except the identity, leaves a point of S" fixed. 
Thus if A E  r and A # I ,  A cannot have + 1 as a characteristic value. 
Moreover, r must be a group of finite order, since otherwise there must be 
an x E S" such that Tx = { A x  1 A E T} has a limit point, which would contra- 
dict the proper discontinuity. Thus we must find finite subgroups of 
O(n + 1) no element of which (except the identity) leaves a vector x fixed. 
This is clearly a necessary condition for r, it is also sufficient (Exercise 3). 

The simplest example of a subgroup r of O(n + 1) of the type described 
is the group consisting of two elements, r = { k I } .  The orbit space S"/T is 
the collection of all antipodal pairs of points on S" and is, as we have 
mentioned earlier, just the projective space P"(R) (Example 111.2.5 and 
Exercise 111.2.3). Thus for every n we have at least two inequivalent spaces of 
constant curvature-real projective space and its universal (Riemannian) 
covering space S". When n is even, we have the following fact. 
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(6.6) lj' n is even, tlien S" and P"(R) are the only complete rnanifolds of 
constant curvature K = - I .  

Proof This is seen as follows. Let r be a properly discontinuous group 
of isometries acting freely on S". Then is an 
( n  + 1 )  x ( 1 1  + 1)  orthogonal matrix. Therefore A must have a real charac- 
teristic value since the degree of its characteristic polynomial is an odd 
number n + 1. Since the characteristic values of an orthogonal matrix are of 
absolute value one, A has & 1 as a characteristic value. We have seen that 
only the identity on r can have + 1 as a characteristic value, hence - 1 is a 
characteristic value of A .  This implies that A 2  has + 1 as characteristic value, 
so A' = I .  This means that each of the characteristic values of A is either + 1 
or - 1, and hence, either all are + 1 and A = I ,  or all are - 1 and A = - I .  
This completes the proof when combined with the example mentioned 

c O(n + 1) and each A E  

above. I 

(6.7) Example When n is odd, other possibilities can occur. As an indica- 
tion we will show that in the case of S 3  there exist many examples of finite 
subgroup r c O(4) which act freely on S 3  and thus give manifolds S3/r of 
constant positive curvature. The examples are based on the algebra K of 
quaternions, that is, on the real linear combinations 

q = x + yi + zj + wk 

of the four symbols 1, i, j, k with the usual rules of multiplication and with 
componentwise addition (see Chevalley [l]). We denote by q, the conjugate 

q = x - yi - zj - wk 

and by /1q1( the usual norm 1(q(( = (qq)'I2. Then K is in obvious one-to-one 
linear correspondence with R4 and this corresponds to the standard norm in 
R4. Hence K ,  = {q I llqll = 13, the quaternions of norm one, correspond to 
S 3  c R4. As usual we identify K and R4 as vector spaces and as manifolds 
and we identify K ,  and S 3  as manifolds. The important thing for us is that K ,  
is a group with respect to quaternion multiplication, since 11q1q211 = 
((q1(11(q211. Thus, if q~ K , ,  then left translation L,: K + K  defined by 
Lq(x) = qx is an R-linear mapping of K onto K and preserves the norm of x, 
that is, liLq(x)ll = ( J x J ( .  This means that as a linear transformation of 
K = R4, L, is an orthogonal transformation. In brief, S 3  = K ,  is a group 
space and left translations are orthogonal transformations, in fact isome- 
tries, of S3 with its usual Riemannian structure. Since no left translation 
except the identity can have a fixed point, we need only find examples of 
finite subgroups r of K,--each such example determines a three- 
dimensional manifold of constant positive curvature and they are all 
determined this way. 

of q, 
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To find finite subgroups of K, one uses the following fact (Exercise 4). 
There is a natural homorphism 71: K ,  + SO(3) which is onto and has kernel 
2 1 (+ 1 is the unit quaternion). This homomorphism is given as follows: 
Let R3 be identified with the subspace of K of all quaternions of the form 
q = yi + zj + wk, with real part x = 0. Then to each q'E K ,  we let corre- 
spond the rotation n(q') of R 3  given by q + q'q(q')-'. Now given any finite 
subgroup rl c S0(3), then = n-'(T1) is a finite subgroup of K , .  Such 
subgroups of SO(3) are easy to find-the group of symmetries of any regular 
solid (omitting those of determinant - 1) give examples. The problem of 
classifying all complete spaces of constant positive curvature has recently 
been completed by Wolf [I]; classification of the finite subgroups of K ,  and 
of SO(3)  is carried out as an example on p. 83ff of his book. 

Spaces of Zero Curvature 

Now consider the Riemannian manifolds which have Euclidean space of 
the same dimension as their universal Riemannian covering space; they are 
the (complete) spaces of zero curvature. Thus they are of the form 
M = E"/I', the orbit space of a subgroup r of the group of isometries (rigid 
motions) of E". If we identify E" with R" and use vector space notation, then 
each isometry is of the form x + Ax + b, where A € O ( n )  and 
b = (b', . . . , b"), and determine, respectively, a rotation and translation of 
the space (Examples 111.7.6 and IV.9.4). Since, locally at least, the geometry 
of any such M is just that of Euclidean space, these spaces might seem to 
lack interest. This is not the case however; in particular, the global behavior 
of geodesics is very different from that of geodesics in E". We have already 
noted this in the case of two examples: the cylinder, which is just EZ/T with 
r =  { x + x  + nellel = (1, 0), ~ E Z } ,  and the torus T 2  obtained as the 
orbit space of the group of translations { x  + x + ne, + me2 1 n, me Z, 
el = (1, O), ez = (0, 1)). 

Historically the study of these spaces is closely linked to that of the study 
of crystal structures on the plane E2 and in Euclidean space E3, that is, to 
uniform coverings of the plane by congruent polygons and of E3 by congru- 
ent polyhedra. It is fairly easy to convince ourselves that the symmetries of 
such crystalline structures-rigid motions carrying the structures onto 
themselves-form a subgroup r of the group of rigid motions which acts 
properly discontinuously (Fig. VIII.9). Elements of such groups may well 
have fixed points however, so these groups are somewhat more general than 
those which generate examples of manifolds of zero curvature. It was proved 
in the 19th century by several mathematicians independently (by 
classification of all possibilities) that there were only a finite number of 
crystal structures on E3. This gave rise to the question posed by Hilbert [2] 
in his famous address of 1900 as to whether the number of possible isomor- 



6 M A N I F O L D S  OF C O N S T A N T  C U R V A T U R E  406 

Figure V111.9 

phism classes of properly discontinuous groups of motions r of En for which 
the orbit space E"/T is compact is finite for every n. These are called crystal- 
lographic groups, and Hilbert's question was answered affirmatively by 
Bieberbach [ 11 in 19 11. This implies, in particular, that for every dimension I t  

there exist at most a finite number of compact Riemannian manifolds of 
curvature zero. Among these, of course, is the torus T", and it is a con- 
sequence of Bieberbach's work that every such manifold has the torus as 
covering space. The proof of these theorems involves very interesting group 
theoretic arguments; it may be found in the books of Kobayashi and 
Nomizu [ 11 and Wolf [ 13. In the latter book a complete classification of the 
manifolds of zero curvature in dimensions 2 and 3 is given; no general 
classification for all n is known. 

Spaces of Constant Negative Curvature 

First we consider H 2  as given in Example 6.2, except that we shall write 
(x ,  y )  for (x', x2) and identify H 2  with the upper half-plane of the complex 
numbers C by the correspondence ( x ,  y )  - z = x + iy. Then H2 is the open 
subset of C, consisting of all complex numbers z with positive imaginary part 
Im z > 0. We may then write the Riemannian metric, or line element 
ds2 = 1; j = ,  g i j  dx' dxJ, in the complex or real form 

We have already considered this Riemannian manifold and its isometries 
(Example VII.9.5). The reason for passing to complex coordinates is that it 
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makes it much simpler to define and work with the group of isometries. Of 
course, other representations of H 2  and its group of isornetries are often 
used-some of which extend to H" for all n, but the technical difficulties 
would be greater for us at  this stage (see Wolf [l, Section 2.41). Recall that 
mappings on C of the form Z H  w = (az + b) / (cz  + d) ,  a ,  b, c, d E C such 
that ad - be # 0, are isometries of H 2 ;  in analytic function theory they are 
called linear fractional transformations (see Ahlfors [l] for example). The 
following theorem restates Example VII.9.5 and adds a little to it. 

(6.8) Theorem The group G of linear fractional transformations such that 
a, b, c, d are real numbers and ad - be = + 1 is exactly the group of isome- 
tries of H 2  identijed with the upper half-plane of C. The mapping 
F :  Sl(2,  R )  + G dejned by  letting the matrix ( z  I;) correspond to the linear 
fractional transformation Z H  w = (az + b)/(cz + d )  is a homomorphism of 
Sl(2 ,  R )  onto G with kernel f I .  

Proof Except for the assertion that this group contains all of the isome- 
tries, these statements were all proved, or given as problems, in 
Example VII.9.5. To review briefly the arguments, which the reader should 
check in detail, we note that the last statement is verified by a straightfor- 
ward computation. Whereas to see that the first statement is correct, we note 
that if w is the image of Z E  H 2  by a transformation of G, then 

Im z 

Icz + dI2 
Im w = > O  

so that the upper half-plane maps onto itself. If we compute dw, we find that 

dz 
(cz + d)' 

dw = ~- 

from which it follows that 

d w d w  d z &  
(Im w)2 - 

- 

so that ds2 is preserved-a shorthand way of seeing that the components of 
gi j  transform as they should for an isometry. [Of course, this mapping could 
be given in terms of real and imaginary parts, that is, the functions, u(x, y )  
and u(x, y) ,  such that w = u(x, y )  + iu(x, y )  could be computed and the 
mapping written without use of complex variables; but the computations 
become much more difficult.] In order to see that this group G contains all 
isometries, we recall first that it acts transitively on the upper half-plane and 
second that it is transitive on directions. Indeed, in the example cited it was 
shown that the orbit of i = is all of H 2 ,  which implies transitivity and 



6 M A N I F O L D S  O F  C O N S T A N T  C U R V A T U R E  407 

that the isotropy subgroup of i consists of elements of G corresponding to 
matrices in Sl(2,  R )  of the form 

cos 6 sin 0 ( -sin 6 cos 0 

This subgroup of G is transitive on directions at i; in fact it acts as SO(2) on 
the tangent space to H 2  at i. These facts together with Corollary 6.4 prove 

). 

the assertion. I 

We note that angles on HZ in terms of the given Riemannian metric are 
the same as angles on R2, moreover-as is well known-linear fractional 
transformations are analytic mappings on the complex plane and as such are 
conformal, that is, they preserve angles between curves. We will also use 
from complex function theory the fact that linear fractional transformations 
carry circles and straight lines of C into circles and straight lines (see 
Ahlfors [I]) .  Thus any circle which is orthogonal to the real axis will be 
carried by any element of G into a circle orthogonal to the real axis or a 
vertical straight line. We have left it as an exercise to prove that vertical 
straight lines are geodesics of N2. Then it follows rather easily that any circle 
orthogonal to the real axis is also a geodesic. In fact a little simple Euclidean 
geometry (Fig. VIII.10) shows that through a given zo E H 2  there is exactly 

X 

Figure V111.10 

one circle (or vertical line) tangent to each direction at zo and orthogonal to 
the real axis. Since isometries take geodesics to geodesics, this gives every 
geodesic through zo . One important consequence is that every geodesic can 
be extended to infinite length so that H 2  is seen to be a complete metric 
space. It is sufficient to check this for just one geodesic, namely, x = 0, y = t,  
0 < t < co. The length of this geodesic from t = a to t = b is dt / t  so it is 
unbounded in both directions, that is as a -+ 0 or h -+ co, which shows it is 
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indefinitely extendable. We also saw in Section VII.9 that H 2  is an example 
of a symmetric space, which means that it must be complete 
(Theorem VII.8.4). We have previously noted that H 2  is the space of non- 
Euclidean geometry and that it is easy to see from this description of 
geodesics that Euclid's postulate of parallels is not satisfied (although all the 
other postulates of Euclid are!). This is illustrated in Fig. VII.15. This behav- 
ior of geodesics should be contrasted with that on S2 and P2(R),  spaces of 
constant positive curvature on which every pair of geodesics intersect-twice 
on S2 and once P 2 ( R ) .  

We turn now to consideration of H", n > 2 as described in Example 6.2 
and use this information to verify that H" is complete. First we note that any 
translation of H" in a direction parallel to the plane x" = 0 is an isometry. 
The same holds for a rotation of the underlying R" which leaves x" fixed, in 
other words, a linear transformation of the variables xl, . . . , x"- with 
orthogonal matrix is an isometry. Thus any 2-plane determined by a point 
X E H "  and unit vector X, at x can be carried to the submanifold 
H 2  = { X E  H" 1 x1 = x"-' = 0} by an isometry of H". If we then verify 
that geodesics of H 2  are geodesics of H" (Exercise lo), it will follow from the 
above facts concerning H 2  and known properties of geodesics that every 
geodesic of H" can be extended to infinite length. This means that H" is 
complete; it also means that the geodesics of H" are exactly the semicircles 
whose center lies on the (n  - 1)-plane x" = 0 and whose plane is perpendic- 
ular to it. 

The geometry of H 2  is extremely useful in analytic function theory and 
the subgroups r of G which operate properly discontinuously on H 2  are 
extensively studied in automorphic function theory (see Lehner [l]  and 
Siege1 [ 13). In fact automorphic functions are precisely those complex analyt- 
ic functions on HL whose value is the same at each point of the orbit of some 
such r. Thus they define functions on H 2 / r ,  the space of orbits. This is 
analogous to doubly periodic functions on C which take the same value at 
each point of the orbit of a group r of the form r = { z  + z + mw, + nw2} 
for (independent) w , ,  w2 E C and thus define functions on C/T = T 2 .  The 
best known automorphic function is the one associated with the subgroup of 
G for which a, b, c, d are integers in each linear fractional transformation, 
that is, the image of Sl(2,Z) c Sl(2,  R )  under the homomorphism of 
Theorem 6.8. This group is known as the elliptic modular group. It acts 
discontinuously on H 2  but some elements have fixed points; however, it 
contains subgroups which act freely and thus determine a manifold H2/T of 
curvature K = - 1. Using analytic function theory or the geometry of H 2 ,  it 
is possible to show that there exist subgroups r of G acting freely and 
properly discontinuously so that H2/r is a compact manifold; in fact every 
surface of genus g > 1 can be obtained in this manner and hence every such 
surface has a Riemannian metric for which the Gaussian curvature is con- 
stant and equal to - 1. For n > 2, it is much more difficult to find subgroups 
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of the group of isometries of H" such that H"/T is a compact manifold; in 
fact this is an area of active research at present and has many interesting 
unsolved problems. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 
10. 

11. 

12. 

Exercises 

Prove Lemma 6.1 in detail, using the known facts about curvature 
forms and equations of structure. 
Let a be any positive real number and let M be the subspace of R" such 
that x" > 0. Then the Riemannian metric on M given by g i j ( x )  = 
(a2/(x")') hi, has constant curvature K = - l/u2. 
Show that if r is a finite subgroup of O(n + I), which has the property 
that no A E r except I ,  the identity, has + 1 as a characteristic value, 
then 
Show that a discontinuous group of isornetries of a Riemannian mani- 
fold is necessarily properly discontinuous. 
Show that the homomorphism n: K, + SO(3)  of Example 6.7 is indeed 
a homomorphism onto SO(3) with kernel f 1 as claimed. 
Let G be a connected Lie group and K a compact subgroup, and 
suppose that G acts on G / K  by left translation (in the usual way). Show 
that a subgroup r of G acts properly discontinuously on G / K  if and 
only if it is discrete. Show that if r has no elements of finite order, then 
it acts freely. Apply this to G, the group of motions of E" [with 
K = O(n)]. 
Does a rigid motion x -+ A x  + b, A E O ( 3 )  and b = (b', b2, b3),  of the 
space E3 identified with R3 have a fixed point? 
Show that the subgroup r of rigid motions of R 3  generated by transla- 
tions x + me, + ne2 + pe ,  , m, n, p E Z and e l ,  e ,  , e 3 ,  the standard 
basis, together with the motion x + Ax + *el ,  where A ( e , )  = e l ,  
A(e,)  = - e2  , and A(e , )  = - e 3 ,  acts freely and properly discontin- 
uously on R 3  and that R3/r is compact. 
Show that vertical lines x = constant on the space H2 are geodesics. 
Compute rfj for H" [using the natural coordinates (x', . . . , x")] and 
show that a geodesic of the submanifold H2 = {xEH" I 

Show that the group r of linear fractional transformations of the form 
w = (az + b)/(cz + d) ,  a, b, c, d ,  integers such that ad - bc = 1, acts 
properly discontinuously on H 2  but that it does not act freely. 
Let K be a real number and let p = 1 + (K/4) cy= (x i )2 .  Prove that if 
a Riemannian metric is given on a coordinate neighborhood U ,  cp of an 
n-dimensional manifold M ,  cp( U )  = B;(O), (for some E > 0) by 

acts freely and properly discontinuously on S". 

= ... = x " - 2  = 0}  is a geodesic of H". 

1 
g..(x) = ~ 8.. 
" P 2  " ' 

then on U this metric has constant sectional curvature K .  
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Notes 

The ideas touched upon in this chapter and the previous one span the entire history of 
differential geometry, from the early work of Gauss [ I ]  and Riemann [l] through that of 
Cartan [ I ]  right down to the present. Given the scope of the subject, its treatment here was 
necessarily both selective and brief. However. for readers who wish to go further into some of 
the topics we have touched upon in Chapters VII and VIII, there are many excellent books 
available, of which we shall mention several. For surface theory both Stoker [l] and ONeill [ 11 
are very helpful. Both of these books are geometric and intuitive in approach yet lead directly 
toward the current work in manifolds of arbitrary dimension, whereas many other books on 
“classical” differential geometry do not. For the reader who wishes to delve more deeply into 
the subject of spaces of constant curvature, the book by Wolf[l] is an excellent source, 
especially for the zero and positive curvature cases. It also contains a very complete bibliog- 
raphy. A good introduction to the sort of problems one will encounter in spaces of negative 
curvature may be found in such books as those by Lehner [l] and Siege1 [I], which deal 
exhaustively with the two dimensional case and its relations to Riemann surfaces and automor- 
phic function theory. For Riemannian Geometry in general, the encyclopedic two volume work 
of Kobayashi and Nomizu [ l ]  contains a wealth of information and a very complete bibliog- 
raphy. For questions concerning symmetric spaces, the reader is referred to Helgason [I], 
which also has an extensive bibliography. These, together with Milnor [ I ]  will give some idea of 
the current thrust of the theory and of its richness and diversity. 

Most of the current interest in Riemannian geometry is in what are known as global 
problems, which in very many cases are concerned with the relation of (often purely local) 
properties of the curvature of the Riemannian metric of the manifold to its global geometric 
structure, for example, to its topology, Euler characteristic, and so on. As an epilogue to this 
chapter we shall mention several famous results along these lines which we did not have the 
time or space to take up although they are easily accessible to the reader at this point. There are 
a number of results which draw conclusions about the manifold from the assumption that it has 
a Riemannian metric whose sectional curvatures are all of the same sign-but not necessarily 
constant. For example, if they are all greater than a positive constant E, then the manifold is 
compact. Since its universal Riemannian covering manifold necessarily has the same property, 
it must also be compact, from which we can conclude that the fundamental group of the original 
manifold is finite. On the other hand, it has been shown that if the sectional curvatures of a 
Riemannian manifold are all negative, then the universal covering manifold must be diffeomor- 
phic to R“, a fact which has strong implications for the deRham groups of the manifold. Many 
beautiful results o! this type may be found in Milnor’s book [I], which is highly recommended 
for further reading. It is not evident from the two examples cited, but it is a fact that the 
influence of the curvature on the structure of the geodesics is crucial to many such results. In 
addition t,o Milnor’s book, the reader will find many interesting results of this sort-and with 
less emphasis on topology-given by Bishop and Crittenden [I]. 

As a final example we mention the famous classical theorem of Gauss and Bonnet which 
gives the following relation between the Gaussian curvature K and Euler characteristic x of a 
compact orientable surface M: 

2nx = K d A  ( d A  = area element on M). 

This has many interesting consequences. For example, if M has a Riemannian metric such that 
K > 0 everywhere, then it is homeomorphic to S2, and if the metric is such that K < 0 every- 
where, then it must have genus g > I ,  that is, it must be homeomorphic toa  sphere with two or 
more handles attached. A proof of this theorem is given in both of the books on surface theory 

M 
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referred to above. The generalization of the theorcni to higher dimensions is not easy and 
requires some use of algebraic topology. In fact. this theorem resisted generalization for many 
decades and its extension to higher dimensional Riemannian manifolds by Allendoerfer-Weil 
and by Chern [3. 4]-especially Chern's method of proof-led to many new problems in differ- 
ential geometry and to the discovery of further important relations between the Riemannian 
geometry and the topology of manifolds. 
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INDEX 

A 

d,  alternating mapping, 202 
A*,  transpose conjugate of complex 

A', 'A ,  transpose of matrix, 84, 148, 182, 

Acceleration of moving particle, 300 
Action of group on manifold, 90-96, 122, 

matrix, 353 

353 

164 
effective, 90 
free, 94 
(properly) discontinuous, 96 
transitive, 92-93, 164-171 

Ad g, adjoint homomorphism, 242 
Adjoint representation of Lie group, 243 
Admissible neighborhood of covering, 101 
Almost continuous function, 227 
Alternating tensor, 201 
Antipodal map of P-', 280 
Approximation theorems, 195, 285-6 

Weierstrass, 195 

Arc length, 185-6 

Asymptotic direction on surface, 370 
Automorphisms 

as parameter, 297 

of Lie algebras, 242 
of Lie groups, 242 

equations, 130 
Autonomous system of differential 

B 

B'(M), exact forms, 271 
BXx) ,  B.(c), open ball of R", 2 
Basis 

canonical (natural), 2 
dual, 175 
of vector space, 1-3 
of covariant tensors .P( V), 198-9 
oriented, 213 
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Bilinear form, 181-5 
induced mapping of, 183 
skew symmetric, 182 
symmetric, positive definite, 182 

Binormal to space curve, 299 
Brouwer fixed point theorem, 278 
Bundle, see Tangent bundle 

C 

C*, multiplicative group of complex 

C', C" differentiability class, 21-22, 66 
C"-compatibility, 52 
C" function, 22, 66 
C" mapping, 66 
C"(u), C"(p), germs of C"-functions at  

u, p, etc., 32, 107 
C", real analytic functions, 24 
C'(U), Cm(U), C"(M)  differentiable 

functions on U or M, 22, 106 
C:(x), C,(x), open cube of R", 2 
c(A),  Jordan content of a set, 227 
Canonical basis of R", 2 
Center of a Lie algebra, 286, 384 
Chain rule, 23 

Change of variables in integration, 230 
Characteristic function of a set, 228 
x(M), Euler characteristic, 14, 410 
Closed differential form, 271 
Coframes, 177 
Complete integrability, 157 
Complete vector field, 140 
Components 

of a bilinear form, 182 
of a covector, 176 

Connected sum of manifolds, 255 
Connection, 313-315 

connection forms, 324, 386 
restriction of, 315 
Riemannian,3 14 

399-409 

numbers, 82 

for mappings, 27 

Constant curvature, manifold of, 382, 

Constant vector field, 319 
Content zero 

in R", 227 
on a manifold, 232 

Contractible space, 267 
Contracting mapping theorem, 43 
Coordinate coframes, 177 

Coordinate frames, 109 
Coordinate neighborhoods, 52-56 

open balls and cubes, 55 
Coordinates 

local, 10 
oriented, 215 

Coordinate function, 52 
Coset space, 94 

group action on, 164 
Covariant derivative, see Differentiation of 

vector fields 
Covariant tensor field, 199-203 

Covector. tangent, 175-176 

Covering 

induced mapping of, 200 

field, 176 

locally finite, 11, 191 
refinement of, I I ,  191 
regular, by spherical (cubical) 

neighborhoods, 192 
Covering manifolds, 100, 286-292 

Covering map, 101 
Covering transformation, 102 
Cube, on a manifold, 234 
Curvature 

isomorphism o f ,  289 

of plane curve, 301 
Riemannian, 321-325 

forms, 386 
sectional curvature, 380, 389 
symmetries of, 379 

of space curve, 298 
of surface, 18, 370 

differentiable (C'), 22 
Curve 

Cutting and pasting of manifolds, 11-14, 255 

D 

'?, connection on a manifold, 313 
T", restriction of a connection, 315 
Tx Y, covariant derivative, 310-312 
aH", aM, boundary of H", M, 249-250 
a(f '  , . . . , /")/a(x' , . . . , x"), Jacobian 

a/axr,  natural frames of R", 36 
b, interior of D ,  228 
9(u ) ,  L@(U), algebra of derivations, 33. 40. 

DF, DF(x), Jacobian matrix, 27 

matrix, 26 
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d, d w ,  exterior derivative, 218 
dpldr, tangent vector to curve p( t ) ,  125 
(Dldr) (dpldr) = 0 ,  equation of geodesic, 

DXIdt, D Y/dt, covariant derivative, 305 
dZ/dr, derivative of vector field, 296 
d(p, q )  metric on Riemannian manifold, 

ds2, metric tensor, 186 
dL differential of function, 178 
dx',  coordinate coframes, 180 
Deck transformation, 102 
Dependent functions, 50 
A, distribution, 158 
a{, Kronecker delta, 175 
de Rham group, 271 
de Rham's Theorem, 272 
Derivation(s) 

on C"(u), 39 
into R, 33 

exterior, 217-221 

of vector field, 31 1 
Diffeomorphism, 67 

on open sets of R", 41 
Differentiable functions 

in weak sense, 21 
on Euclidean space, 21-25 
on manifolds, 65-66 

Differentiable manifold, see Manifolds 
Differentiable mappings 

composition of, 28, 67 
on Euclidean space, 25-28 
on manifolds, 65-67 

326-327 

187 

Derivative 

properties of, 218 

Differentiable mapping, weak sense, 26, 67 
Differentiable submanifold, see 

Submanifold 
Differentiable structure, 53 
Differential equations, systems of, 131-137 

Differential forms, 207-212 
existence theorem, proof, 172 

closed, 224, 271 
exact, 224,271 
exterior, 21 1 

Differential of function, 177 
Differential of mapping, 108 
Differentiation of vector fields 

along curves in R", 294 
covariant differentiation, 305, 310-312 
Lie derivative, 152 
on submanifolds of R", 303-313 

Directional derivative as tangent vector, 

Discrete group, action of, 95-100 
Distribution, on a manifold, 158 

32 

involutive, 158, 222 
local basis of, 158 

Divergence theorem, 259 
Domain of integration 

in R", 227 
on a manifold, 232 

Double of manifold with boundary, 252 
Dual basis, 175 
Dual vector space, I75 
Dynamics of moving particle, 300 

E 

E, F, G coefficients of first fundamental 

E l ,  El., El,, coordinate frames, 30, 109, 

E n ,  Euclidean space, 4 
e l x ,  one-parameter group of matrices, 147 
e x ,  exponential of a matrix, 146 
Effective action of a group, 90 
Einstein manifold, 383 
Equivalence relation, open, 60 
Equations of structure, 387 
Euclidean space, 4-6 
Euclidean vector space, 2 
Euler characteristic, 14, 410 
Euler's formula for surfaces, 367 
Exact differential form, 271 
Exponential of matrix, 146 
Exponential mapping 

on Lie groups, 148 
on Riemannian manifolds, 333 

Exp X,, , exponential mapping, 333 
Exterior algebra, 209 

induced mapping of, 211 
Exterior differential form, 21 1 
Exterior differentiation, 217-221 

form, 239 

1 I7 

F 

FO),  tangent vector to curve, 125 
F* , F*, linear mappings induced by F, 

107, 119, 179, 182, 200 
F+ (dldr), tangent vector to curve, 111 
A fexpressed in local coordinates, 65 
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f: g, lift of a mapping, 286 
f* g, product of paths, 265 
F(k, n), k-frames in Y" 63 
Fixed point 

of group action, 92 
of mapping, 278 

Flags, space of, 171 
Forms 

bilinear, 181-185 
connection, 324, 386 
curvature, 386 
exterior differential, 207-212 

Flow, 126 
Frames 

coordinate, 11 7 
field of, 38 
orthonormal, 95, 325 
parallel, 295, 319 
space of, 93 

Free action of group, 94 
Frenet-Serret formulas, 297 
Frobenius' theorem, 159, 221-224 
Fundamental forms of a surface, 366 
Fundamental group, 266 

c 

GIH, homogeneous space, coset space, 94, 
164 

G(k, n), Grassmann manifold of k-planes 
in R", 63, 167, 358 

Gl(n, R), general linear group, 56 
g l j ,  coefficients of metric tensor, 186, 316 
r, discrete group, 95-96 
I'&, rljr,  Christoffel symbols, 309, 

Gauss-Bonnet theorem, 410 
Gaussian curvature, 18, 370 
Geodesics, 189, 308, 326331 

317-318 

as one-parameter subgroups, 351 
minimal, 342 

Geodesic sphere, 340 
Germs of Cm functions 

in R", 36 
on manifold, 114 

G-invariance, 123 
Grassman algebra, see Exterior algebra 
Grassman manifolds, 63, 167, 358 
Green's theorem, 258 
Groups, see Action of group on manifold; 

discrete groups; Lie groups 

H 

H ,  mean curvature of surface, 370 
H Z ,  half-plane as hyperbolic space, 166, 

H'(M), H*(M), de Rham groups, 271 
f i k ( M ) ,  invariant de Rham groups, 282 
H" 

357,405 

half space of R", 11,249 
hyperbolic space, 400 

Homogeneous space, 164-171 
Homomorphism, see Lie group 
Homotopy, 263-264 

of mapping, 263 
of paths and loops, 265-266 

relative, 264 
Homotopy operator, 274 
Hopf-Rinow theorem, 343 
Hyperbolic space, 166, 400 

1 

9, homotopy operator on A(1 x A), 274 
I.. inner automorphism, 242 
I@), 133 

iw ,  224 
Ideal, of an exterior algebra, 224 
Imbedding, of manifolds, 69-74 

1 6 ,  1 8 ,  130 

in Rn 
compact case, 194 
general case, 195 

Immersion of manifolds, 69-74 
Infinitesimal generator, see One-parameter 

Initial conditions for differential equations, 

Inner product, seealso Riemannian manifold 

Integrable functions, 228, 233 
Integrable n-form, 233 
Integral curve, 125 
Integral manifold of distribution, 158 

maximal, 162 
Integral of function on Riemannian 

Integral of n-form on manifold, 235-236 
on Rn, 236 

Integration on manifolds 
Lie groups, 241-247 
manifolds with boundary, 248-256 

group action 

130 

on vector space, 2, 182 

manifold, 237 
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Riemannian manifolds, 237 
surfaces, 238 

Int M, 250 
Invariance of domain (Brouwer), 10, 28 
Invariant forms on Lie groups, 243, 282 
Invariant metric on Lie group, 244, 349 
Invariant vector field, 119 

Inverse function theorem, 4146 
Irreducible representation, 247 
Isometric surfaces, 374 
Isometries, group of, 349 

G-invariant, 123 

of Euclidean space (rigid motions), 92 

of H ', 357-358,406 
of S", 402 

166, 404 

Isometry of Euclidean vector spaces, 2 
Isometry of Riemannian manifolds, 189, 

323 
local isometry, 398 

Isotropic Riemannian manifold, 382 
Isotropy subgroup, 94 
Iterated integral theorem, 229 

J 

Jacobi identity of Lie algebras, 150 
Jacobian of a mapping, 25-26 
Jordan content, 227 

K 

K ,  Gaussian curvature of surface, 371 
K, quaternions, 403 
k, interior of K, 191 
K ( n ) ,  sectional curvature, 380 
k,, k2, principal curvatures to surface, 366 
kA, characteristic function of A,  228 
k(s), curvature of space curve, 299 
@), curvature of plane curve, 301 
k-frame of R", 63 
Klein bottle, 13 

L 

Lo, R., L, , left and right translations on 

Lx on A(M),  224 
Lx Y, Lie derivative of vector field, 152 

Lie group, 84, 120 

I, m, n, coefficients of second fundamental 

A(M) ,  algebra of differential forms on M, 

&MI, invariant forms on M ,  282 
A( V),  exterior algebra of V, 209 
A'( V),  r-forms on V, 201 
Lattice, integral, 85, 99 
Leibniz rule, 33 
Length of curve, see Arc length 
Lie algebra, 150 

form, 365-366 

212 

homomorphism of, 154 
group of automorphisms of, 242 
of Lie group, 154 
of subgroup, 155 
of vector fields on manifold, 149-156 

Lie derivative, 152, 224 
Lie group, 81-89 

compact 
bi-invariant metric, 244 
bi-invariant volume, 244 
integration on, 241-247 

de Rham groups of, 282 
homomorphism of, 85 
left invariant metric, 244 
representation of, 243 
subgoup Of, 87-88, 142 

Lift of mapping, 286 
Line integral, 261 

independence of path, 268 
Linear fractional transformations, 406 
Linear mapping, dual of, 175 
Linear transformations, field of, 204 
Local one-parameter groiip action, 126 
Loops, product of, 265 

M 

.ICYII(R), n x n real matrices, 56, 59 

.ICY,,&?), rn x n real matrices, 56, 59 
a, covering manifold of M, 100, 286-292 
m(A), Lebesgue measure of set, 227 
Manifold with boundary, 11, 250 

Manifolds 
double of, 252 

abstract, 14 
differentiable, 52-59 
imbedding in R", 194-195 
orientable, 13, 213-217 
topological, 6-1 1 
two-dimensional, classification of, 14 
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Mappings 
of Class C', 26, 65 
differentiable (Cm) on manifolds, 65 
on R", 25 
smooth, 26, 66 

for mappings, 26 
Mean value theorem, 23 

Measure zero, set of, in R", 227 

Metric, Riemannian, 184 
Minimal surface, 372 
Mobius band, 13 
Monkey saddle, 372 
Motions, rigid 

on a manifold, 232 

(isometries) on hyperbolic plane, 406 
(isometries) on R", 92, 166, 404 

N 

N, unit normal to surface, 362 
Natural basis of T,,(R"), 2, 30 
Natural isomorphism, tangent spaces to 

Neighborhood, see also Coordinate 
R", 29 

neighborhoods 

Norm, of vector, 3 
Normal coordinates, 335 
Normal section of surface, 367 
Normal space to submanifold, 304 
Normal vector to curve, 299 
Normal vector to surface, 362 
OW, orthogonal group, 84 

admissible neighborhood, 101 

0 

a, volume element, 213-214 
a,,, curvature forms, 386 
UJ' , coframes, dual basis, 175 
w ' ,  w l ,  connection forms, 325, 387-388 
One-parameter group action 

basic theorem, I35 
examples of, 138-145 
global, 127, 135 
infinitesimal generator of, 122 
local, 126 

One parameter subgroups of Lie groups, 

Orbit of group action, 92 
145-149, 352 

of one-parameter group, 124, 127 

Orbit space of group action, 93 
Order of differentiation, interchange of, 

Ordinary differential equations, 130-137, 

Orientation of manifold, 214 

Oriented basis, 213 

24, 321 

172-1 73 

of vector space, 213 

P 

P"(R), real projective space, 15, 61 
Paracompact space, 1 I ,  191, 
Parallel curvature tensor, 397 
Parallel displacement of vector field, 319 
Parallelizable manifold, I18 
Parametrization 

of manifolds, 68 
of submanifold, 308 
of surface, 112 

differentiability and, 21-22 
independence of order, 24 

Partition of unity, 191-197 
applications of, 193-195 

Path, 265 

.rrl(M, b), fundamental group, 266 
Planar point, 367 
Poincare half-plane, 357-358, 405 
Positive curvature, spaces of, 402 
Principal curvatures, of surface, 366-368 
Principal directions, 368 
Projective space, real, 15, 61 
Proper mapping, 81 
Properly discontinuous action of a group, 

96, 104 

Partial derivatives, 21 

a)", 202 

Q 

Quaternions, 403 
Quotient space, 60 
Quotient topology, 60 

R 

R, real numbers, 1 
R, real numbers as additive group, 122 
R*, multiplicative group of real numbers, 

63, 82 
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R", n-tuples of real numbers, 1-3 
R(X, Y ) ,  R(X, Y) .Z, curvature operator, 

R(X, Y, Z,  W),  curvature tensor, 323 
R j k l ,  Rllrr,  coefficients of curvature tensor, 

Rank of differentiable maPping, 47, 69, 110 

Slice 
of coordinate neighborhood, 158 

323 of cubical neighborhood, 74 
Smooth structure, 53 
Sphere as manifold, 57, 80 

Stokes's theorem. 257 
323, 380 Starlike set, 23 

_ _  - 
Rank of linear transformation, 47 
Rank of matrix, 46 
Rank theorem, 4749 
Real analytic function, 24 
Regular covering, by spherical (cubical) 

neighborhoods, 192 
Regular domain, 251 
Relatively compact set, 231 
Representation, of Lie group, 246-247 

orthogonal, 246 
semisimple, 247 

of covector, 180 
Restriction of a differential form, 257 

Riemann integral, properties of, 228 
Riemannian geometry, fundamental 

theorem of, 314 
Riemannian manifold, 184-185 

as metric space, 187 
differentiation on, 313-319 
volume element of, 217 

Riemannian metric, existence of, 193 
Rigid motions, group of, 89, 92 

see olsu lsometries 

S 

9, symmetrizing mapping. 202 
S', Sz, S", circle, 2-sphere, n-sphere, 7, 57, 

SI(2, R), acting on H z ,  357 
SI(n, R), special linear group, 84 
SO(&, special orthogonal group, 349 
S(X,,), shape operator, 363-364 
Section 

80 

of tangent bundle. 337 
on coset space, 165 

Sectional curvature, 380-381 
geometric interpretation, 389 

Semisimple Lie group, 384 
sgn o, sign of a permuta~ion, 201 
Shape operator, 364 
u-compact space, 191 
up, involutive isometry, 347 
Simple connectedness, 265 

Subgroup 
discrete, 98 
isotropy, 94, 165 

closed, 88 
one-parameter, 142 

imbedded, 73 
immersed, 70 
open, 56 
regular, 77 

subgroup of Lie group, 87-88 

Submanifold, 73-17 

Submanifold property, 75 
Support of function, 192 
Surface in Euclidean space, 14 

geometry of, 362-370 
Symmetric Riemannian manifold, 347-352 

examples of, 353-359 
Symmetries of curvature tensor, 378-380 
System of differential equations, 130-137 

au~onomous, 130 
existence of solutions, 130, 172-173 
general case, 136 
with parameters, 136 

T 

J:( V),  Yr( V), J r ( M ) ,  198, 200, 206 
T2,  T", torus, 7, 57, 80, 82 

Tp(M), T,(R"), tangent space at point, 8, 

T, N, B, tangent, normal, b i n o ~ a l ,  299 
Tangent bundle, 16, 115-116, 331-332 

Tangent covectors, 175-181 
Tangent space 
as derivations into R, 35 
at point of M ,  106 
at point of R", 29, 32 
to surface, 1 13 

Tangent vector 
to curve, 11 1 
to manifold, 106115 
to K", 29-36 

T(M),  T(S2), T(R"), 16, 115-116,331-332 

29, 32, 106 

sphere bundle, 18 
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T ~ ,  translation along geodesic, 350 
~(s). torsion of space curve, 299 
Tensors, 197-204 

alternating mapping, 202 
alternating (skew symmetric), 201 
components of, 198 
exterior product of alternating, 207-213 
linear space of, 198 
multiplication of, 205-206 
symmetric, 200 
symmetrizing mapping, 201 

Tensor algebra, 206 
Tensor field, 199-200 

covariant derivative of, 391-396 
invariant, 243 
parallel, 396 

Theorema Egregium (Gauss), 18, 373 
Tietze-Urysohn extension theorem, 285 
O', O{ connection forms, 324 
O(t, p), O,(p), Op(t), action of R on M, 122 
Topological manifold, 6-10 
Toral group, 82 
Torsion, of space curve, 299 
Torus, 7. 57, 80, 92 
Transitive action of group, 92-93, 166 
Triangulable manifold, 240 

U 

Vector fields, 1 15-120 
along submanifold, 303 
complete, 140 
constant. 307 
F-related, 119, 120 
invariant, 119 
left invariant on Lie group, 141, 154 
Lie algebra of, 149 
on submanifold, 304 
restriction to submanifold, 121 
singular points of, 139 
on subsets of R", 37-39 

Velocity vector of moving particle, I I I ,  300 
Vol D, volume of D, domain of 

Volume element, 217 
Volume, Riemannian, 237 

integration, 229 

W 

Wedge product, 207-213 
Weierstrass approximation theorem, 195 
Whitney imbedding theorem, 195 

X 

U, IJI, coordinate neighborhood, 10, 52 
Umbilical point of surface, 367 
Universal covering space, 292 

X(U), X(M). C" vector fields on U or M, 

X:L directional derivative, 32 
[A'. Y ] ,  (Lie) bracket of vector fields, 150 
X. Y, Z ,  vector fields, 115-120 

40, 121.149 

V 

V*, dual space, 175 
V", vector space of n-tuples, 2 
Vector, 1-2 

norm of. 3 
tangent to manifold, 106 

Z 

Zk(M),  closed forms, 271 

a 5  

0 8  

8 6  
C ?  

E 9  
F O  
G 1  
H 2  
1 3  
J 4  
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