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Preface

Apart from its own intrinsic interest, a knowledge of differentiable
manifolds has become useful—even mandatory—in an ever-increasing
number of areas of mathematics and of its applications. This is not too
surprising, since differentiable manifolds are the underlying, if unacknow-
ledged, objects of study in much of advanced calculus and analysis. Indeed,
such topics as line and surface integrals, divergence and curl of vector
fields, and Stokes’s and Green’s theorems find their most natural setting in
manifold theory. But however natural the leap from calculus on domains of
Euclidean space to calculus on manifolds may be to those who have made
it, it is not at all easy for most students. It usually involves many weeks
of concentrated work with very general concepts (whose importance is not
clear until later) during which the relation to the already familiar ideas in
calculus and linear algebra become lost—not irretrievably, but for all too
long. Simple but nontrivial examples that illustrate the necessity for the
high level of abstraction are not easy to present at this stage, and a
realization of the power and utility of the methods must often be postponed
for a dismayingly long time.

This book was planned and written as a text for a two-semester course
designed, it is hoped, to overcome, or at least to minimize, some of these
difficulties. It has, in fact, been used successfully several times in preliminary
form as class notes for a two-semester course intended to lead the student
from a reasonable mastery of advanced (multivariable) calculus and a
rudimentary knowledge of general topology and linear algebra to a solid
fundamental knowledge of differentiable manifolds, including some facility
in working with the basic tools of manifold theory: tensors, differential
forms, Lie and covariant derivatives, multiple integrals, and so on. Although
in overall content this book necessarily overlaps the several available
excellent books on manifold theory, there are differences in presentation and
emphasis which, it is hoped, will make it particularly suitable as an introduc-
tory text.

xi



xii PREFACE

To begin with, it is more elementary and less encyclopedic than
most books on this subject. Special care has been taken to review, and
then to develop, the connections with advanced calculus. In particular, all
of Chapter II is devoted to functions and mappings on open subsets of
Euclidean space, including a careful exposition and proof of the inverse
function theorem. Efforts are made throughout to introduce new ideas
gradually and with as much attention to intuition as possible. This has led
to a longer but more readable presentation of inherently difficult material.
When manifolds are first defined, an effort is made to have as many non-
trivial examples as possible; for this reason, Lie groups, especially matrix
groups, and certain quotient manifolds are introduced early and used
throughout as examples. A fairly large number of problems (almost 400)
is included to develop intuition and computational skills.

Further, it may be said that there has been a conscious effort to avoid
or at least to economize generality insofar as that is possible. Concepts are
often introduced in a rather ad hoc way with only the generality needed
and, if possible, only when they are actually needed for some specific purpose.
This is particularly noticeable in the treatment of tensors—which is far from
general—and in the brief introduction to vector bundles (more specifically
to the tangent bundle). Thus it is not claimed that this is a compre-
hensive book ; the student will emerge with gaps in his knowledge of various
subjects treated (for example, Lie groups or Riemannian geometry). On the
other hand it is hoped that he will acquire strong motivation, computa-
tional skills, and a feeling for the subject that will make it easy for him to
proceed to more advanced work in any of a number of areas using manifold
theory: differential topology, Lie groups, symmetric and homogeneous
spaces, harmonic analysis, dynamical systems, Morse theory, Riemann
surfaces, and so on.

Finally, it should be said that the author has tried to include at every
stage results that illustrate the power of these ideas. Chapter VI is especially
noteworthy in this respect in that it includes complete proofs of Brouwer’s
fixed point theorem and of the nonexistence of nowhere-vanishing continuous
vector fields on even-dimensional spheres. In a similar vein, the existence
of a bi-invariant measure on compact Lie groups is demonstrated and
applied to prove the complete reducibility of their linear representations.
Then, in a later chapter, compact groups are used as simple examples of
symmetric spaces, and their corresponding geometry is used to prove that
every element lies on a one-parameter subgroup. In the last two chapters,
which deal with Riemannian geometry of abstract n-dimensional manifolds,
the relation to the more easily visualized geometry of curves and surfaces
in Euclidean space is carefully spelled out and is used to develop the general
ideas for which such applications as the Hopf-Rinow theorem are given.
Thus, by a selection of accessible but important applications, some truly
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nontrivial, unexpected (to the student) results are obtained from the abstract
machinery so patiently constructed.

Briefly, the organization of the book is as follows. Chapter I is a very
intuitive introduction and fixes some of the conventions and notation that
are used. Chapter II is largely advanced calculus and may very well be
omitted or skimmed by better prepared readers. In Chapter III, the basic
concept of differentiable manifold is introduced along with mappings of
manifolds and their properties; a fairly extensive discussion of examples is
included. Chapter IV is particularly concerned with vectors and vector
fields and with a careful exposition of the existence theorem for solutions
of systems of ordinary differential equations and the related one-parameter
group action. In Chapter V covariant tensors and differential forms are
treated in some detail and then used to develop a theory of integration
on manifolds in Chapter VI. Numerous applications are given. It would
be possible to use Chapters I1I-VI as the basis of a one-semester course
for students who wish to learn the fundamentals of differentiable manifolds
without any Riemannian geometry. On the other hand, for students who
already have some experience with manifolds, Chapters VII and VIII could
serve as a brief introduction to Riemannian geometry. In these last two
chapters, beginning from curves and surfaces in Euclidean space, the concept
of Riemannian connection and covariant differentiation is carefully
developed and used to give a fairly extensive discussion of geodesics—
including the Hopf-Rinow theorem—and a shorter treatment of curvature.
The natural (bi-invariant) geometry on compact Lie groups and Riemannian
manifolds of constant curvature are both discussed in some detail as examples
of the general theory. This discussion is based on a fairly complete treatment
of covering spaces, discontinuous group action, and the fundamental
group given earlier in the book.

This book, as do many of the books in this subject, owes much to the
influence of S. S. Chern. For many years his University of Chicago notes—
—stillan important reference (Chern [ 1])—were virtually the only systematic
account of most of the topics in this text. Even more importantly his
courses, lectures, published works, and above all his personal encourage-
ment have had an impressive influence on a whole generation of differential
geometers, among whom this author had the good fortune to be included.
Another source of inspiration to the author was the work of John Milnor.
The manner in which he has made exciting fundamental research in
differential topology and geometry available to specialist and nonspecialist
alike through many careful expository works (written in a style that this
author particularly admires) certainly deserves gratitude. No better material
for further or supplemental reading to this text could be suggested than
Milnor’s two books [1] and [2].

For part of the time during which this book was being written, the
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author benefitted from a visiting professorship at the University of
Strasbourg, France, and he is particularly grateful for the opportunity to
work there, in an atmosphere so conducive to advancing in the task he
had undertaken.

The author would also like to acknowledge with gratitude the help given
to him by his son, Thomas Boothby, by students and colleagues at
Washington University, especially Humberto Alagia and Eduardo Cattani,
and by Mrs, Virginia Hundley for her careful work preparing the manuscript.
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I INTRODUCTION TO MANIFOLDS

In this chapter, we establish some preliminary notations and give an intuitive, geometric
discussion of a number of examples of manifolds—the primary objects of study throughout the
book. Most of these examples are surfaces in Euclidean space; for these—together with curves
on the plane and in space—were the original objects of study in classical differential geometry
and are the source of much of the current theory.

The first two sections deal primarily with notational matters and the relation between
Euclidean space, its model R", and real vector spaces. In Section 3 a precise definition of
topological manifolds is given, and in the remaining sections this concept is illustrated.

1 Preliminary Comments on R”

Let R denote the real numbers and R" their n-fold Cartesian product

Rx---xk,

the set of all ordered n-tuples (x',..., x") of real numbers. Individual n-
tuples may be denoted at times by a single letter. Thus x = (x!,..., x"),
a=(a',...,a"), and so on. We agree once and for all to use on R" its

topology as a metric space with the metric defined by

dlx, y) = ( 2 (x' = y‘)z) "

i=1

1
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The neighborhoods are then open balls BY(x), or B,(x) or, equivalently, open
cubes C?(x), or C,(x) defined for any ¢ > 0 as

B.(x) ={yeR"| d(x,y) < &},
and
Cx)={yeR"| | X —y| <gi=1,..,n}

a cube of side 2¢ and center x. Note that R' = R and we define R® to be a
single point.

We shall invariably consider R" with the topology defined by the metric.
This space R" is used in several senses, however, and we must usually decide
from the context which one is intended. Sometimes R" means merely R" as
topological space, sometimes R” denotes an n-dimensional vector space, and
sometimes it is identified with Euclidean space. We will comment on this last
identification in Section 2 and examine here the other meanings of R".

We assume that the definition and basic theorems of vector spaces over
R are known to the reader. Among these is the theorem which states that any
two vector spaces over R which have the same dimension n are isomorphic.
It is important to note that this isomorphism depends on choices of bases in
the two spaces; there is in general no natural or canonical isomorphism
independent of these choices. However, there does exist one important
example of an n-dimensional vector space over R which has a distinguished
or canonical basis—a basis which is somehow given by the nature of the
space itself. We refer to the vector space of n-tuples of real numbers with
componentwise addition and scalar multiplication. This is, as a set at least,
just R"; should we wish on occasion to avoid confusion, then we will denote
it by ¥ (and use boldface for its elements (x instead of x, and so forth). For
this space the n-tuples ¢, = (1,0, ...,0),...,e,= (0,0, ..., 0, 1) are a basis,
known as the natural or canonical basis. We may at times suppose that the
n-tuples are written as rows, that is, 1 x n matrices, and at other times as
columns, that is, n x 1 matrices. This only becomes important should we
wish to use matrix notation to simplify things a bit, for example, to describe
linear mappings, equations, and so on.

Thus R" may denote a vector space of dimension n over R. We sometimes
mean even more by R". An abstract n-dimensional vector space over R is
called Euclidean if it has defined on it a positive definite inner product. In
general there is no natural way to choose such an inner product, but in the
case of R” or V", again we have the natural inner product

x,y) = ny

It is characterized by the fact that relative to this inner product the natural
basis is orthonormal, (e;, €;) = J,;.
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Thus at times R" is a Euclidean vector space, but one which has a built-in
orthonormal basis and inner product. An abstract vector space, even if
Euclidean, does not have any such preferred basis. The metric in R" dis-
cussed at the beginning can be defined using the inner product on R". We
define | x||, the norm of the vector x, by |x|| = ((x, x))"/%. Then we have

d(x, y) = |x —y|.

This notation is frequently useful even when we are dealing with R" as a
metric space and not using its vector space structure. Note, in particular,
that || x|| = d(x, 0), the distance from the point x to the origin. In this equal-
ity x is a vector on the left-hand side, and x is the corresponding point on
the right-hand side; an illustration of the way various interpretations of R"
can be mixed together.

Exercises

1. Show thatif A isanm x nmatrix, then the mapping from #" to V™ (with
elements written as n x 1 and m x 1 matrices), which is defined by
y = AXx, is continuous. Identify the images of the canonical basis of V" as
linear combinations of the canonical basis of V™.

2. Find conditions for the mapping of Exercise 1 to be onto; to be
one-to-one.

3. Show that if W is an n-dimensional Euclidean vector space, then there
exists an isometry, that is, an isomorphism preserving the inner product,
of W onto R" interpreted as Euclidean vector space.

4. Show that C7, the space of n-tuples of complex numbers, may be placed
in one-to-one correspondence with R?". Can this correspondence be a
vector space isomorphism?

5. Exhibit an isomorphism between the vector space of m x n matrices
over R and the vector space R™. Show that the map X — AX, where A
is a fixed m x m matrix and X is an arbitrary m x n matrix (over R), is
continuous in the topology derived from R™.

6. Show that |x|| has the following properties:

@ Ix+yl<|x|+ [yl
®) x| =yl <Ix—y
(©) Jox| = |a]|x. x€ Rsand

(d) explain how (a) is related to the triangle inequality of d(x, y).

s

7. Show that an isometry of a Euclidean vector space onto itself has an
orthogonal matrix relative to any orthonormal basis.

8. Prove that every Euclidean vector space ¥ has an orthonormal basis.
Construct your proof in such a way that if W is a given subspace of V,
dim W = r, then the first r vectors of the basis of ¥ are a basis of W.
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2 R" and Euclidean Space

Another role which R" plays is that of a model for n-dimensional
Euclidean space E, in the sense of Euclidean geometry. In fact many texts
simply refer to R" with the metric d(x,y) as Euclidean space. This
identification is misleading in the same sense that it would be misleading to
identify all n-dimensional vector spaces with R"; moreover unless clearly
understood, it is an identification that can hamper clarification of the con-
cept of manifold and the role of coordinates. Certainly Euclid and the
geometers before the seventeenth century did not think of the Euclidean
plane or three-dimensional space—which we denote by E? and E*>—as pairs
or triples of real numbers. In fact they were defined axiomatically beginning
with undefined objects such as points and lines together with a list of their
properties—the axioms—from which the theorems of geometry were then
deduced. This is the path which we all follow in learning the basic ideas of
Euclidean plane and solid geometry, about which most of us know quite a
bit before studying analytic or coordinate geometry at all. The identification
of R" and E" came about after the invention of analytic geometry by Fermat
and Descartes and was eagerly seized upon since it is very tricky and
difficult to give a suitable definition of Euclidean space, of any dimension, in
the spirit of Euclid, that is, by giving axioms for (abstract) Euclidean space
as one does for abstract vector spaces. This difficulty was certainly
recognized for a very long time, and has interested many great mathemati-
cians. It led in part to the discovery of non-Euclidean geometries and thus to
manifolds. A careful axiomatic definition of Euclidean space is given by
Hilbert [1]. Since our use of Euclidean geometry is mainly to aid our
intuition, we shall be content with assuming that the reader “knows” this
geometry from high school.

Consider the Euclidean plane E? as studied in high school geometry;
definitions are made, theorems proved, and so on, without coordinates. One
later introduces coordinates using the notions of length and perpendicular-
ity in choosing two mutually perpendicular “ number axes” which are used
to define a one-to-one mapping of E? onto R? by p — (x(p). y(p)). the coor-
dinates of p € E*. This mapping is (by design) an isometry, preserving dis-
tances of points of E2 and their images in R?. Finally one obtains further
correspondences of essential geometric elements, for example, lines of E?
with subsets of R? consisting of the solutions of linear equations. Thus we
carry each geometric object to a corresponding one in R2. It is the existence
of such coordinate mappings which make the identification of E* and R?
possible. But caution! An arbitrary choice of coordinates is involved, there is
no natural, geometrically determined way to identify the two spaces. Thus, at
best, we can say that R? may be identified with E2 plus a coordinate system.
Even then we need to define in R? the notions of line, angle of lines, and
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other attributes of the Euclidean plane before thinking of it as Euclidean
space. Thus, with qualifications, we may identify E? and R? or E" and R",
especially remembering that they carry a choice of rectangular coordinates.

We conclude with a brief indication of why we might not always wish to
make the identification, that is, to use the analytic geometry approach to the
study of a geometry. Whenever E™ and R" are identified it involves the choice
of a coordinate system, as we have seen. It then becomes difficult at times to
distinguish underlying geometric properties from those which depend on the
choice of coordinates. An example: Having identified E2 and R? and lines
with the graphs of linear equations, for instance,

L ={(xy)|y = mx + b},

we define the slope m and the y-intercept b. Neither has geometric meaning;
they depend on the choice of coordinates. However, given two such lines of
slope m,, m,, the expression (my — m,)/(1 + m; m,) does have geometric
meaning. This can be demonstrated by directly checking independence of
the choice of coordinates—a tedious process—or determining that its value
is the tangent of the angle between the lines, a concept which is independent
of coordinates! It should be clear that it can be difficult to do geometry, even
in the simplest case of Euclidean geometry, working with coordinates alone,
that is, with the model R". We need to develop both the coordinate method
and the coordinate-free method of approach. Thus we shall often seek ways
of looking at manifolds and their geometry which do not involve coordin-
ates, but will use coordinates as a useful computational device (and more)
when necessary.

However, being aware now of what is involved, we shall usually refer to
R" as Euclidean space and make the identification. This is especially true
when we are interested only in questions involving topology—as in the next
section—or differentiability.

Exercises

1. Using standard equations for change of Cartesian coordinates, verify
that (m, — m,)/(1 + m; m,) is independent of the choice of coordinates.

2. Similarly, show that ((x, — x;)? + (y; — y;)?)"/? is a function of points
P, (x,,y,) and P,(x,,y;) which does not depend on the choice of
coordinates. .

3. How do we describe the subset of R" which corresponds to a segment pg
in E™? to a line? to a 2-plane not through the origin?

If we wish 10 prove the theorems of Euclidean geometry by analytical geometry methods,
we need to define the notion of congruence. We say that two figures are congruent if there is a
rigid motion of the space, thal is, an isometry or distance-preserving transformation, which
carries one figure to the other.
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4. Identifying E* with R?, describe analytically the rigid motions of R?.
Show that they form a group.

5. Using Exercise 4 prove that two triangles are congruent if and only if
corresponding sides are of equal length.

3 Topological Manifolds

Of all the spaces which one studies in topology the Euclidean spaces and
their subspaces are the most important. As we have just seen, the metric
spaces R" serve as a topological model for Euclidean space E", for finite-
dimensional vector spaces over R or C, and for other basic mathematical
systems which we shall encounter later. It is natural enough that we are led
to study those spaces which are locally like R", more precisely those spaces
for which each point p has a neighborhood U which is homeomorphic to an
open subset U’ of R", n fixed. We say that a space with this property is locally
Euclidean of dimension n, and in order to stay as close as possible to
Euclidean spaces, we will consider spaces called manifolds, defined as
follows.

(3.1) Definition A manifold M of dimension n, or n-manifold, is a topologi-
cal space with the following properties:

(i) M is Hausdorff,
(i) M is locally Euclidean of dimension n, and
(i) M has a countable basis of open sets.

As a matter of notation dim M is used for the dimension of M; when
dim M = 0, then M is a countable space with the discrete topology. It
follows from the homeomorphism of U and U’ that locally Euclidean is
equivalent to the requirement that each point p have a neighborhood U
homeomorphic to an n-ball in R". Thus a manifold of dimension 1 is locally
homeomorphic to an open interval, a manifold of dimension 2 is locally
homeomorphic to an open disk, and so on. Our first examples will remove
any lingering suspicion that an n-manifold is necessarily globally equivalent,
that is, homeomorphic, to E".

(3.2) Example Let M be an open subset of R" with the subspace topo-
logy; then M is an n-manifold.

Indeed properties (i) and (iii) of Definition 3.1 are hereditary, holding for
any subspace of a space which possesses them; and we see that (ii) holds with
U = U’ = M and with the homeomorphism of U to U’ being the identity
map. A bit of imagination, assisted perhaps by Fig. 1.1, will show that even
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A\ p=

(a0} (b)

Figure 1.1

{a) The manifold is the open set M of R? between the curves C and C'. (b) The manifold is
the open subset of R? obtained by removing the knots.

when n = 2 or 3 these examples can be rather complicated and certainly not
equivalent to Euclidean space in general, although they may be in special
cases: a trivial such case is M = E".

(3.3) Example The simplest examples of manifolds not homeomorphic to
open subsets of Euclidean space are the circle S' and the 2-sphere §2, which
may be defined to be all points of E?, or of E*, respectively, which are at unit
distance from a fixed point 0.

These arc to be taken with the subspace topology so that (i) and (iii) are
immediate. To see that they are locally Euclidean we introduce coordinate
axes with 0 as origin in the corresponding ambient Euclidean space. Thus in
the case of S? we identify R* and E3, and S? becomes the unit sphere
centered at the origin. At each point p of §? we have a tangent plane and a
unit normal vector N,. There will be a coordinate axis which is not perpen-
dicular to N, and some neighborhood U of p on S? will then project in a
continuous and one-to-one fashion onto an open set U’ of the coordinate
plane perpendicular to that axis. In Fig. 1.2a, N, is not perpendicular to the
x,-axis so for ge U, the projection is given quite explicitly by ¢(q) =
(x'(4). 0, x*(q)), where (x'(q), x*(q), x*(q)) are the coordinates of q in E>.
Similar considerations show that S' is locally Euclidean. Note that S? and
R? cannot be homeomorphic since one is compact while the other is not.

(34) Example Our final example is that of the surface of revolution ob-
tained by revolving a circle around an axis which does not intersect it. The
figure we obtain is the torus or “inner tube” (denoted T?2) as shown in
Fig. 1.2b. This figure can be studied analytically; it is easy to write down an
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(a) (b)
Figure 1.2
(a) The spherical surface $2 as a manifold. (b) The torus as a manifold.

equation whose locus it is if we introduce coordinates in E* as shown in the
figure. In order to convince ourselves that it is indeed locally Euclidean we
consider once more the normal vector N, at pe T2. There will be at least one
coordinate axis to which it is not perpendicular, say x*. Then some neigh-
borhood U of p projects homeomorphically onto a neighborhood U’ in the
x!x2-plane as illustrated. Since we use the relative topology derived from E>,
the space T2 is necessarily Hausdorff and has a countable basis of open sets.
Thus conditions (i)-(iii) of Definition 3.1 are satisfied.

(3.5) Remark It should be clear from the last two examples that certain
subspaces M of E® are easily seen to be 2-manifolds; they are surfaces which
are “smooth,” that is, without corners or edges, so that they have at each
peM a (unit) normal vector N, and tangent plane T,(M)—to introduce
notation we use later—which varies continuously as we move from point to
point. (By this last requirement we mean that the components of the unit
normal vector depend continuously on the point p.) This smoothness allows
us to prove the locally Euclidean property by projection of a neighborhood
of p onto a plane as in Examples 3.3 and 3.4. The other properties are
immediate since we use the subspace topology. Figure 1.3 shows some fur-
ther examples of manifolds which can be obtained in this way. Obviously
this method will not always work: The surface of a cube is a 2-manifold, in
fact it is homeomorphic to §%; but it has no tangent plane or normal vector
at the corners and edges.

Example 3.2 gives an inkling at least, of how nasty a space can be and
still be a manifold, even when it is connected—which we do not suppose in
general. The following theorem will offer some reassurance.
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Figure L3

(3.6) Theorem A ropological manifold M is locally connected, locally
compact, and a union of a countable collection of compact subsets; furthermore,
it is normal and metrizable.

Proof These are all immediate consequences of the definition and stan-
dard theorems of general topology. Let p be a point of M and U a neighbor-
hood of p homeomorphic to an open ball B,(x) of radius € in R". We denote
this homeomorphism by ¢, and we suppose ¢(p) = x. Then it is clear that
interior to any neighborhood V of p there is a neighborhood W whose
closure W is in U and for which ¢(W) = B,(x) with ¢ > § > 0. It follows
that M is locally connected at p since B;(x) and hence W, to which it is
homeomorphic by ¢!, is connected. Similarly W is compact since B,(x) is
compact; thus M is locally compact. Because M has a countable base of
open sets, we may now suppose that it has a countable base of relatively
compact open sets {V}; obviously M = [ JV,. Normality follows from
Lindeldf’s theorem and metrizability is then a consequence of the Urysohn
metrization theorem (see Kelley [1]).

There is one difficulty in our concept of manifold about which we can do
nothing at present. In fact it concerns Euclidean spaces and their topology
and arises even before consideration of manifolds: it is the question of
dimension. Could it be that E” and E™ are homeomorphic, or locally
homeomorphic—so that an open set U of E™ is homeomorphic to some open
set U’ of E™ with m # n? The answer is no, but the proof is difficult and
requires algebraic topology. It was proved in 1911 by L. E. J. Brouwer and is
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known as Brouwer’s theorem on invariance of domain. For a proof see
Hurewicz and Wallman [1]. Later we shall be able to give a differentiable
version of this theorem which will be sufficient for our needs; in this chapter
we assume the theorem.

We make one final remark which connects this section with the preced-
ing one. The notion of coordinates plays an important role in manifold
theory, just as it does in the study of the geometry of E™. In E", however, it is
possible to find a single system of coordinates for the entire space, that is, to
establish a correspondence between all of E” and R". Built into the definition
of n-manifold M is a correspondence of a neighborhood U of each pe M and
an open subset U’ of R". Letting ¢ : U — U’ be this correspondence, we call
the pair U, ¢ a coordinate neighborhood and the numbers x'(q), ..., x*(q),
given by ¢(q) = (x'(g), ..., x"(q)), the coordinates of ge M. We have
assumed that this ¢ is a homeomorphism: it is one-to-one and ¢ and ¢!
are continuous. Thus each g e U has n uniquely determined coordinates, real
numbers, which vary continuously with g. Of course the function g — x'(g),
which gives the ith coordinate, 1 < i < n, is continuous; it is called the ith
coordinate function. There is obviously nothing unique about our choice of
coordinates; in Examples 3.3 and 3.4, we could equally well project the
neighborhood of p discussed there to other coordinate planes. Finally note
that even in the case of Euclidean space it is often useful to use local coordin-
ates; the domain of a polar coordinate system on E?, for example, must omit
a ray if it is to be one-to-one.

Exercises

1. Consider the following subset of R? : X = A, U A_ U B with
A, ={(xy)|x=0y=+1},
A- ={(xy)|x20y=—1}
B={(x,y)|x<0,y=0}

©.1) 2

{0,-1)

Define a topology as follows: We use the subspace topology (open
intervals as a basis) on A, —{(0, 1)}, A_ — {(0, —1)} and B; then for
e>0welet Nf ={(x, +1)|0 < x <& U {(x,0)| —& < x < 0} and use
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N} and N[ as a basis of neighborhoods of (0, 1) and (0, — 1), respec-

3

tively. Show that the space X is locally Euclidean but is not a manifold.

A HausdorfT space M is said to be paracompact il every covering {U,} of M by open sets has
a locally finite refinement; more precisely, there is a covering {3} which (i) refines {U,} in the
sense that each V, c U, for some a, and which (ii) is locally finite, that is, each pe M has a
neighborhood W which intersects only a finite number of sets V.

2. Show that a manifold is paracompact. Show that a locally Euclidean,
paracompact, Hausdorff space need not have a countable basis.

3. Show that a connected manifold M is pathwise connected, that is,
p.q€ M implies that there exists a continuous curve f(s), 0 < s < 1,
with f(0) = p, f(1) = q.

4. Show that the (connected) components of a manifold M are open sets
and are countable in number.

4 Further Examples of Manifolds. Cutting and Pasting

A hemispherical cap (including the equator) or a right circular cylinder
(including the circles at the ends) are typical examples of manifolds with
boundary. Except for the equator, or the end-circles, they are 2-manifolds
and these boundary sets are themselves manifolds of dimension one less. In
fact, they are homeomorphic to S! or to S' U S! in these two cases. An even
simpler example is the upper half-plane H2, or more generally H", where we
shall mean by H" the subspace of R" defined by

H" = {(x',...,x")e R"|x" > O}.

Every point pe H" has a neighborhood U which is homeomorphic to an
open subset U’ of R" except the set of points (x', ..., x"~ !, 0), which ob-
viously forms a subspace homeomorphic to R"™ !, called the boundary of H"
and denoted by dH".

We shall define a manifold with boundary to be a Hausdorff space M with
a countable basis of open sets which has the property that each pe M is
contained in an open set U with a homeomorphism ¢ to either (a) an open
set U’ of H" — @H" or (b) to an open set U’ of H" with ¢(p)e dH", that is, a
boundary point of H". It can be shown (as a consequence of invariance of
domain) that pe M is in one class or the other but not both; those p of the
first type are called interior points of M and those p mapped onto the
boundary of H" by one, and hence by all, homeomorphisms of their neigh-
borhoods into H" are called boundary points. The collection of boundary
points is then denoted by éM and is called the boundary of M. It is a
manifold of dimension n — 1. We make no attempt to prove these facts here,
but they will be discussed briefly in Chapter VI.



12 | INTRODUCTION TO MANIFOLDS

Figure 1.4

Some examples of pasting.

Our interest is in pointing out that new surfaces, that is, 2-manifolds, can
be formed by fastening together manifolds with boundary along their boun-
daries, that is, by identifying points of various boundary components by a
homeomorphism, assuming of course the necessary condition that such
components are homeomorphic. The simplest examples are S2, which is
obtained by pasting two disks (or hemispheres) together so as to form the
equator, and T2, formed by pasting the two end-circles of a cylinder
together. However, one can go much further and paste any number of cylin-
ders onto a sphere S? with “holes,” that is, with circular disks removed. This
gives various pretzellike surfaces as illustrated in Fig. 1.4. We leave as an
exercise the proof that these are manifolds. Thus to generate new 2-
manifolds from old ones we may (1) cut out two disks, leaving a manifold M
whose boundary dM is the disjoint union of two circles, and (2) paste on a
cylinder or *handle” so that each end-circle is identified with one of the
boundary circles of M.

The pasting on of handles is not the only way in which we can generate
examples of 2-manifolds. It is also possible to do so by identifying or pasting
together the edges of certain polygons. For example, the sides of a square
may be identified in various ways in order to obtain surfaces. Figure 1.5
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illustrates this: we obtain a cylinder, Mobius band, torus, and Klein bottle.
The latter cannot be pictured as a surface in E* unless we allow it to cut itself
as shown. Thus as a subspace of E? it is not a manifold: it is possible to
identify the sides of the square, as shown, and obtain a manifold—but it is
not possible to put it inside E>.

For connected 2-manifolds M which lie smoothly inside E* so that there
is a tangent plane and normal line L, at each point p, we may ask whether it
is possible to choose a unit normal vector N, (on L,) for every pe M which
varies continuously with M. It is easy to see that this is possible for 2 and
T? but not for the Mébius band (which is actually a manifold with boun-
dary) or the Klein bottle. We say that a manifold or manifold with boundary
is orientable if such a choice of N, is possible. The following is a fundamental
theorem of 2-manifolds.

Cylinder Twisted {mobius)

band
{a) (b)
Klein battle

(c) (d)
Figure 1.5

Four ways (o identify sides of a rectangle: (a) cylinder; (b) twisted (M&bius) band; (c) torus; (d)
Klein bottle.
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(4.1) Theorem Every compact, connected, orientable 2-manifold is homeo-
morphic to a sphere with handles added. Two such manifolds with the same
number of handles are homeomorphic and conversely, so that the number of
handles is the only topological invariant.

This is a very satisfying theorem in that it shows that 2-manifolds of a
certain large class can be enumerated and completely described to within
homeomorphism (for a proof see Massey [1]). This can actually be carried
further. Nonorientable as well as noncompact 2-manifolds can be described
equally completely—although the noncompact case is more involved as
might be expected. One can show also that every connected, one-
dimensional manifold is homeomorphic to S' or to R depending on whether
it is compact or not. However, beginning with n = 3 everything is far more
complicated and no such classification is known, even in the compact case.

Curves and surfaces, that is, one- and two-dimensional manifolds in E>,
formed the objects of study in classical differential geometry. We shall
frequently refer to them as sources of examples and new ideas.

Exercises

1. Assuming invariance of domain, show that H" is a manifold of dimen-
sion n — 1 and that no neighborhood in H" of a point of dH" can be
homeomorphic to an open subset of R™.

2. Prove that adding a handle to a 2-manifold in the fashion described
above for §2 and T? actually does give a 2-manifold.

3. Prove in detail that it is possible to obtain a 2-manifold by identifying
sides of the square as shown in Fig. 1.5d (Klein bottle).

4. Prove that identification of points at opposite ends of diameters on the
boundary of the circular disk D? defines a 2-manifold.

According to a theorem of topology, if a compact orientable 2-manifold is obtained by
pasting together triangles along their edges, then the number y = f — ¢ + v (faces — edges +
vertices) is the same for two surfaces M, and M, which are homeomorphic: y is independent of
the way the surface is cut up into triangles. (¢ is called the Euler characteristic of the surface.)

5. Let My = S? and M, be the surface obtained from M, by adding g
handles. Compute the relation between g and y (g is called the genus of
M,.)

5 Abstract Manifolds. Some Examples

The manifolds of dimensions 1 and 2 considered above are pictured as
subspaces of E* except in the case of the Klein bottle. This is the way in
which manifolds are first and most easily visualized. However, the definition
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makes no such requirement. Such visualization makes equivalent (homeo-
morphic) manifolds look different just because they are differently placed in
Euclidean space; and we might easily be led to think that they are different.
Several examples of equivalent manifolds are shown in Fig. 1.6. In spite of
appearances, they are homeomorphic.

Figure L6

Threc equivalent manifolds.

As we might expect from the definition, it is possible to give examples of
manifolds which we do not think of as lying in Euclidean space. Indeed, it is
not clear that they can be realized at all as a subspace of Euclidean space.
This can already be guessed from the construction of manifolds by pasting,
which does not really use E* at all. The simplest, as well as one of the most
important examples of manifolds defined “abstractly "—not as a subspace of
Euclidean space—is real projective space P"(R), the space of (real) projective
geometry. It may be defined as follows. Let an equivalence relation ~ be
defined on R"*' — {0} by

1

(x ..., x"*1)

~ (yl, ens yn+l)

if there is a real number ¢ such that y' = tx',i = 1,...,n + 1;briefly y = tx.
Then we denote by [x] the equivalence class of x and by P*(R) the set of
equivalence classes. There is a natural map n: R"*! — {0} —» P"(R) given by
n(x) = [x] and we shall topologize P"(R), as is usual in the case of such
quotient spaces, by saying that U < P"(R) is open if and only if n~'(U) is
open in R"*'. This gives P"(R) the structure of an n-manifold (as shown in
the exercises). We note that there is an alternative description of P"(R) as the
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space of all lines through the origin 0 of R"*!; n takes each x # 0 to the line
through 0 which contains it. Then we define the topology as follows: a
collection U of lines is open if it is the set of all lines through 0 which meet a
given open set U.

This example may be generalized as follows: Let M be the set of all
r-planes through the origin in R", where n and r are fixed; for example, the
set of all planes through the origin in R? or the set of all three-dimensional
planes through the origin of R, and so on. This set has a natural topology
which makes it a manifold. Intuitively it consists of defining a neighborhood
of a given plane p to be all planes g which are “close” to it in a more or less
obvious sense: there exist corresponding basis of both planes p and ¢ (con-
sidered as r-dimensional subspaces of R", as a vector space) such that corre-
sponding basis vectors are close, say, for example, that their differences have
norm less than some ¢ > 0.

Further important and useful examples of manifolds force themselves
upon our attention when we begin to study the geometry of some of the
manifolds we already have discussed. For example, consider $2, the unit
sphere in R3. We denote by T(S?) the collection of all tangent vectors to
points of $2, including the zero vector at each point. Thus T(S?) =
(Jpes: T,(8?). This set has a natural topology: two tangent vectors X ,and
Y, are “close” if their initial points p and g and their terminal points are
close. Similarly, if M is any of the 2-manifolds we have considered which lie
“smoothly " in E>, so as to have a tangent plane at each point which turns
continuously as we move about on M, then T(M) = ( ), » T,(M)is a mani-
fold, called the tangent bundle of M. The dimension of T(M) is 4 since,
roughly speaking, X, depends locally on four parameters: two being the

Figure 1.7

The 2-sphere S? and some of its tangent vectors—elements of T(S?).
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local coordinates of p relative to some coordinate neighborhood U and two
more being the components which determine X, relative to some basis
{E,,. E;,} of T(M), a basis which varies continuously over the neighbor-
hood U. We later make these statements quite precise and in so doing
exhibit the locally Euclidean character of T(M). For the moment we note
that E, and E, can be visualized as vectors tangent to the coordinate curves
x! = constant and x? = constant in U. This is illustrated in Fig. I.7.

We should note that these manifolds are not subspaces of E*, even
though M is and although the geometry of E* is used here to describe them.
In fact, one of our major tasks is to describe T,(M)and T(M) independently
of any way of placing M in Euclidean space, that is, to give a description
valid for an abstract manifold.

The manifolds mentioned above arose quite naturally from studies of the
geometry of curves and surfaces in E>. In fact, Gauss used, in a very essential

Figure 18
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way, a mapping which he introduced for orientable surfaces in E*. Let M be
such a surface and let N, be a unit normal vector at each pe M, so defined
that N, varies continuously with p on M. Translate N, to N, from a fixed
origin 0 and let G(p) be the endpoint of N, on S?, the unit sphere at 0. The
mapping taking p to G(p) is known as the Gauss mapping, and the Gaussian
curvature is a measure of the distortion of areas under this mapping: If M is
sharply curved near p, then the area of a small region around p would be
greatly magnified in mapping to S2. Even if M is not orientable, we still
have a tangent plane T (M) at each point p and it is parallel to a uniquely
determined plane G(p) through the point 0. Thus a slight variant of the
previous definition defines a mapping (as shown in Fig. 1.8) of M to the
manifold of 2-planes through 0 introduced above. Or again, using normal
lines instead of tangent planes, we can obtain a mapping from M to the
manifold of lines through 0, which as we have remarked, is equivalent to
P*(R).

Exercises

1. Show that P?(R) and the manifold of Exercise 4.4 are homeomorphic.

2. Show that P?(R)and the set of all planes through the origin of R* are in
natural one-to-one correspondence.

3. Show that the set of all pairs (x, y) of mutually orthogonal unit vectors x
and y of V3, with its natural inner product, is a manifold. What is its
dimension? Generalize if possible.

4. Prove that the manifold of orthonormal pairs of vectors in V3
(Exercise 3) is homeomorphic to T,(S?), the tangent sphere bundle of S2,
which consists of all unit vectors tangent to S2.

5. Let C be a one-dimensional manifold (curve) in R3. Show that the
collection of all vectors normal to C form a three-dimensional manifold.
What sort of manifold would the unit vectors normal to C give us?

6. Manifolds may be obtained as the locus of one or more algebraic equa-
tions, for example, S? = {(x, y, z)| x* + y* + z* = 1}. Show that the
torus T2 may be given as the locus of an equation in x, y, z.

Notes

Curves and surfaces in Euclidean space were studied since the earliest days of geometry
and, after they were invented, both analytic geometry and calculus were systematically used in
these studies. However, the discoveries of Gauss, announced in 1827, profoundly altered the
course of differential geometry and pointed the way to the concept of abstract differentiable
manifolds—the underlying spaces of every geometry and of other important mathematical
theories as well. In his celebrated “ Theorema Egregium " Gauss showed that there is a measure
of curvature of a surface (now called the Gaussian curvature) which depends only on one's
ability to measure the lengths of curves on the surface. This means that this curvature is
unchanged by alterations of shape of the surface which leave arclength unchanged. (It is easily
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seen that there are such alterations. For example, we may roll a plane surface into a cylinder or
cone, or we may gently squeeze a hemisphere in along its edge, the equator.) This discovery of
an “inner " geometry, independent of the shape of the surface in E?, led very naturally toward
the invention of abstract surfaces (2-manifolds) on which a measure of arclength is (somehow)
provided. The discovery by Bolyai and Lobachevskii (independently) about 1830 of non-
Euclidean geometry fitted nicely into this approach. (Non-Euclidean geometry satisfies all of
Euclid’s postulates except the one which affirms that through any point p not on a line L there is
exactly one line parallel to L. As in Euclidean geometry, lengths of curves and distances between
points have meaning.) Indeed, the existence of such geometries was (apparently) already known
to Gauss.

A second great impetus to these new ideas was given by Riemann in his inaugural address
at Gottingen in 1854. He explicitly introduced the idea of a manifold having its existence
outside of Euclidean space; he made quite clear what arclength would mean in this case (see
Section V.3): and he extended these ideas to arbitrary dimension. Later he made extensive use
of the notion of abstract two-dimensional manifolds in analytic function theory by his system-
atic use of Riemann surfaces.

All of these discoveries resulted in feverish activity in geometry and in its application to
many other areas of mathematics. To mention but two examples: Poincaré and others found a
natural application of differentiable manifolds and differential geometry in mechanics, and
Lie, Killing, and E. Cartan in group theory and differential equations. All of these applications
gradually clarified the concepts themselves, as did the emergence of topology, so that the ideas
of manifold theory and differential geometry are now highly developed and used across the
entire mathematical spectrum, in relativity theory, analysis, Lie groups, algebraic topology,
algebraic geometry, and elsewhere. The reader will find historical sketches in many of the
references. In particular, Gauss’s famous paper [1] is available in an annotated English transla-
tion and Riemann’s Inaugural Address is translated in the notes of Spivak [2]. The reader will
also find an elegant intuitive discussion of surfaces given by Hilbert and Cohn-Vossen [1].
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In this chapter we review in some detail the differential calculus which we will need later.
The purpose is to build a bridge between the reader’s previous knowledge of multivariable
calculus and the somewhat specialized facts we need here, especially the inverse function
theorem and the theorem on rank. (Many readers can skim over or skip this chapter entirely.)

Briefly, the topics treated are the following: In Section | we define differentiability of
real-valued functions of many variables and its immediate consequences, in particular the mean
value theorem. In Section 2 this is extended to the case that concerns us most, a mapping F
from an open subset U of R" into R™. Here the Jacobian is defined and the mean value theorem
restated for mappings. Sections 3 and 4 deal with the concept of the space of tangent vectors
T.(R") at a point ae R"; this will be most important in studying manifolds, especially Section 4
in which T,(R") is defined in a way that admits generalization. Section 5 reviews the notion of
vector field in R". Section 6 gives a detailed proof of the inverse function theorem. This theorem
with its corollaries, especially the theorem on rank (Section 7), is one of the basic theorems on
which most of our theory is built.

1 Differentiability for Functions of Several Variables

In this section we review briefly some facts about partial derivatives from
advanced calculus. Few proofs are given; they may be worked out as prob-
lems or found in advanced calculus texts, for example, Apostol[1],

20
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Dieudonné[1], or Fleming [1]. We will consider real-valued functions of
several variables, more precisely functions whose domain is a subset 4 « R"
and whose range is R. If f:4 - R is such a function, then f(x)=
f(x', ..., x") denotes its value at x = (x!, ..., x")e A. We assume through-
out this section that fis a function on an open set U = R". Ateachae U, the
partial derivative (0f/0x’), of f with respect to x/ is, of course, the following
limit, if it exists:

(af ) = lim f@,....d+h..a)-fd,..d.., "").

h—0 h

If f /6x? is defined, that is, the limit above exists at each point of U for
1 < j < n, this defines n functions on U. Should these functions be contin-
uous on U for 1 < j < n, fis said to be continuously differentiable on U,
denoted by fe C'(U).

Mere existence of partial derivatives is too weak a property for most
purposes. For example, the function defined on R? by

X
fen= 57 and f0.0)=0

is not continuous at (0, 0), yet both derivatives are defined there. The natural
generalization of existence of the derivative for functions of one variable is as
follows. We shall say that f'is differentiable at ae U if there is a (homogen-
eous) linear expression )7, b(x' — a’) such that the (inhomogeneous)
linear function defined by f(a) + Y-, b/(x' — a') approximates f (x) near a
in the following sense:

i () = f(@) = Y bix' —a) _

x~a lx = al ’

or equivalently, if there exist constants by, ..., b, and a function r(x, a)
defined on a neighborhood V of ae U which satisfy the following two
conditions:

f(x)=f(a) + Y bi(x" — ') + |x — a|r(x, a)
on V, and

lim r(x, a) = 0.
If fis differentiable for every a € U, we say it is differentiable on U.[Warning:
this is a technical definition from advanced calculus. Beginning with Chap-
ter I differentiable will be used rather loosely to mean differentiable of
some order, usually infinitely differentiable (C®).] Note that differentiability
on U is a local concept, that is, if fis differentiable on a neighborhood of
each point of U, then fis differentiable on U. By the mean value theorem, for
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a function of one variable the existence of the derivative at ae U is equiva-
lent to differentiability; but for functions of several variables, as we have
seen, this is not the case. The exercises at the end of this section and the
following statements (1.1)-(1.3), whose proofs we leave as exercises, will
clarify these concepts.

(1.1) Iff is differentiable at a, then it is continuous at a and all the partial
derivatives (0f/0x"), exist. Moreover the b; are uniquely determined for each a
at which f is differentiable; in fact b, = (9f)0x’),.

By virtue of (1.1) when f'is differentiable at a we have

n a . .

fx)=fl@)=3% (6_£') (x* — a') + [|x — a||r(x, a).
i=1 a

We denote by (df),, or simply df, the homogeneous linear expression on the

right:

_— < ﬂ i i
(12) -3 ( ax‘),,(" a).
It is called the differential of f at a.

(1.3) Ifoffox', ..., 0flox" are defined in a neighborhood of a and continuous
at a, then f is differentiable at a.

Thus existence and continuity of the partial derivatives of f on an open
set U c R" implies differentiability of f at every point of U. We define
inductively the notion of an r-fold continuously differentiable function on an
open set U c R" (function of class C’): fis of class C" on U if its first
derivatives are of class C"~'. Equivalently we may say that f has continuous
derivatives of order 1,2, ..., r on U.Iffis of class C” for all r, then we say that
[ is smooth, or of class C®. As in the case of C!, we denote these classes of
functions on U by C'(U) and C*(U).

We now state the first version of the chain rule; a more general version
will be given in the next section. Define a differentiable (C") curve in R" to be
a mapping of an open interval (a, b)) = {xe R |a < x < b} of the real num-
bers into R”, f: (a, b) —» R", with f (t) = {x'(¢), ..., x"(t)}, where the n coordin-
ate functions x'(t), ..., x"(t) are differentiable (resp. C") on the interval.
(Recall: For functions of one variable “differentiable” and “derivative exists”
are equivalent.) Now suppose that f'is a differentiable curve and maps (a. b)
into U, an open subset of R". Let a < t, < b and suppose that g is a function
on U which isdifferentiable at f{t,) € U. Then the composite function g o fisa
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real-valued function on (g, b). We assert that g o fis differentiable at t, and
that its derivative at ¢, is given by the chain rule

Sex

19 aoon= 5(3),,.(0).

The proof is left as an exercise. Using it we may establish the mean value
theorem for functions of several variables. We shall say that a domain U is
starlike with respect to ae U provided that whenever x € U, then the seg-
ment ax lies entirely in U (see Fig. I1.1). This is a somewhat weaker property
than convexity of U, a convex set being starlike with respect to every one of
its points,

Figure 11.1

(1.5) Theorem (Mean Value Theorem) Let g be a differentiable function
on an open set U = R"; let ae U and suppose that U is starlike with respect to
a. Then given x € U there exists 0e R, 0 < 0 < 1, such that

‘ 69) i i
x) — gla) = — x' —d'),
o) - gla) = T () wa)
the derivatives dg/ox', ..., 0g/0x" all being evaluated at the same point
a + 8(x — a) on the segment ax.

Proof Set f(t) = a + t(x — a), that is x'(t) = @' + t(x' — a). Then the
corresponding curve is a line segment with f(0) = aandf(1) = x. This curve
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is differentiable, in fact C®, so that g - f maps [0, 1] into U and is differen-
tiable on (0, 1). Applying the standard mean value theorem for functions of
one variable (as in elementary differential calculus) and using (1.4) to com-
pute the derivatives gives the formula.

(1.6) Corollary Let U and g be as in Theorem 1.5. If |0g/ox'| < K on U,
i=1,2...,n, then for any xe U, we have

|9(x) ~ gla)| < K/n|jx —a].
Proof Taking absolute values in the formula of Theorem 1.5 and using

the Schwarz inequality gives
dg\?
< ~ 3
<[>

5 (58] =)

i=1

12
|9(x) ~ gla)| =

s ar]”

i

Therefore

lg(x) — gla)| < K/n|x — a]. 1

The following corollary is an important consequence and should be
proved as an exercise.

(1.7) Corollary If fis of class C" on U, then at any point of U the value o
the derivatives of order k, 1 < k < r is independent of the order of differentia
tion, that is, if (jy, ..., ji) is a permutation of (i, ..., i), then
oY o
Oxit - gx T A oxI

Taylor’s theorem on polynomial approximation with its formula for the
remainder Ry ,, or error, of the approximation of degree N, as well as the
corollary theorem on power series expansions are easily extended to func-
tions of several variables using the technique of Theorem 1.5 (see Apostol [1]
and Dieudonné [1]). As in the single variable case, a necessary but not a
sufficient condition that a function be (real) analytic, that is, can be ex-
panded in a power series, at each a€ U, an open set of R", is that it be in
C*(U). [We write fe C°(U) iffis real analytic on U.] Although knowledge of
analytic functions is not needed in this text, it is helpful—since C* implies
C*—to know that any linear function f(x) = ) a;x’, or any polynomial
P(x',..., x") of n variables, is an analytic function on U = R"; the same is
true for any quotient of polynomials (rational function) if we exclude from
the domain the points at which the denominator is zero. Thus, for example, a
determinant is an analytic function of its entries and, if we exclude n x n
matrices of determinant zero (which have no inverses), then each entry in the
inverse A~! of a matrix a is an analytic (and hence C*) function of the
entries in the matrix A.
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Exercises

—

Prove (1.1).

2. Prove (1.3) using the mean value theorem for functions of one variable.

3. Prove that all first partial derivatives of a differentiable function vanish
at an extremum.

4. Let U be an open subset of R" and let C°(U) and C'(U) denote the
continuous and continuously differentiable functions on U. Let D(U)
denote the functions which are differentiable on U. Show that C°(U) >
D(U) > C'(U) and construct examples to show that in general the inclu-
sions are proper.

5. Show that the inclusions C'(U) o C*(U) = --- o C*(U) are proper.
6. Prove that C* > C“, and that the inclusion is proper. [Hint: Let
£(0) =0, f(t) = exp(—1/t*) for t + 0; fis C* on R. Is it C* on R?)

7. Prove (1.4), that is, prove that g o fis differentiable at ¢t = t, and that its
derivative is given by (1.4).

8. Prove Corollary 1.7.

Sometimes it is important to extend the definitions of differentiability, C', and so on, to
functions defined on a subset 4 = R", which is not assumed to be an open set, for example, a
function /(1) of one variable on the closed interval 0 < ¢ < 1. We say that fis differentiable, of
class C, of class C*, and so on. on A4 if f can be extended to a differentiable, C’, C* function,
respectively, on an open subset U of R" which contains A.

9. Show thatif 4 = {xeR"|d' < x' < b,d <b,i=1,...,n}and fis dif-
ferentiable on A, then the value of 3f/0x’ at any point of A4 is independent
of the extension chosen. Can you find any example to show that for
some sets A this is not the case? If so, does assuming C' help?

2 Differentiability of Mappings and Jacobians

In this section we generalize the ideas of the previous section to the case
of functions defined on subsets of R" but whose range is in R™ rather than
R. We will refer to them as mappings (or maps) and, insofar as possible, re-
serve the term function for real-valued functions as in Section 1. If =':
R™ > R denotes the projection to the ith coordinate, namely,
m(x',...,x,....,x")=x\, and if F:4 - R™ is a mapping defined on

A c R", then F is determined by its coordinate functions f' = n' » F; in fact
for xe A,

F(x) = (' (). .../ ()

Conversely, any set of m functions f', ..., f™ on A with values in R deter-
mines a mapping F: A - R™ with the coordinates of F(x) given by
FHx), ..o f™(x) as above.
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We are interested in the case where U is an open set of R”, possibly all of
R". Since many authors identify R™ and V™ (see Section I.1), these are
sometimes referred to as vector-valued functions on R", although we will not
use that terminology. From general topology we know that F is continuous
ifand only if its coordinate functions are. We shall say that F is differentiable,
of class C", C®, C®, and so on, at ae U or on U if each of its coordinate
functions has the corresponding property. We may sometimes call a C*
mapping F a smooth mapping; if F is smooth, then each coordinate function
S possesses continuous partial derivatives of all orders and each such deriva-
tive is independent of the order of differentiation.

If F is differentiable on U, we know that the m x n Jacobian matrix

A
ax! ax"
ot _| |
a(x!, ..., x") ’ ‘
o~ ... "
ox! ox"

is defined at each point of U, its mn entries being functions on U. These
functions need not be continuous on U ; they are so if and only if F is of class
C!. Since differentiability is needed in Section I1.6, it is useful to give another
formulation of this concept for mappings. We leave the proof to the exer-
cises. [Note: differentiable will be used to mean C* later; see Section II1.3.]

(2.1) A mapping F: U — R™, U an open subset of R", is differentiable at
ae U (or on U) if and only if there exists an m x n matrix A of constants
(respectively, functions on U) and an m-tuple R(x, a) = (r'(x, a), ..., r"(x, a))
of functions defined on U (on U x U) such that |R(x, a)|| = O as x — a and for
each x € U we have

(*) F(x) = F(a) + A(x — a) + | x — a|R(x, a).

If such R(x, a) and A exist, then A is unique and is the Jacobian matrix.

[In the expression (x), A(x — a) denotes a matrix product, so we must
write (x — a) as an n x 1 (column) matrix and read this as an equation in
m x 1 matrices. The last term means that each component of the m-tuple
R(x, a) is multiplied by |x — a].]

Corollary 1.6 extends immediately to mappings in the following form.
The proof is left as an exercise.

(22) Theorem Let ae U be an open subset of R" which is starlike with
respect to a, and let F: U — R™ be differentiable on U with |of'/ox’| < K,
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1 < i, j <k, at every point of U. Then the following inequality holds for all
xeU:

(x+) IF(x) = F(a)]| < (nm)"*K]||x - a].

We will use DF to denote the Jacobian matrix of a differentiable map-
ping F and DF(x) to denote its value at x. If F is differentiable on U, then for
ae U expression (x) becomes

F(x) = F(a) + DF(a)(x — a) + ||x — a||R(x, a).

We remark that Fe C'(U) if and only if DF(x) varies continuously with
x, that is, x - DF(x) is a continuous map of U into the space M(m, n) of
m x n matrices, identified with R™ and given the corresponding topology.

Just as in the case of functions we wish to prove a chain rule for composi-
tion of mappings. We suppose U < R" and V < R™ are open sets and
F:U->V cR"and G: V - R? so that H = G  F is defined on U, which it
maps into R”. We may write the coordinate functions of H using those of F
and G:

h(x) =g' o F(x) = g'(f'(x),..../™(x)), i=1,...,p.

(2.3) Theorem (Chainrule) LetF,G, H be as above and suppose that F is
differentiable at ae U and G is differentiable at b = F(a). Then H = G o F is
differentiable at x = a and we have

DH(a) = DG(F(a)) - DF(a)

(where - indicates matrix multiplication). If F is differentiable on U and Gon V,
then this holds for every ae U.

Proof According to the characterization above it is enough to show
that the p-tuple Ry(x, a) defined by

H(x) — H(a) — DG(F(a)) - DF(a)" (x — a) = ||x — a|Rg(x, a)

approaches 0 as x approaches a. Using y = F(x), b = F(a), and the differen-
tiability of F and G at a and b, we may write

H(x) — H(a) = G(y) — G(b) = DG(b) - (y — b} + [ly — b|[Rs(», b),
and
y — b= F(x) — F(a) = DF(a) - (x — a) + |x — a|Rg(x, a).
Then, replacing y by F(x) and b by F(a),
H(x) — H(a) = DG(a) - DF(a) (x — a)
[F(x) = Fla)|

+ |x — a |{DG(F(a)) - Re(x, a) + Ix =]

Rg(F(x), F(a))}.
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Using the continuity of F, which is an immediate consequence of differen-
tiability, and the properties of Rp(x, a) and Rg;(y, b), we see that as x — a the
expression in curly braces, which we may denote by Ry(x, a), goes to zero.
This completes the proof.

(24) Corollary If F and G are of class C" (or smooth) on U and V, respec-
tively, then H = G o F is of class C" (or smooth) on U.

Proof We prove only the statement for C', although we will use the
general case, whose proof is a problem in mathematical induction (see
Dieudonné [1], where it is also proved for analytic mappings). If F and G are
C!, then they are certainly differentiable, and DF and DG are continuous
functions on U and V. Since F is C, it is continuous and so DG(F(x)) is
continuous on U. Finally the product of two matrices is a continuous, in fact
C®, mapping of R™ x R" since the entries in the m x p product matrix are
polynomials in the entries of the factors. Thus the chain rule formula gives
DH(x) as a composite of functions which are at least continuous so that it
must be continuous. This is equivalent to its entries being continuous which
means that the coordinate functions of H, and thus H itself, are of class C'.

Exercises

—

Prove (2.1).

2. Prove Theorem 2.2.

3. Prove Corollary 2.4 for the case r = 2 and try to construct a procedure
which would give the result for all r.

Just as in the case of functions, we can extend the notion of differentiability, C*, C*, and so
on, to mappings into R™ whose domain of definition is an arbitrary subset 4 c R". We say that
F: A - R™is differentiable, C', C*, or C* if and only if it has an extension to an openset U > A
which is, respectively, differentiable, C*, C*, or C®. As we have mentioned in Section 1, there
exist examples to show that under these circumstances DF(x) may not be uniquely defined at
each x € A4, that is, it may depend on the extension of F, the simplest example being that 4 is a
single point. Thus one must use some care in dealing with this case. The following three
problems involve this generalization.

4. Let U be an open subset of R"and F: U - R™, m < n,be a C! mapping.
Suppose that F is injective (one-to-one into) and that F~': 4 — U,
where 4 = F(U) is also of class C'. Then show that m cannot be less
than n. (This is a weak version of the theorem of Brouwer: There exists
no homeomorphism of an open set U of R" into R™, m < n.)

5. Let H" = R" be defined by H" = {x | x" > 0} and let 6H" = {x | x" = 0},
x" being the last coordinate of x = (x', ..., x"). We see that JH" = R"~ 1.
Suppose that U, V are (relatively) open sets of H" and F: U - V,
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G:V - U are C" maps and are inverses of one another. Show that if
U =UndH" V' =V n 0H", we must have that F|U" and G| V' are
one-to-one onto, inverses of each other, and C" maps.

6. Let A be a closed cube in R* and suppose F: A — R™ is a mapping of
class C'. Prove that the value of DF on A is independent of any exten-
sion. Generalize this to other domains A and to class C*.

3 The Space of Tangent Vectors at a Point of R"

Although we shall presently restrict our attention to R", let us first con-
sider E", or E? at least, for the sake of intuition. Our purpose is to attach to
each point a of R" an n-dimensional vector space T,(R"). We know how to do
this in Euclidean space: If ae E3, we let T,(E*) be the vector space whose
elements are directed line segments X, with a as initial point. These are
added by the parallelogram law: — X, is the oppositely directed segment
and 0 is the segment consisting of the point a alone. We have supposed that a
unit of length was chosen in E* and we may denote by | X,|| the length of the
segment. Multiplication by positive (negative) real numbers leaves the direc-
tion unchanged (reversed) and multiplies the length by the absolute value of
the number. To show that this does indeed give a vector space of dimension
3 over R is an exercise in solid geometry. Thus we attach to each point of E>
a three-dimensional vector space called the tangent space at that point.

We shall ultimately attach vector spaces at each point of more com-
plicated spaces, namely manifolds; this was briefly indicated in Section 1.4.
There is, however, a unique feature of the tangent spaces of Euclidean space
which is not shared by the tangent spaces at points of manifolds; the tangent
spaces at any two points of Euclidean space are naturally isomorphic, that is,
there is an isomorphism determined in some unique fashion by the geometry
of the space—not chosen by us. (Without the restriction of naturality, the
statement would be trivial since any two vector spaces of the same dimen-
sion over the real numbers are isomorphic, but in general there is no unique
isomorphism singled out, rather we must choose one arbitrarily from a very
large collection.)

Indeed, if a, b are points of E>, then there is exactly one translation of the
space taking a to b; this translation moves each line segment issuing from a
to a line segment from b and thus carries T,(E®) to T,(E?). Since parallelo-
grams go to congruent parallelograms and lengths are preserved, this corre-
spondence is an isomorphism; and it is uniquely determined by the geometry
(Fig.11.2). If we choose a fixed point a as origin and choose at a three linearly
independent vectors E,,, E,,, E;,, for example, three mutually perpendicu-
lar unit vectors, then this will automatically determine a basis not only of
T,(E®) but also (by parallel translation) of T,(E?) for every b e E. All of this
is intuitive geometry and we have not really proved the statements we have
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Figure 11.2

made. Therefore we turn to R” where we are able to be more precise and
rigorous, but we keep in mind our geometric model.

Let a = (d', ..., a") be any point of R". We define T,(R"), the tangent
(vector) space attached to g, as follows. First, as a set it consists of all pairs of
points (a, x), or aX, a = (a', ..., a") and x = (x', ..., x"), corresponding, of
course, to initial and terminal points of a segment. We also denote such a
pair by X, using upper case letters for vectors. We next establish a one-to-
one correspondence ¢,: T,(R") - V" between the set just described and the
vector space of n-tuples of real numbers by the following simple device: If
X, = aX, then ¢ (X,) = (x' —a',...,x" — a"). Finally the vector space
operations (addition and multiplication by scalars) are defined in the one
way possible so that ¢, is an isomorphism. This requires that

X, + Y, = 07 (0.X.) + 0.(Y.)),
aX, = @, '(apX,)). «€R,

the right-hand side being used to define the operations on the left. Clearly we
are being guided by the fact that R” and E" may be identified if we choose
rectangular Cartesian coordinates in E". This is equivalent to choosing an
origin 0 and n mutually orthogonal unit vectors there, (E,)o, ..., (Ea)o, lying
on each (positive) coordinate axis—as do i, j, and k in the usual model for
E*. Then vectors at any point g are uniquely determined by their compon-
ents relative to the basis E,,, ..., E,,, which in turn are given by subtracting
from the coordinates of the terminal point of each vector, the coordinates of
its initial point a. The geometry of E" has guided us to a proper method for
defining the tangent space at each point of R". Please note that ¥” has a
canonical basis e! = (1,0,...,0), ..., " = (0, ..., 1) and this gives at each
a€R" a natural or canonical basis E,, = ¢, '(e,), ..., E.a= 0] '(e,) Of
T.(R"). The canonical isomorphism given by translation in the case of E" is
now ¢, 'o ¢,: T,(R") > T,(R"), and we have X, = aX corresponding to
Y, = by if and only if x' — a' = y' — b\, i = 1,2, ..., n. However, we never
identify the tangent spaces into a single vector space as is often done in
discussions of vectors on Euclidean space, that is, we never equate vectors
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with different initial points; in particular, we cannot add a vector in T,(R")
and one in T,(R") where a # b. The reason for our insistence on this point
will appear when we learn how to attach a tangent space T,(M) to each point
p of a manifold in general, for then we have nothing corresponding to the
natural isomorphisms of T,(E®) and T,(E>) given by the translations of E>.
For example, there is no natural isomorphism of the tangent vectors to S2 at
two distinct points p and g of S2 It follows that our method of defining
T,(R") at each a—which depended on such an isomorphism—is not suitable
for generalization in its present form. Therefore we shall give two further
methods for defining T,(R"), one in this section with details left as exercises
and a second, which we use in the remainder of the text, in the section
following this one.

x2

x(0)= 7 (0}

x(N=(x"(1), x3(1)

a=x{0) = y10)

Figure 11.3
Equivalent Curves: x(r) and y(r).

We begin by a formal description of the first definition. Let x(t),
—& <t <¢g bea C!curve in R" passing through ae R" when ¢ = {, that is,
assume x(t) = (x'(t), ..., x"(t)), where x(t) is C' and X'(0) = a',i = 1,..., n.
Let I, = {reRﬁ |t| <eé}. Then each such curve is a C' map of I, » R",
where ¢ > 0 and may vary from curve to curve. Two curves are equivalent,
x(t) ~ y(1), if at t = 0, the derivatives with respect to t of their coordinate
functions are equal: x'(0) = y'(0), i = 1, ..., n. Let [x(t)] denote the equiv-
alence class of x(z); to each [x(t)] corresponds an n-tuple of numbers
x(0) = (x*(0), ..., x"(0)), that is, an element of ¥". Using this map we obtain
a vector space structure on the collection of equivalence classes which we
denote, predictably, by T,(R"). Details are left as exercises. Intuitively speak-
ing, if we use the identification of R" with E" plus a rectangular Cartesian
coordinate system, we see that x'(0) is the ith component of the velocity
vector of the particle whose motion is given by x(t) = (x'(t),..., x"(t)) at the
instant it passes through a (see Fig. I1.3). Two curves are equivalent if they
represent two motions with the same velocity at this instant.
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Exercises

1. Show that the map [x(t)] = (x*(0), ..., x"(0)) is one-to-one and onto }",
so that it can be used to define the structure of a vector space on the
collection T,(R") of equivalence classes.

2. Prove that this definition of T,(R") is equivalent to the earlier one of the
present section.

3. Using a standard method of definition of the tangent plane to S2, the
unit sphere in R3, show that the vectors of T,(R?), a e $2, which belong
to equivalence classes [x(t)] determined by curves lying on S?, determine
a subspace of T,(R®) and that this subspace may be naturally identified
with the tangent plane to S? at a.

4. For each of the vectors E,,, ae R" and i = 1, ..., n, identify the equiv-
alence class of curves corresponding to it by defining a particularly
simple curve in the class. This gives an interpretation of the canonical
basis of T,(R").

4 Another Definition of T,(R")

In this section we give a characterization of the space of tangent vectors
attached to a point a of R" which we shall later use in extending this concept
to manifolds. In spite of its formal and abstract nature it is relatively easy to
work with; it is hoped that some intuitive clarification has resulted from the
earlier definitions.

Let us denote by C*(a) the collection of all C* functions whose domain
includes a, identifying those functions which agree on an open set containing
a—since we are only interested in their derivativesata. Let X, = Y., «'E;,
be the expression for a vector of T,(R") in the canonical basis; we define the
directional derivative Af of f at a in the “direction of X,” by
Af = Y7, o' 0fJox’, 0fjox' evaluated at a = (a', ..., a"). This is a slight ex-
tension of the usual definition in that we do not require X, to be a unit
vector. Since Af depends on f, a, and X, we shall write it as X} f Thus

* < iif
Xaf_i;la (axi)a'

We may take the directional derivative in the “direction of X,” of any
C® function defined in a neighborhood of a. Hence f — X ¥ f defines a map-
ping assigning to each f'e C*(a) a real number

X*:C*(a) » R.

It is reasonable to denote this mapping by X* = Y., o;(9/0x’), where we
must remember that the derivatives are to be evaluated at a. We remark that
X*x' =o', i=1,..., n, so that the vector X, is completely determined if its
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value on every C* function at a is known—or even on the functions
fix) = x'.

We have agreed not to distinguish between C* functions f, g in C*(a) if
they agree on some open set containing a. Two functions of C*(a) may be
added or multiplied to give another element of C*(a), whose domain is the
intersection of their domains. If « € R, then af'is a C* function with the same
domain as f, so fe C*(a) implies af e C*(a); the same result would be ob-
tained by multiplying by a C* function whose value is « on some open set
about a. Thus C*(a) is an algebra over R containing R as a subalgebra.
Remembering the fundamental properties of derivatives we see at once that
if o, B are real numbers and f, g are C* functions defined in open sets
containing g, then we have

(i) XX + Bg) = «(XZS) + B(X2g) (linearity)
and

(i) X(fg) = (X3/)g(a) + f(a)(XZg) (Leibniz rule).

Let Z(a) denote all mappings of C™(a) to R with these properties; we
may call the elements of Z(a) “derivations™ on C*(a) into R. We see that
Z(a) 1s a vector space over R for if D,, D,: C*(a) — R and «, € R, then we
define (aD, + BD,)f = a(D,f) + B(D,f), where the operations on the right
are in R. This defines in %(a) both addition and multiplication by real
numbers «, B. This is the standard procedure for defining a vector space
structure on maps of a set into a field. One must check that the vector space
axioms are indeed satisfied by these operations. In particular, it must be
verified that if D € %(a), then aD € %(a), and if D, D, € %(a), then so also are
D, + D,. This means checking the linearity of aD:(C*(a) - R and
D, + D,: C*(a) — R and checking that the Leibniz rule is satisfied. We do
this for yD only. Suppose then y, a, f€ R, D € Z(a), and f, ge C*(a). Then

(D)of + Bg) = y[D(&f + Bg)] (by definition of yD)

= y[«(Df) + B(Dg)]  (by property (i))
va(Df) + yB(Dg) (by the distributive law of R)
= a(yD)f + B(yD)g (by our definition of yD).

It follows that the map yD: C*(a) — R is linear. That yD satisfies the Leibniz
rule for differentiation of products is equally easy:

(D)(fg) = +[D(f9)] (by definition of yD)
= y[(Df )gla) + f(a)(Dg)] (by property (ii))
= y(Df)g(a) + f(a)y(Dg) (these being real numbers)

= ((yD)f)g(a) + f(aX(yD)g)  (by definition of yD).
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As was remarked, a similar verification shows that D, + D, is a derivation
into R; it is left as an exercise.

The correspondence X, — X * associates to each element X, of T,(R") an
element of 2(a), namely the mapping X}: C*(a) — R defined by taking the
directional derivative of fe C*(a) at a in the direction X,. This mapping
from T,(R") » 2(a) is one-to-one since X* = Y* means that X} f = Y ffor
every fe C*(a) which implies X, = Y,. Indeed we have noted the ith com-
ponent of X, relative to the natural basis is just X*x' so that
X, = 11 (X*x')E, = Y,. Finally, it is easy to see that this mapping is
linear. If Z, = aX, + BY,€ T,(R"), then for the directional derivatives we
have for any fe C*(a),

Z3f=o(XZf) + B(YZS).

If interpreted in terms of the operations in 2(a), this means exactly that the
mapping T,(R") - 2(a) is linear. In summary then, X, - X* defines an
isomorphism of the vector space T,(R") into the vector space 2(a), which
allows us to identify T,(R") with a subspace of 2(a). However, more can be
said; in fact this isomorphism is onto, and we have the following theorem.

(4.1) Theorem The vector space T,(R") is isomorphic to the vector space
2(a) of all derivations of C*(a) into R. This isomorphism is given by making
each X, correspond to the directional derivative X* in the direction of X,,.

To prove the theorem it only remains to show that every derivation of
C*(a) into R is a directional derivative, that is, that X, = X* is a map onto
2(a). This will result from two lemmas.

(42) Lemma Let D be an arbitrary element of 9(a). Then D is zero on any
function fe C*(a) which is constant in a neighborhood of a.

Proof Because the map D is linear, it is enough to show that if 1 denotes
the constant function of value 1, then D1 = 0. However, D1 = D(1- 1) =
(D1)1 + 1(D1) = D1 + D1 = 2D1, so D1 = 0. We must remember in inter-
preting these equalities that multiplying fe C*(a) by a real number « gives
exactly the same result as multiplying by the C® function whose value is
constant and equal to o in some open set (possibly R") containing a, at least
as far as the algebra C®(a) is concerned: we have identified R with the
subalgebra of such functions. ]

(43) Lemma Let f(x',..., x") be defined and C* on some open set U. If
ac€ U, then there is a spherical neighborhood B of a, B = U, and C*-functions
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g', ..., g" defined on B such that:

0 oe - () _
and

(i) f(x'....x") = fla) + Yi-y (x' = a))g(x).
Proof Let B < U be a spherical neighborhood of a and note that for
x€ B, f(x) = f(a) + [5 (6/01)f(a + t(x — a)) dt. Hence,

n ) . 1 a
s -sa+ Sw-af [Z] a
i=1 0 X a+t(x—a)
Let
: Y[ of ]
'(x) = B dt, i=1..,n;
g( ) JO Laxl a+i(x—a)
these are C*-functions and satisfy the two conditions. |

Proof of Theorem 4.1 Using these lemmas we may complete the proof
of Theorem 4.1. Suppose D is any derivation on C*(a). We wish to show
that, given D € 9(a), there is a vector X, e T,(R") such that for any fe C*(a),
we have X} f = Df. If this be so, then X¥ = D and we see that every deriva-
tion of C*(a) into R is a directional derivative; thus the map X, - X* of
T.(R") to 9(a) is an isomorphism onto.

Let hi(x!,..., x") = x'. Then denote by o the value of DK, that is,
o' = Di'. Consider X, = Y, a; E,,; as an operator on C*(a), it gives

* £ ¢ i af
Xaf_ i;a (axi)a‘

On the other hand, by Lemma 4.3, f(x) = f(a) + ) 7= (x' — a')¢'(x) on
some B,(a) in the domain of /. Restricting to B,{a) and using the properties of
D, we may write

b = D(f(@) + ¥ (Dl ~ a)a't@) + 0 Dy}

By Lemma 42, D(f(a))=0 and D(x'—a')= Dx' = «'; and by
Lemma 4.3, g'(a) = (9f/0x’),. Therefore Df = Y1_, a'(9f/ox"), = X* . Since
fis an arbitrary element of C*(a), we have D = X*. This completes the
proof. |

Theorem 4.1 allows us to identify the vector space T,(R") with the space
9(a) of linear operators on functions of C*(a) into R which satisfy the
product rule of Leibniz, that is, the “derivations into R.”
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Note that under this identification the canonical basis vectors
Eia,..., E,a of T,(R") are identified with 8/0x’, ..., /0x", the directional
derivatives (evaluated at x = a) in the directions of the coordinate axes:

B~ E2f=(50)

We will make this identification from now on for vectors in T,(R") and
for this reason we will drop the asterisk * which distinguishes the vector X,
as a segment or point pair from the directional derivative: X?* f will be
written X,_f. In R" we may use either E;, or 4/dx' to denote the unit vector
parallel to the ith coordinate axis. This characterization of T,(R") requires
C* functions; although C'(a) is an algebra, it is known to have other deriva-
tions than directional derivatives. Our situation is then that we shall rely on
Euclidean space for our geometric intuition of the space of tangent vectors at
a point, but in formal definitions and proofs we will use the ideas above: a
vector at a point is a linear operator of a certain kind—satisfying the pro-
duct rule for derivatives—on the C* functions at the point.

Exercises

1. Letae R"andf, g be two C* functions whose domains of definition both
contain a. We shall say f'is equivalent to g at a, f ~ g, if and only if they
agree on some open set containing a. Show that this is an equivalence
relation and that the collection of equivalence classes, which we call
germs of C* functions at g, is an algebra over R. [It is precisely this
algebra which is C*(a).]

2. Do the statements of Exercise | remain true if we replace C* by (",
r > 07 Suppose that we merely require equality of fand g and all of their
derivatives at a, does this give an equivalence relation and an algebra
over R, or is equality on an open set needed?

3. Prove that the collection of all maps of a set X into a field F has a
natural vector space structure. Follow the definitions indicated for 2(a).

4. Show that if D, and D, are in 9(a), then D, + D, is also in 2(a).

5. Using the definition (Section 3) of equivalence of C' curves through
a € R", prove that the mapping of T,(R"), defined as “velocity vectors,”
to 2(a), taking the class [x(t)] to the operator D defined by

=% (F) w0

is independent of the choice of the curve x(t) in [x(¢)] and determines an
isomorphism of T,(R") onto %(a).
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5 Vector Fields on Open Subsets of R"

A vector field on an open subset U < R" is a function which assigns to
each point peU a vector X,e T,(R"). A similar definition applies to
Euclidean space E™. There are many examples in physics for n = 2 and
n = 3. The best known is the gravitational field: If an object of mass y is
located at a point 0, then to each point pin U = E” — {0}, there is assigned a
vector which denotes the force of attraction on a particle of unit mass placed
at the point. This vector is represented by a line segment or arrow from p (as
initial point) directed toward O and having length ku/r?, r denoting the
distance d(0, p) and k a fixed constant determined by the units chosen (see

Figure 114
First quadrant portion of gravitational field of point mass at origin.

Fig.IL4). If we introduce Cartesian coordinates with 0 as origin, then for the
point p with coordinates (x', x?, x*) the components of X, in the canonical
basis are

—x! —x? 3

SRETE with = (KR + () 4 (PP

that is,

-1 -1 0 5, 0
X, = = (x'E;, + x2E,, + x*E3,) = = (x‘ s x? 52T x? )

We note that the components of X , are C* functions of the coordinates.
We shall say that a vector field on R" is C* or smooth if its components
relative to the canonical basis are C* functions on U. Unless otherwise
stated, all vector fields considered will be assumed to have this property,
although it is quite possible to define continuous, C', and so on, vector fields
also. When dealing with vector fields, as with functions, the independent
variable will be omitted from the notation. Thus we write X rather than X,
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just as we customarily use f rather than f(p) for a function. Then X, is the
value at p of X, that is, the vector of the field which is attached to p—it lies in
T,(R").

Further examples of vector fields are given for each i = 1,..., n by the
fields E; = 8/0x' which assign to every pe R" the naturally defined basis
vector E; at that point. The vector fields E,, ..., E, being independent, even
orthogonal unit vectors, at each point p form a basis there of T,(R"); such a
set of fields is called a field of frames. The vector fields X,, X, on
U = R? — {0} defined by X, = x'E, + x?E, and X, = x*E, — x'E, also
define a field of frames; geometrically X, , is a vector along a ray from O to p
and X ,, is a vector perpendicular to it, that is, tangent to the circle through p
with center at 0 (see Fig. IL.S). It is often convenient, as we know from
elementary mechanics to use other frames (even in Euclidean space) than E,
and E,.

Figure 115

If X is a C*-vector field on U and fa C* function on U, then Xfis the
C=-function on U defined by (Xf)(p) = X, f. Indeed, if the components of X
are the functions «'(p), ..., a"(p) so that X = Y 7_, «'E;, then

o) = S0 Z)

We see from the right-hand side that Xfis a C* function of p on U since
a'(p)e C*(U) and df/0x' e C*(U). Thus f+ Xf maps C*(U) - C*(U).
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We note also that C*(U) is an algebra over R with unit, where R is
identified with the constant functions and, in particular, the constant
function 1 with the unit. It is natural to ask whether X is a linear map of
C*(U) to C*(U) and more generally whether it is a derivation, that is,
satisfies the Leibniz product rule. In fact, this is so, for we may write

[X(ef + Bg))(p) = X (of + Bg) = a(X, f) + B(X,9)
= a(XS)p) + B(Xg)(p),

and

[X(/2)(p) = (X, /)glp) + f(P)(X ,g)
=[(Xf )p)lg(p) + f (P(Xg)(P))-

Since the functions on the right and left agree for each pe U, they are equal
as functions. Thus X: C®(U) — C*(U) is a derivation which maps C*(U)
into itself, a slight variation from the previous case. (This, in fact, is the
customary use of the term “ derivation” of an algebra. If 4 is an algebra over
R, then a derivation is a map D: A - A which is linear and satisfies the
product rule of Leibniz. For example, §/0x is a derivation on the algebra of
all polynomials in two variables x and y.)

We conclude this section by proving an important property of
C>-functions which, with the corollary given here, is used very often in
discussions of vector fields (see the exercises). It is a “separation theorem ”
and contrasts strongly the behavior of C* and C* functions on R". (There
exist stronger versions of this theorem as we shall see later.)

(5.1) Theorem Let F < R" be a closed set and K < R" compact,
F K = . Then there is a C* function o(x) whose domain is all of R" and
whose range of values is the closed interval [0, 1] such that a(x) = 1 on K and
a(x)=0onF.

Proof We prove the theorem in two steps.

(a) Let B,(a) be an open ball of center a and radius &. We show that
there is a C* function g(x) on R" which is positive on B,(a), identically 1 on
B,,; . and 0 outside B,(a). The function h(t) defined by h(0) = 0 for ¢t < 0 and
h(t) = e~ " for t > 0is C* since we can prove by direct computation that all
of its derivatives exist and are zero at t = 0, and since it is analytic for other
values of 1. We let

. hle — ||x]))

90 = b = ) + (< = )

Since the denominator is never zero [at either ¢ — ||x|| or | x| — 3¢ or at both
h is positive], this is a C* function. When ||x|| > &, the numerator is zero,
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otherwise it is positive; and when 0 < ||x| < ¢, the value of g(x) is iden-
tically 1. Thus g(x) is C*, vanishes outside B,(0), and is positive on its
interior; in fact g(x) = 1 for xe B,,(0). Hence g(x) = g(x — a) has the
desired properties.

(b) For step two let B,(a;), i = 1,..., k, be a finite collection of n-balls in
R" — F such that {J¥_, B,;(a;) © K. It is possible to find such a collection
because of the compactness of K and since K n F = . For B,(a;) let g;(x)
have the properties above and define a(x) by

k
o(x)=1-[](1 = g)
i=1
On each x € K at least one g; has the value |, g(x) = 1,506 = 1 on K.
Outside ( J¥_, B,(a;) each g; vanishes so a(x) = 0 and, since F lies outside
this union, ¢ = 0 on F. This completes the proof. |

(5.2) Corollary Let f(x', ..., x") be C* on an open set U = R" and let
ae U. Then there is an open set V < U, which is a neighborhood of a, and a
C” function f*(x', ..., x") defined on all of R" such that f*(x) = f(x) for all
x€V and f*(x) = 0 for x outside U.

Proof Choose any neighborhoods V,, V, of a such that V|, < V,,
V, < U and V, is compact. Let ¥, = K and F = R" — V, in Theorem 5.1.
Then take (x), a C* function whose value is 1 on ¥, and 0 outside V;, that
is, on F. Define f*(x) = a{x) f(x) for xe U and f*(x) = 0 for xe R" — V;.
Since f* thus defined is C* on U, where it is equal to af, and is C* on
R" — V, where it is identically zero, and since on the (open) intersection
U — V, of these two sets, both definitions agree, we see that f* is C* on R”
and has the properties needed. |

Exercises

1. Prove that the function h(t) defined above does in fact have derivatives
of all orders at t = O and that they all have the value zero there. Why
does this imply that h(t) is not analytic at t = 0?

2. Suppose a vector X ,& T,(R") is given at each pe U, an open subset of R".
Show that this defines a C* vector field if and only if for each fe C*(U),
Xfis C* on U.

3. Let D be a derivation on the algebra C*(U). If f, g are in C*(U) and
f(x)=g(x) for all xe V, an open subset of U, then prove (Df)(x)
= (Dg)(x) at each point x € V.

4. Using the preceding problem show that the derivations 2(U) on C*(U)
define a vector space over R and that this space is isomorphic with the
space of C* vector fields on U, which we denote ¥(U). Show that these
are infinite-dimensional vector spaces.
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5. If D, and D, are derivations on an algebra A, show by example that
D, D, need not be a derivation but that D, D, — D, D, is a derivation. If
we consider 4=C*(U), U openc R", X =) o(x)d/dx" and
Y =3 Bi(x)@/éy' e X(U), then this means that XY — YX =) 7/(x)
¢/2x'. Verify this and compute 7,(x).

6. Give examples of linear operators on C*(U), U an open subset of R",
which are not derivations of C*(U).

7. Let pe U, an open subset of R", and let X ,e T,(R") be a vector at p.
Show that X, may be extended to a C* vector field X on U.

8. In Theorem 5.1, assume only that K is closed (not necessarily compact).
Does the theorem still hold?

6 The Inverse Function Theorem

In order to simplify the terminology of this and later sections we intro-
duce the notion of diffeomorphism, or differentiable homeomorphism,
between two spaces. Of course this concept can have no meaning unless the
spaces are such that differentiability is defined, which at the present moment
means that they must be subsets of Euclidean spaces. Therefore without
prejudice to a more general later treatment, let us suppose that U < R"and
V < R" are open sets. We then shall say that a mapping F: U - V is a
C"-diffeomorphism if: (i) F is a homeomorphism and (ii) both F and F~! are
of class ", r > 1 (when r = oo we simply say diffeomorphism). It is perhaps
not obvious why we need to require both F and F~! to be of class C"—it is
because we wish the relation to be symmetric. As the following example
shows, the differentiability of F~! is not a consequence of that of F, even
when F is a homeomorphism. Let U = Rand V = Rand F: t+— s = t*; this
is a homeomorphism and F is analytic but F~': st>t = s'?isnot C' on V
since it has no derivative at s = 0.

One might suspect that our definition contains some redundant require-
ments as in fact it does—in two ways. First, as shown in Exercise 6, it would
not be possible to have a difffomorphism between open subspaces of
Euclidean spaces of different dimensions; indeed a famous theorem of alge-
braic topology (Brouwer's invariance of domain) asserts that even a homeo-
morphism between open subsets of R" and R™, m # n, is impossible.
Secondly, in the example given above the derivative of F vanishes at t = 0,
thus behaving atypically: If it vanished everywhere, then F could not be a
homeomorphism of R to R and if it vanished at no point, then F~! would
indeed be a differentiablé map (please argue this through!). We can certainly
see at once that if F: U — V is a homeomorphism and both F and F ™" are of
class C! at least, then DF(x) is nonsingular, that is, has nonvanishing deter-
minant at each xe U;for F~! o F = I, the identity map of U to U and by the
chain rule DI(x) = DF~'(F(x))- DF(x). Since DI(x) is just the identity
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matrix for every xe U, DF(x) is nonsingular and its determinant is never
zero. This includes the assertion that, if F: R — R is a diffeomorphism, then
its derivative can never be zero. The main theorem of this section will have
as a consequence Corollary 6.7, which is the converse of this statement.
Before proving it, however, we consider two examples of diffecomorphisms of
R" to R".

(6.1) Example Let F: R" - R" be the translation taking a = (d', ..., a")
tob = (b',..., b"). Then F is given by

F(x',...,x")=(x' + (b' —a'),....,x" + (b" — a")),

or F(x) = x + (b — a). The coordinate functions f(x) = x* + (b' — a') are
analytic, and hence C*. The translation G(x) = x + (@ — b)is F~* which is
then also C* and since F, F~! are defined and continuous, F is a homeo-
morphism. Thus F is a diffeomorphism.

(6.2) Example Let F: R" — R" be a linear transformation

F(x',..., x") = (za . ,j;a;xf),

or, using matrix notation with x as an n x 1 (column matrix) and 4 = («}),
F(x) = Ax. Computation shows that DF(x) is the constant matrix A,
DF(x) = A. If det A # 0, then A has an inverse B and the homogeneous
linear transformation G(x) = Bx is F~'. On the other hand if det 4 = 0,
then F is not one-to-one, in fact it maps at least a line through the origin
onto the single point 0 = (0,0, ..., 0). Obviously F is analytic and C® in
either case, so that F is a diffeomorphism if and only if DF(x) = A4 is
nonsingular.

Diffeomorphism is an equivalence relation among the open subsets of R".
We have the following lemma, whose proof we leave as an exercise, which
gives the transitivity property; symmetry and reflexivity are part of the
definition.

(6.3) Lemma Let U, V, W be open subsets of R", F: U -V, F:V - W
mappings onto, and H = G o F: U — W their composition. If any two of these
maps is a diffeomorphism, then the third is also.

We now state the main theorem of the section.
(6.4) Theorem (Inverse Function Theorem) Let W be an open subset of

R" and F: W — R" a C" mapping,r = 1,2, ..., or . If aec W and DF(a) is
nonsingular, then there exists an open neighborhood U of a in W such that
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V =F(U) is open and F:U =V is a C" diffeomorphism. If xe U and
y = F(x), then we have the following formula for the derivatives of F~' at y:
DF~!(y) = (DF(x))~ %,

the term on the right denoting the inverse matrix to DF(x).

This is one of the two basic theorems of analysis on which all of the
theory in this book depends; the other is the existence theorem for ordinary
differential equations (Chapter IV). The proof used here depends on the
following fixed point theorem; a variety of proofs may be found in advanced
calculus books.

(6.5) Theorem (Contracting Mapping Theorem) Let M be a complete
metric space with metric d(x, y) and let T: M — M be a mapping of M into
itself. Assume that there is a constant 4,0 < A < 1, such that for all x, ye M,

AT(). TO)) < 4 d(x. y)
Then T has a unique fixed point a in M.

Proof Applying T repeatedly we see that d(T"(x), T"(y)) < A" d(x, y).
In particular, if we choose arbitrarily x,e M and let x,, = T"(x,), then we
assert that d(x,, x,,,) < A"K, K > 0, a constant independent of n, m. Using
T ™(xo) = T(T™(xo)). we write d(x,, X,4m) < A" d(xo, T™(xo)). By the
triangle inequality
d(xo , T(xo)) < d(xo, T(xo)) + d(T(xo), T*(x0))

4+ + d(T™ }(xo), T"(xo))

1
<A+ A+ A2+ + A" )d(xg, T(xo)) < md(xo , T{xo))-
This shows that we may take

K= »1% d(xo , T(xo))

and proves the assertion. Thus {x,} is a Cauchy sequence and has a limit
point a. Since T(x,) = x,,, obviously has the same limit we see that

d(T(a), a) = lim d(T(x,), x,) = lim d(x,,, x,) = 0

so T(a) = aand a is a fixed point of T. There could not be two fixed points
a, b for then d(a, b) = d(T(a), T(b)) = 4 d(a, b) contradicting the fact that
A<l |

Proof of Theorem 64 We shall organize the proof of the inverse func-
tion theorem in several steps in order to make it somewhat easier to follow.
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(i) We assume F(0) = 0 and DF(0) = I, the identity matrix.

This may be done without loss of generality by virtue of Lemma 6.3
combined with the use of Examples 6.1 and 6.2. Next we define the mapping
G on the same domain by

G(x) = x — F(x).
Then, obviously, G(0) = 0 and DG(0) = 0. (Note: In the last equation the
right-hand side is the 0 matrix.)

(i) There exists a real number r > O such that DF is nonsingular on the
closed ball B,,{0) = W and for x,, x, € B,(0) we have

(*) [G(x;) = G(x2)]| < 3|x1 — x|
and
(#+) %1 = %2l < 2| Fx,) — F(x,).

To verify these statements we choose r so that B,,(0) = W; further so
that det(DF(x)), which is a continuous function of x and not zero at 0, does
not vanish on B,,(0); and finally so that the derivatives of the coordinate
functions of G, all of which are zero at 0, are bounded in absolute value by
1/2n on B,(0). With these assumptions, x,,x,€ B,{0) implies
[x, — x5|| < 2r and Theorem 2.2 with m = n gives (x). Inequality (s*) re-
sults from replacing G(x;) by x; — F(x;), i = 1, 2, in (*) and using a standard
property of norms:

%y = F(xg) + x5 = F(xp)|| < 3|, — xaf
by (*), but
Ixy = X2 = [Fx1) = F)l| < [|(xy = x2) + F(x,) — F(x,)].
Combining these gives (x*). As a consequence of (*) we obtain the following:

(iii) If x| <r, then |G(x)| < r/2, that is, G(B,{0)) = B,(0). Moreover
for each y € B, ,(0) there exists a unique x € B,(0) such that F(x) = y.

The first statement is immediately obtained from (x) by setting x;, = x
and x, = 0; the second uses Lemma 6.3. If y € B, ,(0) and x € B,(0), then

ly + G < Iyl + G < 3 +2r =r.

Let a mapping T,: B,(0) — B,(0) be defined for ye B,,(0) by T,(x) =y +
G(x). Then T,(x) = x if and only if y = x — G(x) or, equivalently, F(x) = y.
However, inequality (x) in the form

[T(x1) = T(x2)|| = [Glx1) — Glx2)| < 3% — x2|s
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valid for x,, x, € B,(0), implies that T,(x) is a contracting mapping of the
compact set B,(0) into itself. Therefore by Theorem 6.5 there is a unique x
such that y = F(x). Since this is valid for any y € B,,(0), we see that F~ ! is
defined on that set. In particular, F being continuous, U = F~ Y(B,2(0)) is
an open subset of B,(0). Let V = B, ,(0); since B,(0) = W we see that:

(iv) F is a homeomorphism of the open set U < W onto the open set V.

It remains only to prove continuity of F~!, which is a consequence of the
inequality (xx). Whenever x,, x, € U, we have y; = F(x,) and y, = F(x,),
and (**) becomes

IF=' () = F7' 02l < 2[y1 = 2l
which implies that F~': ¥ — U is continuous.

(v) Letb = F(a)bein V. Then F~"' is differentiable at b and DF ~'(b) =
[DF(a)]~ ', the matrix inverse to DF(a).

Since F is of class C", r > 1, on W it is differentiable on all of U, in
particular, at a = F~!(b). Thus by definition

F(x) — F(a) = DF(a)- (x — a) + |x — a]|r(x, a),

where r(x, a) > 0 as x — a. By (ii), DF(a) is nonsingular and we let A be its
inverse matrix. Multiplying the above expression by A and using y = F(x),
x = F~!(y), and a = F~'(b), and so on, we obtain

A-(y=b)=F'(y) - F'(b)
+ |F7H(y) = FH(b) | A - r(F™H(y), F71(b)).
This, in turn, gives
F7 ') =F () + 4~ (y — b) + |y — b|[F(3; b)
if we suppose y # b and define

_IFTI0) = F o)l
Iy — b]
Inequality (**) shows that the initial fraction is bounded by 2, 4 is a matrix

of constants, and F~!(y) is continuous so it is clear that lim,_,#(y, b)=0
which proves the differentiability of F~! at any be V' and shows that

DF~'(b) = A = [DF(a)]""

Py, b) = A-r(F~Y(y), F'(b)).

as claimed. The following statement completes the proof.

(vi) IfFisof class C" on U, then F~! is of class C" on V.
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For ye V we have just seen that
DF~'(y) = [DF(F"'(y)”".

Since F~!(y) is continuous as a function of y on V and its range is U, since
DF is of class C" and nonsingular on U, and since, finally, the entries in the
inverse of a nonsingular matrix are C® functions of the entries of the matrix,
it follows that DF ! is continuous on V, thus F~! is of class C! at least. In
fact if F~!is of class k < r, the entries of DF ™! are of class k — 1 at least on
V, but the formula above for them shows these entries to be given by
composition of functions of class C* or greater and hence to be of class C* at
least. This implies F~! is of class C**!; so by induction F~*! is of class C".
This completes the proof. 1

The following two corollaries are immediate consequences of
Theorem 6.4. We use the notation of the theorem, that is, W is an open
subset of R" and F: W — R".

(6.6) Corollary If DF is nonsingular at every point of W, then F is an open
mapping of W, that is, it carries W and open subsets of R" contained in W to
open subsets of R".

(6.7) Corollary A necessary and sufficient condition for the C® map F to be
a diffeomorphism from W to F(W) s that it be one-to-one and DF be nonsingu-
lar at every point of W.

Exercises

1. Carry the proof of Theorem 6.4 through in detail for the case r = 1,
making any simplifications you can.

2. Prove Lemma 6.3.

3. Compute the Jacobian matrix for Examples 6.1 and 6.2.

4. Show that for transformations on a compact subset K of R" which
satisfy the conditions of the contracting mapping theorem except that
0 < 4 < 1 (weallow 4 = 1), there still exists a fixed point. [Hint: Con-
sider mappings T, = ((n — 1)/n)T.]

5. Prove Corollary 6.6.

Prove Corollary 6.7.

7. Prove that there does not exist a C' diffeomorphism from an open
subset of R" to an open subset of R™ if m < n.

o

7 The Rank of a Mapping

In linear algebra the rank of an m x n matrix A is defined in three
equivalent ways: (i) the dimension of the subspace of ¥ spanned by the
rows, (ii) the dimension of the subspace of ¥™ spanned by the columns, and
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(iii) the maximum order of any nonvanishing minor determinant. We see at
once from (i) and (ii) that the rank A < m, n. The rank of a linear transfor-
mation is defined to be the dimension of the image, and one proves that
this is the rank of any matrix which represents the transformation. From
this it follows that, if P and Q@ are nonsingular matrices, then
rank(PAQ) = rank(A).

When F:U —>R™ is a C! mapping of an open set U < R", then
rank DF(x) has a rank at each x € U. Because the value of a determinant is a
continuous function of its entries, we see from (iii) that if DF(a) = k, then for
some open neighborhood V of a, rank DF(x) > k;and, if k = inf(m, n), then
rank DF(x) = k on this V. In general, the inequality is possible:

F(x!, x?) = ((x')? 2x'x?)

has Jacobian

DF(x', x?) = (

2xt 2x?
2x2 2xX')

whose rank is 2 on all of R? except the lines x> = +x!'. The rank is 1 on
these lines except at (0, 0) where it is zero.

We shall refer to the rank of DF{(x)as the rank of F at x. If we compose F
with diffeomorphisms, then the facts cited and the chain rule imply that the
rank of the composition is the rank of F, since diffeomorphisms have nonsin-
gular Jacobians. We say F has rank k on a set A, if it has rank k for each
x € A. We use these definitions in stating the following basic theorem.

(7.1) Theorem (Rank Theorem) Let A, < R", B, = R™ be open sets,
F: Aq — B, be a C" mapping, and suppose the rank of F on Aq to be equal to k.
If ae Ay and b = F(a), then there exist open sets A = Ag and B = B, with
ae A and be B, and there exist C" diffeomorphisms G: A — U (open) = R",
H:B — V (open) = R™ suchthat H < F « G™Y(U) < V and such that this map
has the simple form

HsF. .G Y{x'...,x") = (x",....x%0,...,0).

Before proceeding to the proof we make soine general comments. This is
clearly an important theorem for it tells us that a mapping of constant rank k
behaves locally like projection of R" = R* x R"™ ¥ to R* followed by injec-
tion of R* onto R* x {0} = R* x R™"~* = R™. This is an important tool and
we shall use it frequently; later it will be rephrased in terms of local coordin-
ates. It implies Theorem 6.4 as a special case.

Proof To begin with, we may suppose a = 0, the origin of R", and
b = 0, the origin of R™. If the theorem holds for this case, then it may be
seen to hold in general since composition of F with two translations
gives F(u) = F(u + a) — b, which has the property that F(0) = 0. By similar
arguments, using linear maps which permute the coordinates, we may
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suppose that a k x k minor of nonzero determinant in DF(qa) is

o o
ot au
oY S| :
o', ..., u" : . i
afk 6fk
ot ok =

the upper left k& x k minor.
We define the C"-mapping G: 4, — R" by

Glu's...,um) = (f s o) S5t ) uk ).
Then .
ot o
out o
DG = : : * ’
ot .ot
out ou"
O In—k

where I,,_, is the (n — k) x (n — k) identity, the terms in the lower left block
are zero, and those in the upper right do not interest us. This matrix is
nonsingular at v = a, hence there is in A, an open set 4, containing a on
which G is a diffeomorphism onto an open subset U, = G(A4,). From the
expression for G and the definition of U, we have Fo- G~ '(0) =0,
F.G YU,)c B,. and

FoG i(xh o oxh o xm) = (xS ()L (X))

with f**i(x) = f**J. G~ '(x). We may verify this by remembering that G~
isone-to-oneon U, andfor/ = 1,..., k the values of x' are f!(u),ue G~ '(U,),
sof! G™Y(x) = f(u) = x" So far we have used only the fact that the rank of
DF at a (hence in a neighborhood of a) is at least k. We have not used the
fact that it is identically k on A, but we need this in the next step which
requires that the rank be at most k. We compute D(F - G~ ') from the for-
mula above for F - G™', giving

I, 0
——vafk‘f 1 afk +1
D(F G~')(x) = et o
* : :
- o
Oxk+1 o Ox"
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This is valid on U,, where F - G™! is defined. On the other hand, DG ™! is
nonsingular on U, and G~ '(U,) = A, < A,. Therefore,

rank D(F o G™') = rank(DF - DG ') = k

on U,, which implies that all terms in the lower right-hand block of the
matrix are zero on U, that is, the functions f*!,...,f™ depend on
x!, ..., x* only.

Now we define a function T from a neighborhood V, of 0 in R™ into

B, = R™ by the formula

TG ..., Ly = (yl,...,_y"‘,y"‘+l + 4y, L ),
R o i VA )}

The domain V, is subject to two restrictions, first it must be small enough so
that for y = (y',..., y") eV, the functions f**4(y!, ..., y*) are defined and
second, small enough so that T(V,) c B,. It is clear that T(0) = 0. If we
compute DT, we see that it is nonsingular everywhere on V, since it takes the

form
- (42)

Therefore T is a C” diffeomorphism of a neighborhood V of 0 in V; onto an
open set B « R™; the origin of R™ is in B and B = B,. Choose a neighbor-
hood U = U, of the origin in R" such that F - G~ '(U) < B;let A = G~ '(U)
and let H = T™'. Then

G-! F H

U A > B > V

are C" maps of these open sets and G™!, H are (" diffeomorphisms onto A4
and V, respectively. Finally we see that

HoFoG Yx',...,xkx** ., x") = (x,..., x5 0,...,0)e R™
since
FoG 1(x!, . xb Xk xm) = (x, X P (x L xh),

LMt xR).

On the other hand, according to its definition above, T must take the value
(et X T LX), L T L xR)) i we set yf = xF for i =,
...,kand yy =0fori=k+1,..., m Because T is one-to-one, it follows
that T7!' takes (x',....x% Ff**'(x',....x"), ..., /™(x',...,x™)) to
(x',.... x5 0,...,0) as claimed.
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(7.2) Corollary We may choose the neighborhoods U and V in either of the
Jollowing ways: (i) U = BX0) and V = B0) or (ii))U = C}(0) and
V = CM0) with the same ¢ > 0 for both U and V. Then if & denotes the
projection of R™ = R* x R™ *to R*and i: R* > R* x R""*is the injection to
the subset R* x {0}, we havern - H o F - G™' . i is the identity on BX(0) in case
(i) or on C¥(0) in case (ii).

Exercises

1. Prove that the rank of the product of two matrices is less than or equal
to the rank of either factor. Show that multiplying a matrix on the left or
right by a nonsingular matrix does not change its rank.

We say that m functions f(x), ..., f™(x) of class C' defined on an open subset U = R" are
dependent if there exists a C*' function F(y'. ..., y™) on R™ which does not vanish on any open
subset but such that F(f'(x),....f™x))=0on U.

2. Show that if f'(x),...,f™(x) are dependent, then the rank of
S, ... f™)/e(xt, ..., x") is less than m. Also as a partial converse show
that if the rank is less than m and constant on U, then the functions are
dependent.

Prove Corollary 7.2.

4, Prove the inverse function theorem from the theorem on rank.

bed

Notes

The implicit function theorem, which is proved in many advanced calculus texts. is essen-
tially equivalent to the inverse function theorem proved in the last section. For a proof of this
latter theorem, which is not based on the contracting mapping theorem, see Spivak [1]. We have
used the form of proof above, since this same principle may be applied to give a proof of the
existence of solutions of systems of ordinary differential equations. All of these theorems are
treated in a unified and very elegant way by Dieudonné [1], although there is a disadvantage for
many readers in the fact that Banach space, rather than R" is used throughout. 8. Lang [1] also
presents a very good treatment along the same lines. A discussion of the contracting mapping
theorem and a sketch of its use in proving the existence theorem for differential equations may
be found in the work of Kaplansky [1].

Although many of the theorems found here are valid for C* functions and mappings and for
C* also, the latter is too restrictive for most of our needs (theorems like those of Section § do
not hold), and " is not strong enough to make Lemma 4.5 hold, which mcans that the
characterization of T,(R") given in Section 4 would have to be abandoned. For this reason. and
since it is very convenient to know that we do not lose differentiability as a result of taking
derivatives, the derivatives of a C* function are also ., C* is the preferred differentiability
class in much of differentiabic manifold theory. We shall consider functions and mappings of
class C* almost exclusively hereafter.
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In the first section we give a precise definition of a C* manifold of dimension n: a topologi-
cal manifold together with a covering by compatible coordinate neighborhoods, that is, a
covering such that a change of local coordinates is given by C”* mappings in R". Several
examples are worked out in detail, the most complicated being the Grassmann manifold of
k-planes through the origin of R".

In Sections 3 and 4 both C* functions and mappings of manifolds are defined in terms of
local coordinates, as is the rank of a mapping, that is, the rank of the Jacobian (in local
coordinates). This enables us to consider certain examples of mappings of maximum rank
(immersions and imbeddings) and leads to the definition of submanifold and regular submani-
fold (Section 5). We require the latter to be subspaces and to be defined locally by the vanishing
of some of the coordinates of suitable local coordinates in the ambient space.

In Section 6 the concept of Lie group is defined. These are groups which are C* manifolds
such that the group operations are C* mappings. It is shown that some standard matrix groups
are Lie groups, for example, the group of orthogonal n x n matrices. In the following section
the action of a Lie group on a manifold is defined and discussed. The group of rigid motions of
E" is an example.

The chapter concludes with a discussion of the special case of the properly discontinuous
action of a discrete Lie group on a manifold and a brief introduction to covering manifolds.

51
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1 The Definition of a Differentiable Manifold

As a preliminary to the definition of a differentiable manifold, we recall
the definition of a topological manifold M of dimension »; it is a Hausdorff
space with a countable basis of open sets and with the further property that
each point has a neighborhood homeomorphic to an open subset of R". Each
pair U, ¢, where U is an open set of M and ¢ is a homeomorphism of U to
an open subset of R", is called a coordinate neighborhood: to q € U we assign
the n coordinates x'(q), ..., x"(q) of its image ¢(g) in R"—each x'(q) is a
real-valued function on U, the ith coordinate function. If g lies also in a
second coordinate neighborhood V,y, then it has coordinates y'(g), ...,
y"(q) in this neighborhood. Since ¢ and Y are homeomorphisms, this defines
a homeomorphism

Yo lioUnV)->y(UnV)
the domain and range being the two open subsets of R” which correspond to

the points of U n V by the two coordinate maps ¢, , respectively. In coor-
dinates, - ¢~ ! is given by continuous functions

yo=HK(x', ..., x"), i=1,..,n,

giving the y-coordinates of each ge U n V in terms of its x-coordinates.
Similarly @y~ ' gives the inverse mapping which expresses the x-
coordinates as functions of the y-coordinates

x'=g'y" .., Y0 i=1,....n
The fact that ¢ o ! and { o @ ! are homeomorphisms and are inverse to
each other is equivalent to the continuity of h'(x) and g/(y),i,j = 1,...,n
together with the identities

hi(gl(}’)v-wgn()’))z}’i, l= 1,...,",
and

g (x),...."x))=x, j=1,...,n

Thus every point of a topological manifold M lies in a very large collec-
tion of coordinate neighborhoods, but whenever two neighborhoods overlap
we have the formulas just given for change of coordinates. The basic idea
that leads to differentiable manifolds is to try to select a family or subcollec-
tion of neighborhoods so that the change of coordinates is always given by
differentiable functions.

(1.1) Definition We shall say that U, ¢ and V, are C*-compatible if
U n V nonempty implies that the functions h'(x) and g/(y) giving the change
of coordinates are C*; this is equivalent to requiring @ o y "' and o ¢~ ' to
be diffeomorphisms of the open subsets (U n V) and (U N V) of R". (See
Fig. 11L.1)
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Figure 1111

(1.2) Definition A differentiable or C* (or smooth) structure on a topologi-
cal manifold M is a family # = {U,, ¢,} of coordinate neighborhoods such
that:

(1) the U, cover M,

(2) for. any o, f the neighborhoods U,,, and Ug, ¢, are
C™-compatible,

(3) any coordinate neighborhood V,y compatible with every
U,. @, is itself in %.

A C* manifold is a topological manifold together with a C*-differentiable
structure.

It is, of course, conceivable that for some topological manifold no such
family of compatible coordinate neighborhoods can be singled out. It is also
conceivable that, on the contrary, families can be chosen in a multiplicity of
inequivalent ways so that two inequivalent C* manifolds have the same
underlying topological manifold. These are basic but very difficult questions,
and in fact, are matters of recent research. What is important from our point
of view is that we will be able to find an abundance of topological manifolds
with at least one differentiable structure, thus an abundance of C* mani-
folds; so we may ignore these more difficult questions in what we do here.
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Since there is no danger of confusion, we will often say simply “mani-
fold” for C* manifold; we may also sometimes say differentiable or smooth
manifold. Moreover, “coordinate neighborhood * will hereafter refer exclu-
sively to the coordinate neighborhoods belonging to the differentiable struc-
ture. Should we have occasion to consider a manifold without differentiable
structure, we will say topological manifold and topological coordinate
neighborhood.

By requiring only that the change of coordinates be given by €T functions for r < w0, we
could define C"-compatible coordinate neighborhoods and C’ manifolds, C° denoting a topolo-
gical manifold. One can also require that the change of coordinates be C, that is, real-analytic.
We shall restrict ourselves almost exclusively to the C* case.

Before proceeding we will prove the following proposition, which will
make it easier to give examples of differentiable manifolds; it shows that (1)
and (2) of Definition 1.2 are the essential properties defining a C*® structure.
Thus in examples we need only check the compatibility of a covering by
neighborhoods.

(1.3) Theorem Let M be a Hausdorf{ space with a countable basis of open
sets. If V = {Vy, Y} is a covering of M by C®-compatible coordinate neigh-
borhoods, then there is a unique C™ structure on M containing these coordinate
neighborhoods.

Proof We shall define the differentiable structure to be the collection %
of all topological coordinate neighborhoods U, ¢ which are C*-compatible
with each and every one of those of the given collection {V;, y;}. This new
collection naturally includes the ¥}, y; and so property (1) of Definition 1.2
is automatically satisfied. As to property (2), suppose U, ¢ and U’, ¢, U N
U # @, are in the collection we have defined. Then are they
C”-compatible ? Since they are (topological) coordinate neighborhoods, the
functions ¢’ < ¢! and @« ¢’ ! giving the change of coordinates are well-
defined homeomorphisms on open subsets of R", and we need only be sure
that they are C*. Let x = ¢(p) be an arbitrary point of ¢(U n U’). Then
peV, for one of the coordinate neighborhoods V;,y;. Therefore
W=V,nUnU is an open set containing p, and ¢(W) is an open set
containing x. We have ¢'c ¢ ' =@ oty oyyop™! on (W), but
@ oY~ and o ¢! are C* since U, p and U’, ¢ are both C*-compatible
with V5, ¢, . It follows that their composition ¢’ c ¢ ! is C* on ¢(W); and
since it is C* on a neighborhood of any point of its domain, it is C®. This
proves everything except property (3), which is automatic: Any U, ¢ that is
compatible with all of the coordinate neighborhoods in our collection cer-
tainly has this property with respect to the subcollection {V}, ¥4}, and is thus
in the differentiable structure.
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(14) Remark It is important to note that a coordinate neighborhood
U, ¢ depends on both the neighborhood U and the map ¢ of U to R". If we
change either, then we have a different coordinate neighborhood. For exam-
ple, if ¥V < U is an open subset, then V, |V is a new coordinate
neighborhood—technically at least—although the coordinates of pe V are
the same as its coordinates in the original neighborhood. If pe U, we may
always choose V so that ¢(V) is an open ball B(a), or cube C2(a), in R" with
©(p) = a as center. Or we might alter ¢ by composing it with a map
0:R"— R", say a translation so that some pe U has coordinates
(0,0, ...,0). Of course, this gives a new coordinate system on U, and thus a
new coordinate neighborhood U, 8 - ¢.

Using the theorem just proved, we give some preliminary examples of
manifolds.

(1.5) Example (The Euclidean plane) (See comments in Section 1.2.)
Once a unit of length is chosen, the Euclidean plane E? becomes a metric
space. It is Hausdor{f and has a countable basis of open sets; the choice of an
origin and mutually perpendicular coordinate axes establishes a homeomor-
phism (even an isometry) ¥ : E2 —» R2. Thus we cover E? with a single
coordinate neighborhood V, ¢ with V = E? and y(V) = R2. It follows not
only that E? is a topological manifold, but by Theorem 1.3, V, y determines
a differentiable structure, so E? is a C* manifold.

There are many other coordinate neighborhoods on E? which are
C™-compatible with V, i, that is, which belong to the differentiable struc-
ture determined by V, . For example, we may choose another rectangular
Cartesian coordinate system V', . Then it is shown in analytic geometry
that the change of coordinates is given by linear, hence C* (even analytic!)
functions

p' = x'cos 0 — x*sin0 + h, y?=x'sinf + x?cos 0 + k.

Note that ¥V = V', but the coordinate neighborhoods are not the same
since Y’ # Y, that is, the coordinates of each point are different for the two
mappings.

It is also possible to choose as U the plane minus a ray extending from a
point 0. Using the angle 0(q) measured from this ray to Og and the distance
r(q) of ¢ from 0 as coordinate functions on U we define a homeomorphism
¢(q) = (r(g), 0(g)) from U to the open set {(r, 0) |r > 0,0 < < 2r} in R~
The equations for change of coordinates to those above, assuming that 0 is
the origin and that the ray is the positive x-axis, are

x!' = rcos#, x? = rsin 6,
which again are analytic, thus C®. If the origin and axes are not chosen in
this special way, then we must compose this mapping on R? with a rotation
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and translation of the type above to obtain the functions giving the change
of coordinates. The various coordinate neighborhoods just enumerated
being C*-compatible with our original V,  are in the differentiable struc-
ture on E? determined by it.

In the same manner Euclidean space of arbitrary dimension n gives an
example of a C* manifold, covered by a single coordinate system. Again, this
may be done in a variety of ways. As we have noted it is customary to
identify E" and R" since the former is difficult to axiomatize; this is equiva-
lent to choosing a fixed rectangular Cartesian coordinate system covering all
of E". Many examples will make it abundantly clear that manifolds in gen-
eral can not be covered by a single coordinate system nor are there preferred
coordinates. Thus it is often better in thinking of Euclidean space as a
manifold to visualize the model E" of classical geometry—without
coordinates—rather than R", Euclidean space with coordinates. (However,
we will later follow common practice and identify E" and R".)

A finite-dimensional vector space ¥ over R can be identified with
R". n = dim ¥, once a basis e, ..., e, is chosen: v= x'e; + - + x"e, is
identified with (x', ..., x") in R"; similarly, the m x n matrices (a,;) with R™
with the matrix 4 = (a;;) corresponding to

(all""’aln;"';aml""’amn)'

Using these identification mappings we may define a natural topology and
C™ structure on V and on the set .#,,,(R) of m x n matrices over R. We
suppose them to be homeomorphic to Cartesian or Euclidean space of
dimension n in the case of ¥, and mn in the case of .#,,(R) and covered by a
single coordinate neighborhood, the identification map above being the
coordinate map.

(1.6) Example (Open submanifolds) An open subset U of a C* mani-
fold M is itself a C* manifold with differentiable structure consisting of the
coordinate neighborhoods V', ' obtained by restriction of §, on those coor-
dinate neighbohoods V, ¢ which intersect U, to the openset V' =V n U,
thatis, ¢’ = y|V n U. This gives a covering of U by topological coordinate
neighborhoods which are C*-compatible, and hence defines a C* structure
on U, which is said then to be an open submanifold of M.

A particular case of some interest is the following. We consider the subset
U=Gln R)of M = .#,(R), n x n matrices over R, which consists of all
nonsingular n x n matrices. Since an n x n matrix 4 is nonsingular if and
only if its determinant det A is not zero, we have

U={Ae#,(R)| det A # 0},

which is the usual definition of the group Gl(n, R). Since det A is a polyno-
mial function of its entries a;;, it is a continuous function of its entries and of
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A in the topology of identification with R™. Thus U = Gl(n, R) is an open
set—the complement of the closed set of those 4 such that det A = 0, and
we see that Gl(n, R) is an open submanifold of .#,(R).

(1.7) Theorem Let M and N be C* manifolds of dimensions m and n. Then
M x N is a C* manifold of dimension m + nwith C* structure determined by
coordinate neighborhoods of the form {U x V, @ x Y}, where U, ¢ and V, y
are coordinate neighborhoods on M and N, respectively, and ¢ x Y(p, q) =

(o(p). ¥(q)) in R™*" = R™ x R".

The proof is left as an exercise. An important example is the torus
T? = §' x §', the product of two circles (see Fig. II1.2). More generally,
T" = §!' x -+ x S, the n-fold product of circles is a C* manifold obtained
as a Cartesian product.

Figure 111.2

(1.8) Example (The Sphere) We give a fairly detailed proof, using
Theorem 1.3, that the unit 2-sphere S = {xe R’ | ||x|| = 1} is a C* manifold
(see Fig.ll11.3). The idea used is an elaboration of that discussed in
Section I.3. It extends in an obvious way to $" !, the unit n — 1 sphere in R".
A somewhat simpler method, using stereographic projection, is left to the
exercises; it also extends to §" .

We take $? with its topology as a subspace of R, that is, U is open in 2
if U = U n $? for some open set U = R*. This implies that S2 is Hausdorff
with a countable basis; we shall show that it is locally Euclidean. Fori = 1,
2, 0r 3, let U ={(x"x%x%|x">0} and U; = {(x", x% x%)| x' < 0};
these U} are two open sets into which the coordinate hyperplane x; = 0
divides R*. The relatively opensets U = U} n §%,i= 1,2, 3, cover 2. We
define ¢f : U} — R? by projection:
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Figure 1113

These are homeomorphisms to the open set W = {xe R*||x|| < 1}asis
easily checked; thus S? is locally Euclidean and a topological manifold.
However, the formulas for the change of coordinates are C*, and thus these
coordinate neighborhoods are C*-compatible. For example, of o (py) 'is
given on U} n U; by composing (¢5)~! and ¢

(tpz )~ 1

(x', x}) —— (x', —(1 = (x')* = (x*)%)'73, )
(x', —(1 — (x})? — (x*)?)2, x3) “’_“, (-(1 - (x')? — (x*)})'72, x3)‘

Then, by change of notation, using (u', u*) as U3 -coordinates and (v', v?) as
U -coordinates instead of (x!, x*) and (x?, x?), we have

o = __(1 _ (ul)z _ (u2)2)1/2, v? = ul.

The v' are C* functions of the ' since the square root term is never zero on
f(ut, 1) | ') + () < 1}

By similar computations, @3 o (@7)™' is C® on {(v', v?)| (') +
(v¥)* < 1}. Thus the coordinate neighborhoods U{, ¢} and U3, @; are
C™-compatible. Parallel arguments apply to the other cases. This naturally
defined covering of % by eight coordinate neighborhoods determines a
unique C* structure.

Thus S? is an example of a manifold which is a subset of another mani-
fold, namely R?, and which satisfies certain other conditions by virtue of
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which it is a manifold. Very many examples will be of this type as will be seen
later; they are called submanifolds (to be defined). A two-dimensional sub-
manifold of E* or R? is often called a surface in Euclidean space and a
one-dimensional submanifold is called a curve; planes and spheres, circles
and lines are the simplest examples. Classical differential geometry dealt
extensively with these two cases. Manifolds frequently arise, however, in
other ways than as submanifolds. In light of this it is natural to ask whether
every manifold can be represented as a submanifold of some simple mani-
fold, especially of Euclidean space. This question presents serious difficulties,
and will be considered later. The next section illustrates some of these
comments.

Exercises

1. Prove Theorem 1.7.

2. Using stereographic projection from the north pole N(0, 0, + 1) of all of
the standard unit sphere in R except (0, 0, — 1) determine a coordinate
neighborhood Uy, @y . In the same way determine by projection from
the south pole S(0, 0, — 1) a neighborhood Ug, s (see the accompany-
ing figure). Show that these two neighborhoods determine a C* struc-
ture on S2. Generalize to §" 1.

3. Check that Definitions 1.1 and 1.2 and Theorem 1.3 are valid if we
replace C* everywhere by ', similarly C® (real-analytic).

4. Given any 0 < r < oo, show that any point p of a manifold M has a
coordinate neighborhood U, ¢ with ¢(p) = (0, ..., 0) and ¢(U) = B;(0).

5. Let.#,,(R) be the space of all real m x n matrices and .#%,(R) be the
subset of all those m x n matrices whose rank is > k. Show that #},(R)
is an open subset of .#,,,(R).
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2 Further Examples

In this section we shall discuss two related examples of “ abstract ” mani-
folds, that is, manifolds which are not defined as submanifolds of Euclidean
space. The first example is the space of classical (real) projective geometry,
the second—technically more difficult to define than any example we have
met thus far—is the Grassman manifold, consisting of all k-planes through
the origin in R", n > k; it will be treated more fully in Section IV.9. Both
examples—in fact the latter includes the former—arise from equivalence
relations defined on simpler manifolds, the underlying space of the new
manifold being the set of equivalence classes with a suitable topology.

Let X be a topological space and ~ an equivalence relation on X.
Denote by [x] = {ye€ X | y ~ x} the equivalence class of x, and for a subset
A c X, denote by [A] the set | J,. ,[a], that is, all x equivalent to some
element of 4. We let X/~ stand for the set of equivalence classes and denote
by n: X = X/~ the natural mapping (projection) taking each x € X to its
equivalence class, n(x) = [x]. With these notations we define the standard
quotient topology on X/~ as follows: U = X/~ is an open subset if n~'(U)
is open; the projection = is then continuous.

(2.1) Definition With the above notation and topology we shall call X/~
the quotient space of X relative to the relation ~.

As a simple example let X = R the real numbers and let Z be the
integers. We define x ~ y if x — ye Z and denote by R/~ the quotient
space. We shall leave as an exercise the proof that this quotient space may be
naturally identified with §' = {ze C| |z| = 1}, the unit circle in the com-
plex plane, and that n: R —» R/~ is then identified with the map =n(t) =
exp(2nt/ —1). Note that X/~ is a space of cosets of a group relative to a
subgroup; this situation occurs frequently.

(2.2) Definition An equivalence relation ~ on a space X is called open if
whenever a subset A — X is open, then [4] is also open.

Our examples will usually be open equivalence relations. The following
lemma will show why.

(23) Lemma An equivalence relation ~ on X is open if and only if 7 is an
open mapping. When ~ is open and X has a countable basis of open sets, then
X/~ has a countable basis also.

Proof Let A = X be an open subset. Since [4] = =~ '(n(A4)), we see by
definition of the quotient topology on X/~ that [A] is open if = is open and
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conversely [ 4] open implies 7(A4) is open. Now suppose ~ is open and X has
a countable basis {U;} of open sets. If W is an open subset of X/~, then

Y W) UJEJ U; for some subfamily of {U;} and W = n(n™'(W)) =
UJEJ n(U;). It follows that {n(U;)} is a basis of open sets for X/~. ]

This lemma is clearly useful in determining those equivalence relations
on a manifold M whose quotient space is again a manifold, for a manifold
must be a Hausdorfl space with a countable basis of open sets. Unfor-
tunately, there is no simple condition which will assure that the quotient
space is Hausdorfl. In fact, as Exercise 2 shows, a quotient space X/~ may
be locally Euclidean with a countable basis of open sets and still fail to be
Hausdorfl. Nevertheless we obtain important examples by this method,
sometimes with the assistance of the following lemma.

(24) Lemma Let ~ be an open equivalence relation on a topological space
X. Then R = {(x, )| x ~ y} is a closed subset of the space X x X ifand only
if the quotient space X/~ is Hausdorff.

Proof Suppose X/~ is Hausdorff and suppose (x, y) ¢ R, thatis, x £ y.
Then there are disjoint neighborhoods U of n{x) and V of n(y). We denote
by U and V the open sets =~ !(U) and =~ '(V), which contain x and y,
respectively. If the open set U x ¥V containing (x, y) intersects R, then it
must contain a point (x’, y') for which x’ ~ y’, so that n(x’) = =n()’) contrary
to the assumption that U n V = . This contradiction shows that U x V
does not intersect R and that R is closed.

Conversely, suppose that R is closed, then given any distinct pair of
points 7(x), #(y) in X/~, there is an open set of the form UxV containing
(x, ¥) and having no point in R. It follows that U = n(U)and V = n(V)are
disjoint. Lemma 2.3 and the hypothesis imply that U and V are open. Thus
X/~ is Hausdorfl. |

(2.5) Example (Real projective space P(R)) Welet X = R"*' — {0}, all
(n + 1)-tuples of real numbers x = (x',..., x"" ') except 0 = (0, ...,0), and
define x ~ y if there is a real number ¢ # 0 such that y = rx, that is,

Py eevs Yns1) = (X g0 ooy X0 1)

The equivalence classes [x] may be visualized as lines through the origin
(Fig.111.4). We denote the quotient space by P"(R); it is called real projective
space. We prove:

P"(R) is a differentiable manifold of dimension n.
To do so we first note that #: X — P"(R) is an open mapping. If t # O is a
real number, let @,: X = X be the mapping defined by ¢,(x) = tx. It is
clearly a homeomorphism with ¢, ! = ¢,,. If U = X is an open set, then
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Figure 1114

[U] = U @,(U), the union being over all real t # 0. Since each ¢,(U) is open,
[U] is open and = is open by Lemma 2.3.

Next we apply Lemma 2.4 to prove that P*(R) is Hausdorfl. On the open
submanifold X x X < R"*! x R"*! we define a real-valued function

f(x, y) by
fxhoxm oy Lyt ) = Y (Y — xy)A
i)
Then f(x, y) is continuous and vanishes if and only if y = tx for some real
number t # 0, that is, if and only if x ~ y. Thus

R={(xy)[x~y}=17"0)

is a closed subset of X x X and P*(R) is Hausdorfl.

We define n + 1 coordinate neighborhoods U;, ¢;,i=1,...,n + 1, as
follows: Let U; = {xe X |x' # 0} and U; = n(U;). Then ¢;: U; - R" is
defined by choosing any x = (x?, ..., x"*!) representing [x] € U, and putting

It is seen that if x ~ y, then ¢,(x) = ¢,(y); moreover ¢,(x) = ¢@;(y) implies
x ~y. Thus ¢;: U;— R" is properly defined, continuous, one-to-one, and
even onto. For ze R", ¢; '(z) is given by composing a C* map of R"to R"**
with #, namely, ¢; '(z',...,2") = n(z',..., 2"}, + 1,2, ..., z"); therefore
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@; ! is continuous. Thus P"(R) is a (topological) manifold and is C* if the

coordinate neighborhoods are C*-compatible, that is, ¢, o ¢; ' is C* (where
defined) for 1 < i, j < n + 1. The verification is simple and explicit and is
left to the reader. This completes the proof that P"(R) is a manifold.

(2.6) Example (Grassman manifolds G(k, n)) The Grassman manifold
G(k, n) is the set of all k-planes through the origin of R"- or k-dimensional
subspaces of ¥ = R" (as a vector space)—endowed with a suitable topology
and differentiable structure. We will realize G(k, n) as a quotient space aris-
ing from an equivalence relation on the manifold F(k, n) of k-frames in R",
where we define a k-frame in R" to be a linearly independent set x of k
elements of R";

x, = (x}, ..., x1),

Xy = (X;,...,X:).

A k-frame in R" may be identified with the k x n matrix, which we also
denote by x, whose rows are x,, ..., x,. We use the fact that the set .#,,(R)
of all k x n real matrices is a differentiable manifold by virtue of its
identification with R*". The matrices which correspond to k-frames, that is,
those of rank k, form an open subset and hence F(k, n) is a differentiable
manifold. This is because of the fact that “x is of rank k™ means that the
following two equivalent statements hold: (i) the row vectors form a linearly
independent set and (ii) not all k x k minor determinants are zero simultan-
eously. Statement (ii) shows that the rank is less than k at the simultaneous
zeros of a set of continuous functions on .#,(R), that is, on a closed subset,
so F(k, n) is open.

Clearly each frame x determines a k-plane or point of G(k, n), namely, the
subspace spanned by x,, ..., x;, so that we have a natural map of F(k, n)
onto G(k, n). Moreover X = (x,,..., x;)and y = (y,, ..., y;) determine the
same k-plane if and only if y, = )%, a;;x;, where a = (a;;) is a nonsingular
k x k matrix, that is, if and only if y = ax, the product of the matrices a and
x. It is natural to define ~ by

y~x if y=ax, aeGlk R)

We then identify G(k, n) with F(k, n)/ ~, the set of equivalence classes, and
the above mentioned natural map with 7. We sketch a proof that G(k, n)
with the quotient space topology has the structure of a differentiable mani-
fold of dimension k(n — k). A different proof will be given in Section IV.9.
Note that if k = 1, then ae G(1, R) = R* and G(k, n) becomes P"~!(R). The
proof that 7 is an open mapping is analogous to Example 2.5 and is left to
the reader. The proof that G(k, n) is HausdorfT is trickier, but is also left as an
exercise.
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It remains to describe a covering by coordinate neighborhoods with
C™-compatible coordinate maps so that Theorem 1.3 may be applied to
complete the proof. We shall use the k x k submatrices of xe .#,,(R) to
accomplish this. Let J = (j,, ..., j,) be an ordered subset of (1, ..., n), for
example, J = (1,2,...,k) and J' be the complementary subset [for the
example then, J' = (k + 1,..., n)]. By x, we denote the k x k submatrix
(xit), 1 <i, I <k, of the k x n matrix x, and by x,, we denote the com-
plementary k x (n — k) submatrix obtained by striking out the columns
jir .- ji of x. Let U, be the open set in F(k, n), consisting of matrices for
which x, is nonsingular and let U, = n(U,) be the corresponding open set in
G(k, n). Each ye U, is equivalent to exactly one k x nmatrix x in which the
submatrix x, is the k x k identity matrix; for example, if J = (1, 2,..., k),
then x is of the form

-0 X1, k+1 70 X
0 - 0

X= a .
0 = 1 Xpper 7 X

(In fact the x equivalent to a matrix y for which y, is nonsingular is given by
the matrix formula x = y; 'y.)

We define ¢, : U, - .#,(,-(R), identified with R*"~¥, by deleting the k
columns corresponding to J in this representative x of y, thus ¢,([y]) = x,.
(the matrix comprising the last n — k columns, in the example above). We
leave it as an exercise to show that ¢, is properly defined and maps U, onto
R*"~K homeomorphically and that the U, ¢,, for all subsets J of k distinct
elements of (1,2, ..., n), form a covering of G(k, n) by C*-compatible coor-
dinate neighborhoods; a verification of this for G(2, 4), the 2-planes through
the origin of R*, is sufficient to show how to proceed in general. As men-
tioned, a different proof will be given later.

Exercises

1. Prove the statements after Definition 2.1 concerning R/~, S, and the
mapping n: R - R/~. Show that & is an open mapping.

2. Let X consist of the disjoint union of two copies of the real line,
X=R,UR,, thatis, Uc X isopenif U= U, u U, with U, open in
R;,i=1,2. We define ~ on X as follows: Any t; > 0, t;€ R;, is equiva-
lent only to itself. If ¢, € R, is negative, it is equivalent to itself and to the
t, € R, which has the same value. Thus X/~ is obtained by pasting
together or identifying corresponding negative numbers of R, and R,
(compare Section 1.3, Exercise 1).
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Show that X/~ is locally Euclidean and has a countable basis of
open sets but is not Hausdorff.

3. Leta: S$" — S" be the map of the unit sphere in R"*! taking each x to its
antipodal point a(x) = —~x. Show that x ~ yif y = x or y = a(x) is an
equivalence relation and that $"/~ is naturally identified with P*(R).

4. Show that P?(R) may be obtained from the circular disk D? = {xe R?|
x? + y? < 1} by identifying opposite endpoints of each diameter. State
the problem in terms of an equivalence relation on D?.

5. Let X be asquare with its boundary and define ~ on X as follows: Each
interior point is equivalent only to itself, each boundary point to the
boundary point opposite (the four corners are all equivalent). Determine
the nature of the quotient space X/~.

6. Show that n: F(k, n) = G(k, n) is an open mapping and that G(k, n) is
Hausdorff. [Hint: show that x ~ y if and only if a certain collection of
(k + 1) x (k + 1) minor determinants of the 2k x n matrix whose rows
are Xy, ..., X ¥» ..., yi all vanish and apply Lemma 2.4.]

7. In the case G(2, 4) complete the proof that this space is a C* manifold.

8 LetJ,,....Jy, N = (§), be the collection of distinct subsets (1, 2,..., n)
containing k integers and for each x € F(k, n), let |x,| = det x; . Define
a mapping ®: F(k,n) — PY(R) by @(x) = [(|x,,|,-., |x,,|)] and
show x ~ y implies ®(x) = ®(y) so that ® defines a mapping of G(k, n)
into PY(R). Show that this mapping is continuous and univalent. Use
this to prove that G(k, n) is Hausdorff.

3 Differentiable Functions and Mappings

On a topological space the concept of continuity has meaning; in an
analogous way, on a C* manifold we may define the concept of C* function.

Let f be a real-valued function defined on an open set W, of a C*
manifold M, possibly all of M; in brief, f: W, - R. If U, ¢ is a coordinate
neighborhood such that W, n U # & and if x', ..., x" denotes the local
coordinates, then f corresponds to a functlon f(x oo X" on (W, N U)
defined by f=f @', that is, so that f(p) = f(x"(p), ..., x"(p)) = [ (¢(p))
for all PE W, U. We will customarily omit the caret and use the same
letter * /™ for f'as defined on Wf and for / its expression in local coordin-
ates. Ordinarily this will result in no confusion; if two coordinate neighbor-
hoods U, ¢ and V,y are involved, we will use different letters for the
coordinates, say x', ..., x"and y', ..., y". Thus for pe W, n U n V we have,
omitting carets,

(p) =S(x" () ... x"(P)) =S¥ (P). .-, V(P)),

the latter two f’s denoting f’s, or f< ¢ ' and f ™!, respectively, the ex-
pressions in local coordinates.
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(3.1) Definition Using the notation above, f: W; = R is a C* function if
each pe W, lies in a coordinate neighborhood U,¢ such that
foo Yxt ..., x") = f(x!, ..., x") is C* on o(W, n U). [Clearly, a C* func-
tion is continuous.]

Among the C® functions on M are the n-coordinate functions
(x'(g), ..., x"(g)) of a coordinate neighborhood U, ¢. More precisely, if
n': R" - R is defined by n'(x!, ..., x") = x', these functions are defined by
xi(q) = =’ - ¢(q), and their expression in local coordinates, on ¢(U), by

1 1

X(x!, ., x") = X7 (x L, X)) = (L, xT) = X

As mentioned above, the caret is usually omitted so we have the statement
xi(x',...,x") = x', i = 1,..., n,—somewhat confusing since the same letter
is used for a function and its values.

It is a consequence of the definition that if fis C* on Wand V = Wisan
open set, then f | V is C* on V. Moreover, if W is a union of open sets on
each of which a real-valued function fis C*, then fis C* on W. Using the C*
compatibility of coordinate neighborhoods, it is easily verified that if fis C*
on Wand V, y is any coordinate neighborhood intersecting W, then fo !
is C* on the open set Y(V ~ W) in R".

Just as in the case of R" we proceed from definition of C* function to
definition of C* mapping. Suppose that M and N are C* manifolds,
W < M is an open subset, and F: W — N is a mapping, then we make the
following definition.

(3.2) Definition F is a C® mapping of W into N if for every pe M there
exist coordinate neighborhoods U, ¢ of p and V, y of F(p) with F(U) < V
such that Y o Fo ¢~ !: @(U) —» (V) is C* in the sense of Section I1.2.

More precisely, this means that F|U: U — V may be written in local
coordinates x',..., x" and y', ..., y™ as a mapping from (U) into (V) by

F(x!,...,x") = (SUxS X ™M X))

[or simply y' = fi(x), i = 1,..., m] and each f#(x) is C* on ¢(U). Note that
C* mapping is a more general notion than C* function, the latter being a
mapping to N = R, which is, of course, the same as R'.

(3.3) Remark It is important to note that C* mappings are continuous;
that their restrictions to open subsets are C*; and that any mapping from an
open subset W < N into M, whose restriction to each of a collection of open
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sets (which cover W) is C%, is necessarily C* on W. As with
Definition 3.1, the C* compatibility of local coordinate neighborhoods,
Corollary 11.2.4, and the remarks above show easily that the property does
not depend on any particular choice of coordinates. Similarly it follows from
the same corollary that composition of C* mappings is again a C* mapping.

Many authors refer to C* manifolds, functions, and mappings as smooth.
From now on we shall refer to differentiable manifold, function and mapping
although this is not very logical since we previously (in Chapter 11) used this
word in a much weaker sense than C®, One reason that C* is a desirable
differentiability class to use is that when we later take derivatives of C*
functions on manifolds, we obtain C® functions—in the " case we would
obtain C"~! functions. Thus assuming infinite differentiability relieves us of
many irritating concerns about order of differentiability. Of course, the same
would be true for C (real-analytic), but this is too restrictive for most
purposes since we are unable to obtain important theorems of the following

type.

(3.4) Theorem Let F be a closed subset and K a compact subset of a C*
manifold M with F n K = 3. Then there is a C* function f defined on M
which has the value +1 on K and 0 on F.

Proof The proof of this theorem and that of the following corollary
require a slight modification of Theorem II.5.1. This is left to the reader as
an exercise. |

(3.5) Corollary Let U be an open subset of a manifold M, suppose pe U,
and let fbe a C*® function on U. Then there is a neighborhood V of pin U and a
C* function f* on M such that f* = fon V and f* = 0 outside of U.

We conclude this section with a definition, an example, and some re-
marks on a basic problem referred to in Section 1.

(3.6) Definition A C* mapping F: M — N between C* manifolds is a
diffeomorphism if it is a homeomorphism and F~' is C*. M and N are
diffeomorphic if there exists a diffeomorphism F: M - N.

This extends the concept of diffeomorphism, previously defined for open
subsets of R" only, to arbitrary C® manifolds. Diffefomorphism of manifolds
is an equivalence relation since composition of C® maps is C* and composi-
tion of homeomorphisms is a homeomorphism. From this transitivity fol-
lows; reflexivity and symmetry are obvious from the definition. It is
important that F~!, as well as F, be C* as the following example shows.
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(3.7) Example Let F: R — R be defined by F(t) = ¢>. Then Fis C* and a
homeomorphism, but it is not a diffeomorphism since F~!(t) = ¢'/* and this
is not even of class C'—let alone C*—at t = 0. This same example shows
how it is possible to define two distinct C* structures on R. The first is the
usual one defined by letting U = R and ¢: U — R be the identity map; this
determines a C™ structure on R by Theorem 1.3. We may also consider the
structure defined by the coordinate neighborhood V,y with ¥V = R and
Y: V — R defined by y(t) = t>. Then @ oy~ '(t) = t'* so that U, ¢ and
V, y are not C*-compatible and hence not in the same differentiable struc-
ture. However, R with its first structure—the usual one—is diffeomorphic to
R, denoting R with its second structure, the diffeomorphism F: R — R being
defined by F(t) =t'* so that in local coordinates it is given by
yoFop l(t)=1t

We have just seen, then, that two C* manifolds with the same underlying
topological manifold but incompatible C® structures can still be diffeo-
morphic. A fundamental question is: Can the same manifold M or homeo-
morphic manifolds have C*® structures which are not diffeomorphic? This
was an unsolved problem for many years, and it was finally settled by
Milnor [4] who proved the existence of two C* structures on S’ which were
not diffeomorphic.

We conclude with a remark which is occasionally useful: A necessary
and sufficient condition that an open set U of M, together with a mapping
¢: U — R", be a coordinate neighborhood is that ¢ be a diffecomorphism of
U onto an open subset W of R". Conversely, if W is an open subset of R” and
y: W —> M is a diffeomorphism onto an open subset U, then U,y ! isa
coordinate neighborhood. We sometimes call W,y a parametrization,
especially in the case dim M = 1.

Exercises

1. Show that a continuous mapping F: M — N, C* manifolds, is C* ifand
only if for any C* function f on an open set W, — N the functionf- F is
c~.

2. Verify the statements of Remark 3.3.

3. Prove the statement of the concluding paragraph of this section.

4. Prove Theorem 3.4 and Corollary 3.5 by adapting the proof of
Theorem I1.5.1 to manifolds.

5. Let M, N, and A4 be C® manifolds and p,:M x N> M,
p2: M x N — N be projections to the factors. For (a, b)e M x N, let
itM — M x N be defined by i(p) = (p, b)and j: N - M x N byj(q) =
(a, ). Show that p,, p,, i, and j are C* mappings. Show that a mapping
F:A->M x NisC* ifand only if f; = p, o Fand f, = p, o F are C*,
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6. Suppose M and N are C* manifolds, U an opensetof M,and F: U - N
is C*. Show that there exists a neighborhood V of any pe U, V = U,
such that F can be extended to a C™ mapping F*: M — N with F(q) =
F*(g) for all ge V.

7. ldentify the set of k-frames F(k, n) of R” with the set of k x n matrices of
rank k in .#,,(R) and let n: F(k, n) - G(k, n) be the mapping taking
each such matrix to its equivalence class (see Example 2.6). Show that
this map is C™ relative to the differentiable structure of F(k, n) as an
open submanifold of .#,,(R).

8. Let A, B, M, N be C* manifoldsandlet F: 4 > Mand G: B— Nbe C*
mappings. Show that Fx G:Ax B-Mx N is C* where
(F x G){x, y) = (F(x), G(y))-

4 Rank of a Mapping. Immersions

Let F: N - M be a differentiable mapping of C* manifolds and let
pe N.If U, ¢ and V, y are coordinate neighborhoods of p and F(p), respec-
tively, and F(U) < V., then we have a corresponding expression for F in local
coordinates, namely,

F=yoFop 'ioU)—>y(V).

(4.1) Definition The rank of F at pis defined to be the rank of F at ¢(p) (as
in Section 11.8).

Thus the rank at p is the rank at a = ¢(p) of the Jacobian matrix

ot !
ax! ox"
(')l'm L (‘)fl"
ox! ox" |

of the mapping F(x',...,x") = (f'(x",....x"),..../™(x', ..., x")) expres-
sing F in the local coordinates. This definition must be validated by showing
that the rank is independent of the choice of coordinates. This is left as an
exercise—a second definition which is clearly independent of the choice is
given in the next chapter.

(42) Remark As might be conjectured, the important case for us will be
that in which the rank is constant. In fact Theorem I1.8.1 (theorem on rank)
and its Corollary 11.8.2 can be restated as follows:
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Let F: N - M be as above and suppose dim N = n,dim M = m and rank
F = k at every point of N. If pe N, then there exist coordinate neighborhoods
U, ¢ and V, § as above such that ¢(p) = (0, ..., 0), y(F(p)) = (0, ..., 0) and
F=yoFoq@'is given by

F(x!,...,x") = (x%, ..., x0,...,0).

Moreover we may assume @(U) = C*(0) and (V) = C7(0) with the same
e>0.

An obvious corollary to this remark is: a necessary condition for
F: N - M to be a difftomorphism is that dim M = dim N = rank F. Oth-
erwise k would be either less than n or less than m, in which case the
expression in local coordinates implies that it is not possible for both F and
F~! to be one-to-one, even locally. For example, if k < n in the expression
above, all points in U with coordinates of the form (0,...,0, x**!, ..., x")
are mapped onto the same point of V.

(4.3) Definition Using the notation above, suppose that n < m. We say
that F is an immersion of N in M if rank F = n at every point. If an immer-
sion F:N — M is univalent (injective), then we say that the image
N = F(N), endowed with the topology and C* structure which makes
F:N — N adiffeomorphism, is a submanifold (or an immersed submanifold).

In the next section the concept of submanifold will be carefully elu-
cidated. The remainder of this section will be devoted primarily to some
implications of the concept of immersion, including a number of examples.
In every case that follows, N = R or an open interval of R, and M = R?,
except in the first example where M = R*. We use the natural coordinates
(given by the identity map).

To verify that F is an immersion it is necessary to check that the Jacob-
ian has rank | at every point, that is, that one of the derivatives with respect
to ¢ differs from zero for every value of  for which the mapping F is defined;
this is left to the reader.

(44) Example F:R — R? is given by F(t) = (cos 2nt, sin 2at, t). The
image F(R) is a helix lying on a unit cylinder whose axis is the x*-axis in R®
(Fig. I11.5a).

(4.5) Example F:R — R?is.given by F(t) = (cos 2at, sin 2nt). The image
F(R) is the unit circle S = {(x!, x?)|(x')? + (x*)* = 1} in R?* (Fig. IIL5b).
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(4.6) Example F: (1, c)— R? is given by

F(t) = ((1/1) cos 2mt, (1/t) sin 2mt).
The image is a curve spiraling to (0,0) as ¢ = oo and tending to (1, 0) as
t - 1 (Fig. 11L.6a).

(4.7) Example F: (1, o) —» R? as in the previous example. However, F is
modified so that the image F(R) spirals toward the circle with center at (0, 0)
and radius § as  — co. The mapping is given by

2t 2t

[It is not difficult to check that the Jacobian could have rank 0, that is, both
derivatives dx!/dt and dx?/dt could vanish simultaneouslyon 1 < t < oo if
and only if cot 2t = —tan 2xt, which is impossible (Fig. ITL.6b).]

t+ 1 r+1 .
F(t) = (+ cos 2nt, 7+—f sin 27rt).

{a) (b}

Figure 111.6
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(4.8) Example F:R — R?is given by
F(t) = (2 cos(t — §n), sin 2(t — 37)).

The image is a “ figure eight ” traversed in the sense shown (Fig. ITI.7a) with

oo O

(a) (b)

Figure 1117

the image point making a complete circuit starting at the origin as t goes
from 0 to 2x.

(49) Example G:R — R? again and the image is the “figure eight” as in
the previous example, but with an important difference: we pass through
(0, 0) only once, when t = 4. For t - — oo and t — + 0o we only approach
(0, 0) as limit—as shown in Fig. III.7b. The immersion is given by changing
parameter in the previous example: Let g(t) be a monotone increasing C*
function on —oo0 <t < oo such that g(0) ==, lim,_,g(t)=0 and
lim,., , ,, g(t) = 2n. For example, we may use g(t) == + 2tan™' r. Then
G(t) is given by composition of g(t) with F(¢) from the previous example:

G(t) = F(g(t)) = (2 cos (g(t) — ;) sin Z(g(t) - ;))
(4.10) Example Again F: R — R? so that

|
( ,smm) for 1<t< oo,
F(t) = (\!

0,t + 2) for —wo<t< —L

This gives a curve with a gap as shown in Fig. I[II.8. For —1 <t < +1 we
connect the two pieces together smoothly as shown by the dotted line. This
gives a C* immersion of all of R in R? whose image is as shown. As we shall
see, this is a useful example to keep in mind.
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We may draw some conclusions from these examples about the nature of
immersions. First we note that an immersion need not be univalent, that is,
one-to-one into (injective), in the large, even though it is one-to-one locally
as we see from Remark 4.2. Examples 4.5 and 4.8 show this since, for exam-
ple, in both cases t = 0, +2r, +4mr, ... all have the same image point: (0, 1)
in the case of the circle and (0, 0) for the figure eight.

The second conclusion we can draw is that even when it is one-to-one, an
immersion is not necessarily a homeomorphism onto its image, that is,
F: N - M a one-to-one immersion does not imply that F is a homeomor-
phism of N onto N = F(N) considered as a subspace of M. Examples 4.9 and
4.10 show this: in the case of Example 4.9, N is the figure eight whereas N is
the real line R—two spaces which are not homeomorphic. In the case of
Example 4.10, N is again the real line and N = F(N) as a subspace of R? is
not locally connected at all of its points: there are points on the x?-axis such
as (0, $), which do not have arbitarily small connected neighborhoods; hence
N and N = R are not homeomorphic. In any case, of course, F: N - M is
continuous—since it is differentiable. These examples lead to the definition
of a more restrictive concept.

(4.11) Definition An imbedding is a one-to-one immersion F: N - M
which is a homeomorphism of N into M, that is, F is a homeomorphism of
N onto its image, N = F(N), with its topology as a subspace of M. The
image of an imbedding is called an imbedded submanifold.

We remark that Examples 4.4, 4.6, and 4.7 are imbeddings. The following
theorem, essentially a restatement of the theorem on rank and its corollary
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along the lines of a remark above, show that the distinction between immer-
sions and imbeddings is a global one—it does not depend on the nature of F
locally.

(4.12) Theorem Let F: N —» M be an immersion. Then each pe N has a
neighborhood U such that F | U is an imbedding of U in M.

Proof According to Remark 4.2, we may choose cubical coordinate
neighborhoods U, ¢ and V, y of pe N and F(p) e M, respectively, such that
@(p) = (0,...,0) in R", Y(F(p)) = (0,...,0) in R™ with o(U) = C(0) and
Y(V) = C(0) (cubes of the same breadth ¢) and such that F = o Fo ¢~ !,
the expression of F in these local coordinates, is given by

F(x',...,x") = (x',...,x,0,...,0).

To see that F| U is a homeomorphism of U onto F(U) with the relative
topology, it is enough to see that F is a homeomorphism of C?(0) onto its
image in C7'(0). This is because F(U) < V, an open subset of M, so the
topology of F(U) as a subspace of M is the same as its topology as a
subspace of V, and because ¢: U — CJ(0)and : V — C(0) are homeomor-
phisms. But it is clear that F is a homeomorphism of C7(0) onto the subset
x"*! =... = x™ = 0 of C™(0); hence the theorem holds. |

(4.13) Remark It is convenient to call a subset S of a cube C™(a) in R™ a
slice if it consists of all points for which certain of the coordinates are held
constant. For example, S = {xe CM0)|x"*'=---=x"=0} is a slice
through the center 0 = (0, ..., 0) of C(0). If V, ¢ is a cubical coordinate
neighborhood on a manifold M and §’ is a subset of V such that y/(S') is a
slice S of the cube y(V), then §' is called a slice of V.

We note for future use that in the proof of Theorem 4.12, §' = F(U) is a
slice of V. In general this slice is not equal to the set V ~ F(N) but only
contained in it, even if F is univalent and U is chosen very small. The reader
should verify this using the preceding examples.

Exercises

1. Using the fact that if P and Q are nonsingular matrices, then the rank of
A and PAQ are the same, show that the rank of a mapping of C*
manifolds is independent of the choices of local coordinates made in
Definition 4.1.

2. Show that if the C* mapping F: M — N is one-to-one onto and its rank
is everywhere equal to dim M = dim N, then it is a diffeomorphism.

3. Assume only that the rank of F = dim M = dim N in Exercise 2, and
show that F(M) is an open subset of N.
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4. Show that composition of immersions is an immersion.

5. (i) Show that the restriction to an open subset of a C® function on M
or of a C™ mapping of M is again C*.
(ii) Show thatif M = ) V,, ¥, opensets,and F: M — N is C* on each
V,, then it is C* on M.

6. Show that a continuous mapping F: M — N, C® manifolds, is C* if and
only if for any C* function f on an open set W, — N the function f- F is
C® on F~1(W,).

7. Show that the map F:S" ! - P""!(R), defined by F(x!,...,x") =
[x',..., x"], is C* and everywhere of rank n — 1.

8. Let F: M — B be a C* mapping of manifolds and let A be an (im-
mersed) submanifold of M. Show that F | 4 is a C* mapping into B.

9. Let F:M — N be a continuous mapping of C* manifolds and let {V,, ¢,}
be a covering of N by coordinate neighborhoods with coordinate func-
tions y!, ..., y* on V. Show that F is C* if and only ifevery y! - Fisa
C™ function on F~'(V}), its domain on M.

5 Submanifolds

In this section we shall discuss in some detail the various types of
submanifold. This term is used in more than one sense in the literature;
however all agree that a submanifold N of a differentiable manifold M is a
subset which is itself a differentiable manifold. The confusion arises over the
question of whether or not it should be required to be a subspace of M, that
is, to have the relative topology. We have adopted the definition which
seems to be the most popular, namely, a submanifold N is the image in M ofa
one-to-one immersion F: N' > M, N = F(N’), of a manifold N' into M
together with the topology and C*® structure which makes F: N’ — N a diffeo-
morphism. We also frequently refer to N in this case as an immersed submani-
Jold. As shown by Examples 4.9 and 4.10, the C® structure of N has an
obscure and complicated relation to that of M. A more natural notion—
which we shall now develop, is that of a regular submanifold; as its name
implies, it will be a special case of the one above. It is more natural since its
topology and differentiable structure are derived directly from that of M. We
will first state the characteristic feature of those subsets of a differentiable
manifold M which are regular submanifolds; to do so we suppose
m = dim M and that n is an integer, 0 < n < m.

(5.1) Definition A subset N of a C* manifold M is said to have the
n-submanifold property if each pe N has a coordinate neighborhood U, ¢ on
M with local coordinates x',..., x™ such that (i) ¢(p) = (0,...,0), (ii)
o(U) = CT(0), and (iii) (U A" N) = {xe C7(0) | x"*!' = - = x" =0} I[N
has this property, coordinate neighborhoods of this type are called preferred
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coordinates (relative to N). Figure I11.9 shows such a subset N in M = R*
(n=2and m=3).

Note that immersed submanifolds do not always have this property, for
example, take p = (0, 0) in Examples 4.9 and 4.10.

Denote by n: R™ — R", n < m, the projection to the first n coordinates,
then we may state the following lemma, using the notation above.

13

)

stz pUAN)
—
¥2

Figure 111.9

(52) Lemma Let N = M have the n-submanifold property. Then N with
the relative topology is a topological n manifold and each preferred coordinate
system U, ¢ of M (relative to N) defines a local coordinate neighborhood V,
on Nby V=UnNand p =mno¢|V. These local coordinates on N are
C*-compatible wherever they overlap and determine a C* structure on N
relative to which the inclusion i: N - M is an imbedding.

Proof Assume N has the subspace topology relative to M. Then V, ¢
are topological coordinate neighborhoods covering N;for V = U n Nisan
open set in the relative topology and § is a homeomorphism onto C?(0) =
n(C7(0)) in R". Suppose that for two preferred neighborhoods, U, ¢ and
U,p, V=UnN and V' = U’ ' n N have nonempty intersection. Since
V, dand V', § are topological coordinate neighborhoods, we know that the
change of coordinates is given by homeomorphisms ¢’ > @' and & < (¢') !,
which we must show to be C*. Let 6: R" — R™ be given by 0(x', ..., x") =
(x',...,x"0,...,0)so that m - 6 is the identity on R". This map € is C* as is
its restriction to C*(0), an open subset of R";thus @' = ¢~ ' = 0 is C* since
it is a composition of C* maps. On the other hand $' = n < ¢’, and because
¢’ is a C* map of U’ and its open subset U’ ~ U to R™, we see that ¢’ is C*
on ¥V V.Thus ¢ o ¢~ ' is C* on its domain, p(V n V).



5 SUBMANIFOLDS 77

It is even easier to see this if we write the expressions in local coordinates.
If y' = fi(x'....,x™), i = 1,.... m are the functions giving ¢’ = ¢~ ', which
we know to be C”, then it is easily checked that @ - ¢~ ' is given by
V=[x, x%0,...,0), i=1,...,n Therefore @op~' is C* by
Definition 3.2.

By Theorem 1.3 of this chapter, the totality of these neighborhoods
defines a unique differentiable structure on N. In preferred local coordinates
V,®, it N> Mis givenon V by (x',..., x") - (x',...,x%0,...,0),s0 it is
obviously an immersion. Because we have taken the relative topology on N,
i: N = M is by definition a homeomorphism to its image i(N) = N, with the
subspace topology, that is, i is an imbedding. [ |

The foregoing completes the proof of Lemma 5.2 and allows us to make
the following important definition.

(5.3) Definition A regular submanifold of a C* manifold M is any sub-
space N with the submanifold property and with the C® structure that the
corresponding preferred coordinate neighborhoods determine on it.

As an example we shall see that $? = {xe R*|||x|]| = 1} is really a
submanifold, as was indicated at the end of Section 1.If g = (a', a% a*)isan
arbitrary point on S$2, it cannot lie on more than one coordinate axis. For
convenience we suppose that it does not lie on the x3-axis. We introduce the
usual spherical coordinates (r, 0, ¢); they are defined on R* — {x3-axis} and if
(1. 8¢, @q) are the coordinates of ¢ we may change the coordinate map
slightly so that r is replaced by F =r — 1, 8 by 6 =8 — 0,, and ¢ by
$ = @ — ¢y. Then for sufficiently small 8, the neighborhood V, ¢ with
coordinate function ¢: p — (¥(p), 0(p), #(p)) defined for psuch that |F| <,
|0] <& and |@]| < e defines a coordinate neighborhood of g, with ¢
having coordinates (0,0, 0) and with ¥ n $? the open subset of S? corre-
sponding to 7 = 0. The fact that these neighborhoods are compatible with
the ones previously defined for $? (Example 1.8) can be proved by writing
down the standard equations giving rectangular Cartesian coordinates as
functions of the spherical coordinates.

(5.4) Remark At this point we have defined three classes of submanifolds
in a manifold M—immersed, imbedded, and regular. The first of these, which
we usually call simply a submanifold, was defined (Definition 4.3) as the
image N = F(N’) of a C* univalent immersion F of N’ into M. Since
F:N' = N c M is one-to-one and onto, we may and do (as part of the
definition) carry over to N the topology and differentiable structure of N’;
open sets of N are the images of open sets of N’ and coordinate neighbor-
hoods U, ¢ of N are of the form U = F(U’), ¢ = ¢'« F~!, where U’ is a
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coordinate neighborhood of N'. The fact that F is continuous implies that
the topology of N obtained in this way is in general finer than its relative
topology as a subspace of M, that is, if V is open in M, then V' n N is open in
N, but there may be open sets of N which are not of this form.

An imbedding is a particular type of univalent immersion, one in which
U’ is open in N' if and only if F(U') = V n N for some open set V of M so
that the topology of the submanifold N = F(N’) is exactly its relative topo-
logy as a subspace of M. An imbedded submanifold is thus a special type of
(immersed) submanifold. (Note: although submanifold and immersed sub-
manifold are the same thing by definition, nevertheless we will frequently use
the latter term both to emphasize that we are dealing with the most general
case and as a concession to the confusion in terminology in the literature.)

Finally, if N = M is a regular submanifold, then it is also an imbedded
submanifold since the inclusion i;: N - M is an imbedding.

The following theorem shows that imbedded and regular submanifolds
are essentially the same objects.

(5.5) Theorem Let F: N' — M be an imbedding of a C* manifold N of
dimension n in a C* manifold M of dimension m. Then N = F(N’) has the
n-submanifold property and thus N is a regular submanifold. As such it is
diffeomorphic to N’ with respect to the mapping F: N' - N.

Proof Let g = F(p) be any point of N. According to Theorem 4.12 (and
its proof), there are cubical coordinate neighborhoods U, ¢ of pand V, ¢ of
q such that (i) ¢(p) = (0, ..., 0)e C;(0) = o(UV), (ii) ¥(q) = C7(0) = y(V),
and (iii) the mapping F | U is given in local coordinates by F: (x!, ..., x") —
(x',...,x"%0,...,0). If F(U) = V n N, then the neighborhood V, y would
be a preferred coordinate neighborhood relative to N. In order to achieve
this situation we must use the fact that F is an imbedding (see Remark 4.13).
This implies at least that F(U) is a relatively open set of N, that is, F(U) =
W ~ N, where W is open in M. Since V > F(U) it is no loss of generality to
suppose W < V. Thus y(W) is an open subset of C7*(0) containing the origin
and Y(W) > y(F(U)), which is a slice S of Cr(0), S = {xeCm(0)]
x""! == x™ =0}. Therefore we may choose a (smaller) open cube
C3(0) c y(W) and let V' = y~1(C3(0)), ¥’ = y | V. This is a cubical coor-
dinate neighborhood of g for which F(U)n V' = V' n N; moreover, taking
U' = ¢~ (C3(0)) = F~'(V'), we see that U’, ¢', with ¢’ = ¢ | U', is a coor-
dinate neighborhood of p and the pair U’, ¢', and V', §' have exactly the
properties needed, namely, (i), (i), (iii) and F(U') = V' ~ N. This proves
simultaneously that N has the n-submanifold property and that F is a diffeo-
morphism. The latter is true since the inverse of F: N’ — N is given in the
local preferred coordinates V',moy’ and U’, @' by F~'(x!,...,x") =
(x!, ..., x"), which is clearly C*.
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(5.6) Remark The following addendum to Remark 4.13 and the preced-
ing comments are often useful. Suppose that N = M is an (immersed) sub-
manifold and that g € N. Then there is a cubical neighborhood V, y of g with
Y(q) = (0,...,0)e C7(0) = (V) such that the slice S’ = V, consisting of all
points of V whose last m — n coordinates vanish, is an open set and a cubical
coordinate neighborhood of the submanifold structure of N with coordinate
map y'(r) = m e Y(r) = (x'(r), ..., x"(r)) (in the notation used in Theorem 5.5
and in Remarks 4.12 and 4.13). The proof is left as an exercise.

We now have a definition of regular submanifold, and we wish to obtain
examples—which are useful for many reasons, among which is that they give
further interesting examples of manifolds. Since it is usually easier to deter-
mine that a map from one C® manifold into another is an immersion than to
see that it is an imbedding, the following theorem is useful. A generalization
is given in the exercise.

(5.7) Theorem If F:N — M is a one-to-one immersion and N is compact,
then F is an imbedding and N = F(N) a regular submanifold.

Proof Since F is continuous and both N and N—with the subspace
topology—are Hausdorff, we have a continuous (one-to-one) mapping from
a compact space to a Hausdorff space. Since a closed subset K of N is
compact, F(K) is compact and therefore closed. Thus F takes closed subsets
of N to closed subsets of N, and being one-to-one onto it takes open subsets
to open subsets also. It follows that F~! is continuous so F: N - N is a
homeomorphism and therefore an imbedding. The rest of the statement
follows from our remarks above. |

The most useful method of finding examples of submanifolds is given by
the following theorem and its corollary. Since many examples of manifolds,
as we have seen, occur as submanifolds of some other manifold, especially
Euclidean space, the corollary is also very helpful in proving that some of the
objects we have looked at are indeed C* manifolds. Examples are given
below.

(5.8) Theorem Let N be a C* manifold of dimension n, M be a C* manifold
of dimension m, and F: N - M be a C* mapping. Suppose that F has constant
rank k on N and that qe F(N). Then F~'(q) is a closed, regular submanifold
of N of dimension n — k.

Proof Let A denote F~!(q); A is a closed subset since the inverse image
of {¢}, a closed subset of M, under a continuous map is closed. We shall show
that 4 has the submanifold property for the dimension n — k. Let pe A;
since F has constant rank k on a neighborhood of p, by the theorem on rank
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(Remark 4.2) we may find coordinate neighborhoods U, ¢ and V, y of p and
g, respectively, such that ¢(p) and y(q) are the origins in R” and R™, p(U) =
C7(0), y(V) = C™0), and in local coordinate (x', ..., x") and (y',..., y™),
F|U is given by the mapping

YoFo Y(x)=F(x!,...,x") = (x",...., x4 0,...,0)
This means that the only points of U mapping onto g are those whose first k
coordinates are zero, that is,

AnU=09 (e F 'oy™}(0))

= o (F1(0) = ¢~ {xe C?0) | x' = -+ = x* = 0},
Hence A is a regular manifold of dimension n — k since it has the sub-
manifold property. "

(59) Corollary If F: N—M is a C*® mapping of manifolds, dim M =
m < n = dim M, and if the rank of F = m at every point of A = F~!(a), then
A is a closed, regular submanifold of N.

The corollary holds because at pe A, F has the maximum rank possible,
namely m. It follows from Section I1.7 and the independence of rank on local
coordinates that, in some neighborhood of p in N, F has this rank also; thus
the rank of F is m on an open subset of N containing A. But such a subset is
itself a manifold of dimension n—an open submanifold—to which we may
apply the theorem.

The first two applications of Corollary 5.9 are just very simple ways of
demonstrating that S"~! and the torus, described, as in Example 1.3.4, by
rotating a circle around a line in its plane which does not intersect it, are
both manifolds. Other applications will be made in the next section.

(5.10) Example The map F:R"—> R defined by F(x',...,x")=
Y7_, (x')? has rank 1 on R" — {0}, which contains F~!(+1) = S"~'. Thus
$"~'is an (n — 1)-dimensional submanifold of R" by Corollary 5.9.

(5.11) Example The map F:R>- R given by F(x',x% x%)=(a—
((x')? + (x*)*)'*)* + (x?)* has rank 1 at each point of F~'(b?),a > b > 0.
Thus the locus F~ !(b?), the torus in R>, Fig. 1.2b, is a submanifold.

Exercises

1. Let M and N be C* manifolds of the same dimensionand F: N - M an
immersion. If N is compact and M is connected, prove F is onto.
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2. Let F: N - M be a one-to-one immersion which is proper, that is, the
inverse image of any compact set is compact. Show that F is an imbed-
ding and that its image is a closed regular submanifold of M.

3. Show that the mappings i: M - M x Nandj: N - M x N defined in
Exercise 3.3 are imbeddings.

4. Let A < M and B < N be submanifolds of M and N. Show that 4 x B

is (by inclusion) a submanifold of M x N. Show that if 4 and B are

regular, so is A x B.

Prove the statement of Remark 5.6.

6. If N is a submanifold of M and V is a connected, open subset of M, then
show that N n U is the union of a countable collection of connected
open subsets of N (with its submanifold topology).

7. Show that if Nc M is a submanifold and fe C*(M), then f|Ne
C*(N). State and prove an analogous result for a C* mapping on M.
Show by example that there may be functions that are C™ on N and that
cannot be obtained by restriction of a C* function on M.

gl

6 Lie Groups

The space R" is a C* manifold and at the same time an Abelian group
with group operation given by componentwise addition. Moreover the alge-
braic and differentiable structures are related: (x, y) = x + y is a C* map-
ping of the product manifold R" x R"onto R", that is, the group operation is
differentiable. We also see that the mapping of R" onto R" given by taking
each element x to its inverse — x is differentiable.

Now let G be a group which is at the same time a differentiable manifold.
For x, ye G let xy denote their product and x~' the inverse of x.

(6.1) Definition G is a Lie group provided that the mapping of
G x G — G defined by (x, y) — xy and the mapping of G — G defined by
x = x ! are both C* mappings.

(6.2) Example Gl(n, R), the set of nonsingular n x n matrices, is as we
have seen, an open submanifold of .# ,(R), the set of n x n real matrices
identified with R"’. Moreover Gl(n, R) is a group with respect to matrix
multiplication. In fact, an n x n matrix A is nonsingular if and only if
det A # 0; but det(4AB) = (det A)(det B) so if 4 and B are nonsingular, AB
is also. An n x n matrix 4 is nonsingular, that is, det A # 0O, ifand only if 4
has a multiplicative inverse; thus Gl(n, R) is a group. Both the maps
(4, B) > AB and A — A~ ! are C®. The product has entries which are poly-
nomials in the entries of A and B, and these entries are exactly the expres-
sions in local coordinates of the product map, which is thus C*, hence C*.
The inverse of 4 = (a;;) may be written as 4~ ' = (1/det 4)(a;;), where the
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a;; are the cofactors of 4 (thus polynomials in the entries of 4) and where
det A4 is a polynomial in these entries which does not vanish on Gl(n, R). It
follows that the entries of 4~ ! are rational functions on Gl(n, R) with non-
vanishing denominators, hence C* (and C*). Therefore Gi(n, R) is a Lie
group. A special case is Gl(1, R) = R*, the multiplicative group of nonzero
real numbers.

(6.3) Example Let C* be the nonzero complex numbers. Then C* is a
group with respect to multiplication of complex numbers, the inverse being
z~! = 1/z. Moreover C* is a one-dimensional C® manifold covered by a
single coordinate neighborhood U = C* with coordinate map z — ¢(z)
given by ¢(x + iy) = (x, y) for z = x + iy. Using these coordinates, the
product w = zz', z = x + iy, and z' = x’ + iy is given by

(e ), ) = (xx' = yy', xy" + yx')
and the mapping z — z~ ! by

X Ty
(x, y) - (xz P yz)'
This means that the two mappings of Definition 6.1 are C*; therefore C* is a
Lie group.

(6.4) Theorem If G, and G, are Lie groups, then the direct product
G, x G, of these groups with the C* structure of the Cartesian product of
manifolds is a Lie group.

The proof is left as an exercise.

(6.5) Example (The toral groups) The circle S' may be identified with
the complex numbers of absolute value + 1. Since |z,z,| = |z, | |z, ], itis
a group with respect to multiplication of complex numbers—a subgroup of
C*. It is a Lie group as can be checked directly or proved as a consequence
of Example 6.3 and the next theorem. Combining this with Theorem 6.4, we
see that T" = §' x -+ x §, the n-fold Cartesian product, is a Lie group. It
is called the toral group. Since S' is abelian, T" is Abelian also.

As might be expected, the subgroups—in the sense of algebra—of a Lie
group which are also submanifolds play a special role. The following
theorem will enable us to give many examples of Lie groups.

(6.6) Theorem Let G be a Lie group and H a subgroup which is also a
regular submanifold. Then with its differentiable structure as a submanifold H
is a Lie group.
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Proof It follows without difficulty that H x H is a regular submanifold
of G x G. Thus the inclusion map F;: H x H - G x G is a C* imbedding.
If F,: G x G— G is the C® mapping (g,9') > gg and F = F, 0 F, the
composition, then F is a C* mapping from H x H — G with image in H.
Let F denote this map considered as a map into H; it is not the same
mapping as F sincc we have changed the range. We must show that F is C*
and similarly that the map H — G given by taking h » h~! is C* as a map
onto H. These facts both follow from the next lemma, which completes the
proof. ]

(6.7) Lemma Let F: A - M be a C* mapping of C* manifolds and sup-
pose F(A) = N, N being a regular submanifold of M. Then F is C* as a
mapping into N.

Proof Since N is a regular submanifold of M, each point is contained in
a preferred coordinate neighborhood. Let pe A4, let ¢ = F(p) be its image,
and let U, ¢ be a neighborhood of p which maps into a preferred coordinate
neighborhood V, ¥ of q. We have y(V) = C(0) with y(q) = (0, ..., 0), the
origin of R™, m = dim M; and V n N consists of those points of V whose
last m — n coordinates are zero, n = dim N. Let (x', ..., x?) be the local
coordinates in U, ¢ on A. Then the expression in local coordinates for F is

F(x',....x?) = (f*(x)....f"(x), 0, ...,0),

that is, f"*!(x) = --- = f™(x) = 0 since F(4) = N.
However, V n N, oy, -y is a coordinate neighborhood of g on N, so
F, considered as a mapping into N, is given in local coordinates by

(x' o xm) = (X)L ().

This is F followed by projection to the first n coordinates (projection of R™
to R"), which is a composition of C* maps and is therefore C*. |

(6.8) Remark Lemma 6.7 does not hold for immersed submanifolds. In
Example 4.9 if we map the open interval (—1,1) by a mapping G into
N = F(R), the figure eight, so that it crosses the origin as shown in
Fig.II1.10, then G is C* as a mapping into R?, but not even continuous as a
mapping to N. Thus N is diffefomorphic to the real line by F: R — N, and
identifying N and R, we may think of G as taking part of the open interval
(—1, 1), say (0, 1), onto the real numbers ¢t > 1, 0 onto 0, and (—1, 0), the
remaining part, onto the real numbers ¢ < 1. The image is not even con-
nected, so G is not continuous. This situation is clarified in the Exercise 3.

We may use Theorem 6.6 and Theorem 5.8 to give many further
examples of Lie groups. To do so we make use of the following naturally
defined maps of a Lie group G onto itself: (i) x — x~?!, (ii) left and right
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M=R?
Figure I11.10

translations by a fixed element a of G, that is, L,, R, : G —» G defined by
L,(x) = ax and R,(x) = xa. These maps are C® by definition of Lie group
and have inverses which are C™, so they are, in fact, difftomorphisms. The
mapping of (i) is its own inverse and we have (L,)"' =L, . and
(Ra)—l = Ra“‘

(6.9) Example Si(n, R) = {X € Gl(n, R)| det X = + 1} is a subgroup and
regular submanifold of Gi(n, R), hence a Lie group. To prove this, we con-
sider the mapping F: Gl(n, R) — R*, F(X) = det X. According to the pro-
duct rule, det(XY) = (det X)(det Y). Thus F is a homomorphism onto
R* = GI(1, R); it is also C* since it is given by polynomials in the entries.
Finally, its rank is constant: Let A€ Gl(n, R); let a = det A;and let L, L,
denote left translations in Gl(n, R) and GI(1, R) = R*. Then

F(X)=L,«F«L, (X)

since we have a-det(4”'X)=detX. Applying the chain rule,
Section I1.2.3, using DL, = a # 0, and using the fact that L ,_, is a diffeo-
morphism (so that DL ,_, is nonsingular), we have

rank DF(X) = rank[aDF(A™'X)DL ,.,(X)] = rank DF(A™'X)

for all AeGln,R). In particular, rank DF(X) = rank DF(X 'X)=
rank DF(I), and thus we see that the rank is constant as claimed. It follows
that Si(n, R) = F~'(+1) is a closed, regular submanifold by Theorem 5.8. It
is also a subgroup—in fact the kernel of a homomorphism—by virtue of the
product rule for determinants; therefore it is a Lie group.

(6.10) Example O(n) = {X e Gl(n, R)|'XX = I}, the subgroup of ortho-
gonal n x n matrices is a regular submanifold and thus a Lie group. Let
F(X)="'XX, 'X = transpose of X, define a mapping from Gl(n, R) to
Gl(n, R). If A€ Gl(n, R), we will show that rank DF(X) = rank DF(XA™');
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and since any Y € Gl(n, R) can be written in the form Y = XA, it follows
that rank DF is constant on Gl(n, R). To obtain this equality we note that
F(XA ') = L,,-,>R,.,° F(X). Therefore

DF(XA™') = DL,, ,°DR,_, o DF(X),

where DR ,_, and DL, . are evaluated at F(X) and R ,-, (F(X)), respec-
tively. Then the equality of rank DF(XA™!) and rank DF(X) follows as
above from the fact that DL,,_, and DR, , are everywhere nonsingular.
Since O(n) = F~'(I), where I is the identity matrix, the statement follows
from Theorem 5.8.

(6.11) Definition Let F: G, — G, be an algebraic homomorphism of Lie
groups G, and G, . We shall call F a homomorphism (of Lie groups) if F is
also a C* mapping.

(6.12) Example Let G, = Gl(n, R) and G, = R* [= GI(1, R)]. Then the
map F given by F(X) = det X is a homomorphism.

(6.13) Example Let G, = R, the additive group of real numbers, and
G, = §', identified with the multiplicative group of real numbers of absolute
value 1. Then the mapping F(t) = ¢2™" is a homomorphism. Similarly, let-
ting G, = R", a Lie group with componentwise addition, and G, = T" =
S' x - x S', the mapping F:R"—>T" given by F(ty,...,t,) =
(exp 2mit,, ..., exp 2mit,) is a homomorphism. Its kernel is the discrete
additive group Z" consisting of all n-tuples of integers; it is called the
integral lartice of R".

(6.14) Theorem If F: G, — G, is a homomorphism of Lie groups, then the
rank of F is constant ; the kernel is a closed regular submanifold and thus a Lie
group; and dim ker F = dim G, — rank F.

Proof Let ae G, be arbitrarily chosen and let b = F(a) be its image in
G, . Denote by ¢, ¢, the unit elements of G, G,, respectively. Then we may

write
F(x) = F(aa™'x) = F(a)F(a™'x) = L, » F o Ly-1(x),

so that for all e G,
DF(d) = DL(e;) - DL, (a).

Then, since L,-, and L, are diffecomorphisms, and thus have nonsingular
Jacobian matrices at each point, the rank of F at g and at e, is the same. By
Theorem 5.8, ker F = F~!(e,) is a closed regular submanifold whose dimen-
sionis dim G, — rank F. From Theorem 6.6, ker F is a Lie group sinceitisa
regular submanifold (and a group). ]
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(6.15) Example A very useful example of a submanifold which is not
regular but is a subgroup of a Lie group is obtained as follows: Let
T?=S8"'xS§' and let F:R*->T? be given by F(x',x?)=
(exp 2mix!, exp 2mix?) as in Example 6.13. Then F is a C* map of rank 2
everywhere and is a homomorphism of Lie groups; the rank may be easily
computed at (0, 0) and it is constant by Theorem 6.14.

Now let a be an irrational number and define G: R - R* by G(t) =
(t, at). Thus G is obviously an imbedding; its image is the line through the
origin of slope . It follows that H = F « G is an immersion of R into T2
since DH = DF - DG has rank 1 for all te R. Moreover H is one-to-one
since H(t,) = H(t,) is equivalent to exp 2mit, = exp 2nxit, and exp 2miat, =
exp 2nint, . However, exp 2niu = exp 2niv if and only if u — v is an integer.
Clearly t, —t, and «(t, —1;) are both integers only if t, =t,. Thus
H:R — T? is a one-to-one immersion and H(R) is an immersed submani-
fold. However, the interesting fact is that H(R) is a dense subset of T2, so it is
about as far from being a regular submanifold as one can imagine: for
example, as a subspace it is not locally connected at any point.

We shall prove that H(R) is dense in T2. Since F is continuous and onto,
a dense subset D of R? is mapped to a dense subset of T2. We will show that
D = F~'(H(R)) is dense. D consists not only of the line of slope a through
the origin but of all lines which can be obtained from it by translation by an
integral vector in either direction, that is, any points (x' + m, x* + n), with
m, n integers and with x' = ¢, x? = at, must also be in D since F(x!, x2) =
F(x* + m, x> + n). These lines are all parallel to the given one H(R). In fact
D consists of the union of all lines ¢t — (¢t + m, at + n), that is, all lines with
equation .

xt=ax! + (n — am)

for arbitrary integers n, m (Fig. IIL.11).

Obviously, D is dense on the plane if the y-intercepts (n — am) form a
dense subset of the y-axis. Thus we must show that given a, any real number
b, and any ¢ > 0, there is a pair of integers n, m with |b — (n — am)| <e.
Assume that there exist integers n’, m’ such that 0 < »' — am’ < ¢; since
n' — am'’ is irrational, it must then in fact be positive. It follows that for some
integer k, k(n' —am’) < b < (k + 1)(n’ — am’), which implies 0 < b —
k(n —am’) <n' —am’ < ¢.Since n — am = kn' — akm’ is a y-intercept ofa
line of D, the observation that either ' — am’ or (—n’) — a(—m’) is non-
negative and the following fact from number theory suffices to complete the
proof.



6 LIE GROUPS 87

x2 xZ:zax'+(4-3a)
LA
7
3
e 2//£1
AV
7 "4
-4V-37—/2V-/1 o 2 J3 ]a o
4 ~ -1
pod
Y -2
P % /_3
d

Figure I11.11

(6.16) If o > 0 is any irrational number, then there exist arbitrarily large
integers n', m' such that

1
<-

nl
‘m’ ¢ m?’

A proof is given by Auslander and MacKenzie [1], or Hilbert and Cohn-
Vossen [1]. The preceding facts (Example 6.15) are essentially the Kronecker
approximation theorem; several beautiful proofs are given by Bohr [1].

We remark that H: R — R? in addition to being a one-to-one immersion
is a homomorphism of Lie groups so that 8 = H(R) is a subgroup alge-
braically and an immersed submanifold. It is clearly a Lie group with the
manifold structure of R. However, it is not a regular submanifold nor is it a
closed subset.

(6.17) Definition A (Lie) subgroup H of a Lie group G will mean any
algebraic subgroup which is a submanifold and is a Lie group with its C*®
structure as an {immersed) submanifold.

We have already discussed subgroups that are regular submanifolds. We
shall prove the following theorem about such subgroups.

(6.18) Theorem If H is a regular submanifold and subgroup of a Lie group
G, then H is closed as a subset of G.
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Proof It is enough to show that whenever a sequence {h,} of elements of
H has a limit ge G, then g is in H. Let U, ¢ be a preferred coordinate
neighborhood of the identity e relative to the regular submanifold H. Then
@(U) = CM0) is a cube with ¢(e) = 0; V = H n U consists exactly of those
points whose last m — n coordinates are zero, and ¢’ = ¢ |, maps V homeo-
morphically onto this slice of the cube. If {i,} is a sequence in V = Hn U
and lim i, = § with §e U, then the last m — n coordinates of g are also zero
sogeHnUcH.

Now let {h,} be any sequence of H with lim h, = g and let W be a
neighborhood of e small enough so that W™'W < U, where
W™ 'W = {x"'ye G|x, ye W}. Such W exist by continuity of the group
operations (see Exercise 1). There exist N such that for n > N, h,egW, in
particular hyegW. Using group operations, we may verify that (i)
§ =g 'hye W and, setting h, = h; 'hy, we have (ii) lim &, = §. But for
n> N, h, = h; 'hy liesin (gW) 'gW = W~ 'W < U. Thus by the remarks
above, ge H, and hence g = hy §~' € H, which was to be proved. 1

(6.19) Remark A converse statement is also true: A Lie subgroup H of a
Lie group G that is closed as a subset is necessarily a regular submanifold;
this is proved later (Lemma IV,9.7). In fact it is even true that an algebraic
subgroup (not assumed to be an immersed submanifold), which is closed as
a subset, is a regular submanifold. This is considerably harder to prove and
we shall not prove it in this text (see Helgason [1] and Hochschild [1]).
However, it motivates and validates terminology which we use hereafter: A
subgroup H of a Lie group G, which is a regular submanifold, will be called a
closed subgroup of G. This is a special but important class of Lie subgroups.

Exercises

1. Show that given any neighborhood U of e, the identity of a Lie group G,
there exists a neighborhood V of e such that V¥V ™! < U, and a neigh-
borhood W of e such that W2 = WW < U.

2. Show that the collection {xU}, over all neighborhoods U of e, is a
base of neighborhoods for x (similarly for {Ux}).

3. Let A be an arbitrary subset and U an open subset of a Lie group. Show
that AU = {au|ae A, ue U} is open.

4. Prove Theorem 6.4 and also that the projections p,, p, and injections i, j
of Exercise 3.3, with (a, b) = (e,, e,) the identity of G, x G,, are homo-
morphisms of Lie groups.

5. In Lemma 6.7 show that if N is an immersed submanifold and F is
assumed to be continuous as a mapping into N, then F is C* as a
mapping into N.
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6. Show that if G is a Lie group, a€ G, then the map I,: G — G, defined by
1,(x) = axa™ ', is an automorphism of G.

7. Show that the set of all matrices of the form (_7 %) in GI(2n, R), where
A and B are n x n real matrices, is a closed subgroup (a submanifold)
and is naturally isomorphic (algebraically) to Gl(n, C), nonsingular,
n X n, complex matrices.

8. Show that if H is an algebraic subgroup of a Lie group G, then its closure
H is also an algebraic subgroup.

9. In Example 6.15, assume that « (used in the definition of G) is a rational
number. Show that H(R) is then a regular submanifold of T2 diffeo-
morphic to S*.

7 The Action of a Lie Group on a Manifold.
Transformation Groups

The definition of a group as a set of objects with a law of composition
satisfying certain axioms is a relatively recent development. Historically,
groups arose as collections of permutations or one-to-one transformations
of a set X onto itself with composition of mappings as the group product; for
if X is any set whatsoever, then the collection S(X) of all of its
“permutations "—in this broad sense—is easily seen to be a group with
respect to composition of permutations as product. The same is true for any
subcollection G which contains, together with each transformation
o: X = X, its inverse ¢!, and which contains the composition ¢ o 7 of any
two of its elements ¢ and 7. In particular, if X contains just n elements, then
S(X) is the symmetric group on n letters and has n! elements, the one-to-one
transformations of X onto itself. This was, for example, the point of view of
Galois [1], who considered groups of permutations of the roots of a polyno-
mial. Much later Klein [1] discovered the central role of groups in all of the
classical geometries: Euclidean, projective, and hyperbolic (non-Euclidean).
In this approach, to each geometry is associated a group of transformations
or permutations of the underlying space of the geometry, and in each case
the geometry with its theorems may be derived from a knowledge of the
underlying group. For example, the group G of Euclidean plane geometry is
the subgroup of S(E?) which leaves distances invariant: If x, ye E* and
d(x, y) is their distance, then a transformation T: E* — E? is in the group if
and only if d(Tx, Ty) = d(x, y) for all x, y. This is called the group of rigid
motions and it is generated by translations, rotations, and reflections.

Even though the concept of group does not appear in Euclid’s axioms,
that of congruence does. These ideas are intimately related: Two figures are
congruent if and only if there is a rigid motion ¢ in G which carries one
figure onto the other. It is a consequence of the properties mentioned above
for o, T€ G that congruence is an equivalence relation.

Although the interpretation of groups as transformation groups of a
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space has been superseded in algebra, it is still very important in geometry
and we shall need to discuss it in various aspects. We first define a very slight
generalization of the group S(X).

(7.1) Definition Let G be a group and X a set. Then G is said to act on X
(on the left) if there is a mapping 6: G x X — X satisfying two conditions:

(i) If e is the identity element of G, then
O(e,x)=x forall xe X.
(ii) Ifgy, g,€G, then
0(g,,0(g, ,x)) = 0(g,9,,x) forall xe X.

When G is a topological group, X is a topological space, and 6 is continuous,
then the action is called continuous. When G is a Lie group, X is a C*
manifold, and 6 is a C®, we speak of a C*® action. C* action is a fortiori
continuous.

As a matter of notation we shall often write gx for 6(g, x) so that (ii)
reads (g, g,)x = g,(g2 x). We also let §,(x) denote the mapping 6,: X — X
defined by 6,(x) = 6(g, x), g fixed, so that (ii)) may also be written
0,4, = 0,, < 8,,. When we define right action, (i) and (ii) become:

(i) 6(x,e)=x and (i) 6(0(x, g1). g2) = 0(x, g,92)-

Usually we are concerned with left action, but in both cases we usually say G
acts on X, and leave the rest to be determined by the context.

Note that 0,-, = (0,)"" since 0,-.° 0, = 0,-,, = 0, = iy, the identity
map on X by (i). This means that each mapping 6, is one-to-one onto, since
it has an inverse. This and (ii) show that the following statement holds:

(7.2) If G acts on a set X, then the map g — 6, is a homomorphism of G into
S(X). Conversely, any such homomorphism determines an action with

0(g, x) = 0,(x).

We note that the homomorphism is injective if and only if 8, being the
identity implies that g = e. If this is so, we shall call the action effective.
When the action is effective, G may be identified with a subgroup of S(X) by
this map g — 0, so that we have precisely the situation discussed in the
beginning of the paragraph. Needless to say, these considerations all refer
only to the set-theoretic aspects, since S(X) has not been topologized.

We also note that if X is a topological space (C® manifold), G a topologi-
cal group (Lie group), and the action is continuous (C*®), then each 0, is a
homeomorphism (diffeomorphism).
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(7.3) Example Let H, G be groups, and ¢: H — G, a homomorphism. It
is easy to check that 6:H x G — G defined by 0(h, x) = y(h)x is a left
action:

(i) O(e, x) = Y(e)x = x, since Y takes the identity of H to the identity
of G, and

(1) H(h,, 0(h,, x)) = O(h,, Yihy)x) = zp(h,)(zp(hz)x) and
O(hyhy, x) = Y(hyhy)x = (¢(hl)¢(h2))x~

These agree by the associative law in G. If H and G are Lie groupsand s isa
homomorphism of Lie groups, then the action is C*. This may be applied to
the case where H is a Lie subgroup of G (or even if H = G); in this case  is
the identity (inclusion) mapping of H into G and we say that H acts on G by
left translations.

(74) Example A rather simple but important example is known as the
natural action of Gl(n, R) on R": We let G = Gl(n, R) and X = R" and we
define 0: G x R" — R" by 6(A, x) = Ax, this being multiplication of the
n x n matrix 4 by the n x 1 column vector obtained by writing x & R"
vertically. This satisfies (i) and (ii) rather trivially, (ii) being again associati-
vity (of matrix products):
(AB)x = A(Bx).

Since 0:G x R"— R" is given by polynomials in the entries of

AeGl(n, R) and xe R", it is a C*-map:

xl

0 (@) : ] =(j§la,~jxf).

x’l

Now suppose that H < Gl(n, R) is a subgroup in the sense of Lie groups,
that is, H has its own Lie group structure such that the inclusion map
i: H— Gl(n, R) is an immersion, or—if H is a closed subgroup—an imbed-
ding. Then 0 restricted to H defines a C* action 8,: H x R" — R". This is
because 0, = 0 i, i: H — G is the inclusion map, and both 6 and i are C*.
Using this idea we may give further examples.

(7.5) Example Let H < Gl(2, R) be the subgroup of all matrices of the
form (§ %) with a > 0. Then H is seen to be a two-dimensional submanifold
of GI(2, R) and therefore is a closed subgroup. The restriction to H of the
natural action of GI(2, R) on R? is just

s HED -

which is obviously C*, as expected.
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(7.6) Example Identify E" with R” and let d(x, y) = (35=1 (x' — y')*)'"?
be the usual metric. The group G of all rigid motions, that is, diffeomor-
phisms T: R" — R" such that d(Tx, Ty) = d(x, y) is given by transforma-
tions T of the form

(*) Tix) = Ax + b,

where 4 € O(n) and b € R"—a rotation 4 of R” about the origin followed by a
translation taking the origin to b. The group operation is composition of
rigid motions.

The group of rigid motions is a Lie group. It is in one-to-one correspon-
dence with O(n) x R" and takes its manifold structure from this correspon-
dence, which is given by assigning to each rigid motion () the pair
(A, b)e O(n) x R". [However, G is not a direct product in the group theor-
etic sense (Exercise 6).] Since 0: G x R" —» R" defined by 0((4, b), x) =
Ax + b, 0 is a C* mapping. Verification that § defines an action is left to the
exercises.

(7.7) Definition Let a group G act on a set M and suppose that 4 = M is
a subset. Then GA denotes the set {ga | g G and a€ A4}. The orbit of xe M is
the set Gx. If Gx = x, then x is a fixed point of G;and if Gx = M for some x,
then G said to be transitive on M. In this case Gx = M for all x.

(7.8) Example Consider the natural action of Gi(n, R) on M = R". The
origin 0 is a fixed point of G/(n, R) and Gl(n, R) is transitive on R" — {0}. For
if x = (x',..., x") # 0, then there is a basis fi,...,f, with x = f,. If we
express these basis elements in terms of the canonical basis f; = Y 7., a;;e;,
i=1,...,n then we see that x = 4 - e, 4 = (a;;)€ Gl(n, R). From this it
follows that every x # 0 is in the orbit of e,. This action is not very inter-
esting from the point of view of its orbits. However, if we consider this action
restricted to various subgroups G = Gl(n, R), then the orbits can be quite
complicated. A relatively simple case of this type is obtained by letting
G = O(n), the subgroup of n x n orthogonal matrices in Gl(n, R). This is a
closed subgroup as we have seen, and the natural action of Gl(n, R) res-
tricted to O(n) is a C* action by Example 7.4. The orbits are the concentric
spheres with the origin being a fixed point (sphere of radius zero).

(7.9) Remark The same facts from linear algebra that we used above also
show that Gl(n, R) is transitive on the collection B of all bases of R". Given
any basis {f,, ..., f,}, then there exists 4 e Gl(n, R) such that 4 -¢; = f;, in
fact there is exactly one such A. Thus, letting f={f,...,f} and
e ={e,,..., &,} be elements of B, we may define a left action of G/(n, R) on B,
that is, a mapping 6: Gl(n, R) x B — B by

0(A,e)=A-e=1f={Ae,..., Ae,}.
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This action is transitive as mentioned, moreover the uniqueness of 4 (such
that 4 - e = f) implies that it is simply transitive, that is, given bases f, T, there
is exactly one 4 € Gi(n, R) such that A - f = T. This means that Gl(n, R) is in
one-to-one correspondence with B: 4 € Gl(n, R) corresponds to A4 - e, where
e is the canonical basis. We may use this correspondence to give B the
topology and C™ structure which makes it difftomorphic to Gi(n, R). As a
C* manifold it is called the space of frames of R".

We have already mentioned quotient spaces of an equivalence relation as
a possible source of manifolds and, in fact, we have produced two examples
of such: projective spaces and Grassman manifolds. The most useful and
important source of such spaces is furnished by the action of groups on
manifolds; at the moment we can only consider the topological aspects, and
then only in part, as a preview of things to come.

As a matter of notation we let G denote a Lie group, M a C* manifold,
and we assume a C* action 0: G x M — M. We define a relation ~ on M
by p ~ q if for some g e G we have g = 6,(p) = gp. It is easily seen that ~ is
an equivalence relation and that the equivalence classes coincide with the
orbits of G. In fact, p ~ p since p = ep and p ~ g means q = gp, which
implies p = g~ 'q or ¢ ~ p, so that the relation is reflexive and symmetric.
Finally, given that p ~ gand g ~ p, we must have ¢ = gp and r = hq so that
r = (hg)p and then p ~ r. Obviously, p ~ g implies that p and g are on the
same orbit, so the equivalence class [p] = Gp. Conversely, if ge Gp, then
p~ qso Gpc[p]

We denote by M/G the set of equivalence classes; it will always be taken
with the quotient topology (Definition 2.1) and will often be called the orbit
space of the action. With this topology the projection n: M — M/G (taking
each xe M to its orbit) is continuous, and since the action @ is continuous, ©
is also open: If U « M is an open set, then so is 0,(U) for every ge G and
hence GU = [U] = | J,c6 0,(U), being a union of open sets, is open. The
orbit space need not be Hausdorff—but if it is, then the orbits must be closed
subsets of M (each is the inverse image by 7 of a point of G/H and points are
closed in a Hausdorff space). We shall be particularly interested in discover-
ing examples in which M/G is a C* manifold and = a C* mapping.

(7.10) Example When M = R" and G = O(n) acting naturally as a sub-
group of Gl(n, R), then the orbits correspond to concentric spheres and thus
are in one-to-one correspondence with the real numbers r > 0 by the map-
ping which assigns to each sphere its radius. This is a homeomorphism of
R"/O(n) and the ray 0 < r < co; this is not a manifold, but it is almost one.

(7.11) Example Let G be a Lie group and H a subgroup (in the algebraic
sense). Then H acts on G on the right by right translations. If H is a Lie
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subgroup, then according to Example 7.3 this is a C* action; the set G/H of
left cosets coincides with the orbits of this action and is thus a space with the
quotient topology. We have the following facts concerning G/H (with this

topology).

(7.12) Theorem The natural map n: G — G/H, taking each element of G to
its orbit, that is, to its left coset, is not only continuous but open; G/H is
Hausdorff if and only if H is closed.

Proof Since this space—usually called the (left) coset space—coincides
with the orbit space of H acting on G, 7 is continuous and open. To prove
the last statement we use the C® mapping F: G x G —» G defined by
F(x, y) = y~'x. Since F is continuous and F~!(H) is the subset R = {(x, y)|
x ~ y} of G x G, we see by Lemma 2.4 that R is closed and G/H is Haus-
dorff if and only if H is a closed subset of G. |

We conclude this section with two definitions, using terminology which
we justify in the exercises.

(7.13) Definition Let G be a group acting on a set X and let xe X. The
stability or isotropy group of x, denoted by G,, is the subgroup of all ele-
ments of G leaving x fixed, G, = {ge G|gx = x}.

(7.14) Definition Let G, X be as in the previous definition. Then G is said
to act freely on X if gx = x implies g = e, the identity, that is, the identity is
the only element of G having a fixed point.

Exercises

1. Show that if G acts on X as in Definition 7.13, then for each x, G, is a
subgroup of G, which in the case of continuous action is a closed subset
of G.

2. Suppose that G acts transitively on X. Then given x, ye X, prove that
G, and G, are conjugate subgroups of G.

3. Let G act transitively on X and let x, be a point of X. Define F:G-X
by F(g) = gx,. Prove: (i) that there is a unique one-to-one mapping
F:G/G,, — X such that F = Fo =, n: G - G/G,,, the natural projec-
tion to cosets, (ii) that F and F are continuous if the action is contin-
uous and in this case F is a homeomorphism if and only if F is open.

4. Show that O(n) acts transitively on $"~ !, the unit sphere of R", in a
natural way and determine the isotropy subgroup.

5. Show that Gi(n, R) acts transitively on P"~'(R) and determine the
isotropy subgroup of [(1, 0, ..., 0)].
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6. Let G=0(n)x V" and define a product in G by (4,v)(B,w)
= (AB, Bv+ w). Prove that G is a Lie group and acts on R” by
{4.v) - x = Ax + v. Show that {I} x ¥, I being the identity matrix, is
a closed submanifold and normal subgroup and that O(n) x {0} is a
closed submanifold and subgroup of G.

7. Let G be the set of 2 x 2 matrices of the form (§ %), wherea > Oand b
are real numbers, Show that G is a Lie group and acts on R by

6((3 {;)x) = ax + b.

8. Let H, asubgroup of G, act on G by left translations. Prove that thisisa
free action. Show that if G acts freely and transitively on the left on X,
then G and X are in one-to-one correspondence and if they are
identified, the action is equivalent to left translations.

9. Let the multiplicative group of nonzero real numbers R* act on R"*!
by 8: R* x R"*! - R"*! defined by 8{(t, x) = tx. Show that R"*!/R*
is homeomorphic to P'(R).

10. Let G be a Lie group and H be a closed subgroup and define a left
action 0: G x G/H — G/H by 8(g, xH) = (gx)H. Show that this action
of G on the coset space G/H is continuous and that the isotropy group
of [e] = H is exactly H itself.

1. Let F(k, n) denote the set of k-frames in R” considered as a C* manifold
by virtue of its natural identification with the space of k x n matrices
over R having rank k (compare Example 2.6). Show that Gl{(k, R) acts
transitively on F(k, n) by left multiplication and that this action is C®.
Considering R" as a Euclidean vector space, obtain a similar result for
orthonormal k-frames.

8 The Action of a Discrete Group on a Manifold

We will consider in some detail what might seem to be the simplest case
in which we could hope to use group action to obtain new examples of
manifolds via the quotient or orbit space concept discussed in the previous
section. By a discrete group I' we shall mean a group with a countable
number of elements and the discrete topology (every point is an open set).
The countability means that I' falls within our definition of a manifold: it
has a countable basis of open sets each homeomorphic to a zero-
dimensional Euclidean space, that is, a point. Thus I is a zero-dimensional
Lie group. In this case to verify that an action 0: " x M — M is C*, we need
only show that for each he I' the mapping 8,: M — M is a diffeomorphism.
For convenience of notation, we will let # denote 8, writing hx for 8,(x), and
so on. We suppose then that a C® action is given and consider the set of
orbits M = M/I" with the quotient topology discussed before: U = M is
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open if and only if z~!(U) is open in M, where n: M - M denotes the
natural map taking each x to its orbit I'x; we have seen that n is then
continuous and open.

If M is HausdorfT in this topology, then points are closed sets and the
inverse image of any pe M, that is, the orbit n~ ' (p), must be closed. Thus an
obvious necessary condition for M to possess some kind of reasonable topo-
logy and manifold structure is that for each x e M the orbit I'x is closed.
However, this condition is not sufficient. A stronger requirement is the
following: Given any point x € M and any sequence {h,} of distinct elements of
T, then {h,x} does not converge to any point of M. A group action with this
property is called discontinuous; it is equivalent to the requirement that each
orbit be a closed, discrete subset of M. In the presence of other conditions
this is sometimes enough to ensure that M/T is Hausdorff (see Exercise 2),
but in general we need the following condition, which is even stronger:

(8.1) Definition _A discrete group I' is said to act properly discontinuously
on a manifold M if the action is C® and satisfies the following two
conditions:

() Each xeM has a neighborhood U such that the set {heT|
hU n U + &} is finite;

(ii) If x, ye M are not in the same orbit, then there are neighborhoods
U, Vofx,ysuchthat U nTV = .

Observe that (ii) implies at once that M = M/T is Hausdorff: In fact it is
equivalent to the statement that the subset R = {(x, y)|x ~ y} = M x M is
closed (compare Lemma 2.4).

A consequence of proper discontinuity is the following statement whose
proof is left as an exercise (Exercise 3)—it could be used to replace (i) in the
definition, so we denote it by (i’).

(") The isotropy group T, of each xe M is finite, and each x has a
neighborhood U such that (U " U = & if h¢ ', and hU = U ifheT,.

(82) Example Let M = S$""', theset {xeR"||x| =1}and T = Z,, the
cyclic group of order 2 with generator h, that is, I' consists of h and h2 = e,
the identity. Then h(x) = —x and e(x) = x defines an action of ' on $"~ . It
is left as an exercise to see that the action 0: Z, x §"~! - $"" ! is free and
properly discontinuous and that the quotient space S"~!/Z, is none other
than real projective n — 1 space P"~'(R).

This and other examples, such as S' identified with R/Z (see Example 8.7
below), lead to the following theorem:
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(8.3) Theorem Let T be a discrete group which acts freely and properly
discontinuously on a manifold M. Then there is a unique C® structure of
differentiable manifold on M = M/T" (with the quotient topology) such that
each peM has a connected neighborhood U with the property:

n~(U) = U, is a decomposition of 1~ *(U) into its (open) connected com-
ponents and 7 | U, is a diffeomorphism onto U for each component U, .

Proof The manifold M is Hausdorff since I acts properly discontin-
uously. By Lemma 2.3 it has a countable basis of open sets. Using both (i')
and the assumption that the action is free, we may find for each xe M a
neighborhood U such that hU ~ U = & except when h = e. This implies
that n; (= = | U) is one-to-one onto its image U, and therefore n5: 0> Uis
a homeomorphism of U to the open set U—the mapping n being both
continuous and open. There is no loss of generality in supposing U to be a
connected coordinate neighborhood U, . Then taking ¢ = § o n5', we
have ¢: U - (U) < R" is a homeomorphism. Since every pe M is the
image of some xe M, we see that M is locally Euclidean. Thus M is a
topological manifold. The coordinate neighborhoods U, ¢ just described
will be called admissible; the differentiable structure 1s determined by the
admissible coordinate neighborhoods. Note that 1~ '(U) = | J.r hU, a dis-
joint _ union of connected open sets each dllTeomorphlc to U. Since
n: hU — U is the same map as wo h™': hU — U, the fact that n|hU is a
diffeomorphism will follow trivially from the fact that h™'and n | U: U - U
are diffeomorphisms after we establish that any overlapping admissible
neighborhoods U, ¢ and V, y are C*-compatible, so that they define a C®
structure.

To prove this let U = n(U) and V = n(V ) where U, p and V, § are the
corresponding coordinate neighborhoods on M.1f pe U n V, then there are
points xe U and ye V (possibly not distinct) with n(x) = p = n(y). This
latter implies that x = h(y) for some heT. Since h is a diffeomorphism,
V,=h(V) with §,=yh™' is a coordinate neighborhood and
Yy=Yonp' =y, honp' =y, np'. However, U, and V,, o, are
C*-compatible and thus U, ¢ and V,  are also compatible. Because of the
requirement that 7(J) be a diffeomorphism, no other C* structure is possib-

le. |

We remark that 7 is C* of rank n = dim M = dim M since it is locally a
difffomorphism. Of course, it can be one-to-one only when I' = {e} for
n~'(p) = I'x for some x, and this orbit I'x is in one-to-one correspondence
with I itself by virtue of the assumption that T acts freely.

We shall prove a lemma and then a theorem which will supply some
examples of free, properly discontinuous action.
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(84) Lemma Let G be a Lie group and T a subgroup which has the
property that there exists a neighborhood U of e such that U N T" = {e}. Then
" is a countable, closed subset of G and is discrete as a subspace.

Proof We first show that I is closed as a subset and is discrete in the
relative topology. Let V be a neighborhood of e such that VV ™! < U. As we
have seen before there exist such V since the map (g,, g,) —* g, g5 ' is contin-
uous and takes (e, €) — e. If{h,} = I' is a sequence and lim h, = g, then there
is an integer N > 0 such that for n > N we have h, € Vg, a neighborhood of
g. Suppose v,,v,€V so chosen that h,=v,g and h, =v,g. Then
h,h ! = v,0;'e U. From U n T = {e} it follows that h, h,,' = esoh, = h,
for all n,m > N; thus g = hy e I', which means that I' is closed. Moreover
for U of the hypothesis and he T, hU is a neighborhood of h whose intersec-
tion with T is just h; this proves the discreteness. Finally I' must be count-
able since {hV, heT} form a nonintersecting family of disjoint open sets
indexed by I'. In fact, if b, V. n h, V + &, then hy v, = h,v, for vy, v,€V
and this implies h; 'h; = v,07 e VV ™! < U so that h; = h,. Were I not
countable, this would mean we could not have a countable basis of open
sets. 1

We remark that a I' with this property is a closed zero-dimensional Lie
subgroup of G in the sense of Definition 6.17; such subgroups are often
called simply discrete subgroups. We give examples below.

(8.5) Theorem Any discrete subgroup T of a Lie group G acts freely and
properly discontinuously on G by left translations.

Proof No other translation than the identity has a fixed point so the
action is free. To see that it is properly discontinuous we must check (i) and
(ii) of Definition 8.1. Choosing U, V neighborhoods of e as in the proof of
the preceding lemma so that VV~!' < U and U n I = {e}, we see that the
only heT such that hV n V # & is h = e. This proves (i). To prove (ii) we
argue as follows. If I'x and I'y are distinct orbits, then x ¢ 'y, and since 'y is
closed, by the regularity of G there is a neighborhood U of x such that
UnTy= . Let V be a neighborhood of e such that xVV~! < U. If the
open sets ['xV and I'yV intersect, then some element of xVV ~! must be in
I'y, which is an immediate contradiction. This completes the proof. |

(8.6) Corollary IfT is a discrete subgroup of a Lie group G, then the space
of right (or left) cosets G/T is a C* manifold and n: G — G/ is a C* mapping.

This is a combination of Theorems 8.3 and 8.5. It may also be considered
as a generalization of Theorem 7.12 since I' is a closed subgroup of G.
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(8.7) Example A particularly important example is the following. Let
G = V", that is, R" considered as a vector space, and let I' = Z7, the n-tuples
of integers—usually called the integral lattice. [More generally one could
take for I the integral linear combinations of any basis f;, ..., f,of V"] isa
discrete subgroup; the neighborhood CZ(0) of the origin with ¢ < 1 does not
contain any element of I other than (0, ..., 0). The reader should verify that
VT = V*/Z" is diffeomorphic to T" = §' x -- x §!, the n-dimensional
torus, and that = is a Lie group homomorphism of V" onto T" with I’ as
kernel.

(8.8) Example Any finite subgroup I' of a Lie group G is a discrete
subgroup. When C is compact, a discrete subgroup must be finite; but even
in this case there are interesting examples. Thus in the case of SO(3), the
group of 3 x 3 orthogonal matrices of determinant + I, the subgroups of
symmetries of the five regular solids give examples among which is the
famous icosahedral group, which contains 60 elements. (See Wolf [1,
Section 2.6].)

(8.9) Example In the case of groups which are not compact we have
many variations of the following theme: Let G, = Gl(n,R) and
[y = Sl(n, Z), the n x n matrices with integer coefficients and determinant
+ 1. Since the topology of G, is obtained by considering it as an open subset
of R™, it is clear that 'y corresponds to the intersection of G, with the
integral lattice Z™ and hence is discrete. Having said this, suppose G to be a
Lie subgroup of Gy and let I' = I’y n G. Then I' is discrete in G. An illustra-
tion is the following: Let G be all matrices in Gl(n, R) with + 1 on the main
diagonal and zero below and let I be its intersection with Si(n, Z).

An interesting question about which one can speculate is the following:
In which, if any, of these cases is G/I" compact ? Note that it is compact when
G = Vand I’ = 2" A necessary and sufficient condition for compactness is
the existence of a compact subset K < G whose I'-orbit covers G, 'K = G.
In Example 8.7, any cube K of side one or greater has this property.

We terminate by mentioning some examples related to “ tiling ” the plane
and to crystallography. Note that reflection in a line is a rigid motion of the
plane, and in fact any rigid motion is a product of reflections, which thus
generate the group of motions of the plane. For example, the group I'
generated by reflections in the four lines x = 0, x = 3, y = 0, y = 4 relative
to a fixed Cartesian coordinate system contains the group of translations
(x, y) = (x + m, y + n), m, n integers. This latter group may be identified
with the subgroup Z2 of ¥? discussed above. Moreover the action of I’
leaves unchanged the figure consisting of lines x = k/2, y = I/2, k, | integers,
that is, a collection of squares which “tile” the plane.



100 Il DIFFERENTIABLE MANIFOLDS AND SUBMANIFOLDS

Similarly, if we tile the plane with other polygons as in Fig. 111.12, we see
that the group I' of reflections in all lines forming edges of these polygons
leaves the whole configuration or tiling unchanged. The reader can verify
geometrically that the group I' in these illustrations acts properly discontin-
uously. Is the action free? This is an important method of obtaining such
group actions.

Figure 11112

Exercises

1. Verify that if " acts discontinuously as a discrete group of diffeomor-
phisms of a manifold M, then the orbits I'x are closed, discrete sets and
conversely if the orbits are closed and discrete, then the action is
discontinuous.

2. Suppose that a C* manifold M is a metric space and that I is a discrete
group of C* isometries acting discontinuously on M. Show that the
action is necessarily properly discontinuous.

3. (a) Show that (i) may be replaced by (i’) in Definition 8.1; and
(b) show that (ii) may be replaced by (ii’): M/T" is Hausdorfl.

4. Check that V"/Z" and T" = §' x --+ x S" are diffeomorphic.

5. Check in detail that Z, acts freely and properly discontinuously on §"~!
and that S"~1/Z, is P""'(R).

6. Let G consist of all 3 x 3 matrices which have + | along the diagonal
and zero below and I' the matrices in G with integer entries. Show that I
is a closed discrete subgroup and G/T" is a compact Hausdorff space.

9 Covering Manifolds

Some of the examples of the previous section are intimately related to the
notion of covering manifolds. Let M and M be two C* manifolds of the
same dimension and 1: M - M a C* mapping. Using this notation, we
make the following definition:

(9.1) Definition M is said to be a covering (manifold) of M with covering
mapping  if it is connected and if each pe M has a connected neighborhood
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U such that =~ '(U) = {J U,, a union of open components U,, with the
property that iy, the restriction of m to U,, is a diffeomorphism onto U.
The U are called admissible neighborhoods and = is called the projection or

covering mapping.
Examples abound in the previous section: M = R covers M = S'

realized as complex numbers of absolute value + 1 with zn(t) = exp 2mir.
(This may be visualized as in Fig. 111.13 with x the projection to the circle S*.

T~

Figure 111,13

More generally M = R" covers T". Example 8.2 shows that S"~! covers

P"~'(R) and in a very general way Theorem 8.3 tells us that if I' acts freely
and properly discontinuously on M, then M covers M = M/T". Here the
map r is the obvious one: it takes each x € M to its orbit I'x which is a point
of M.

It would seem at first glance that the examples of covering manifolds
must be much more extensive than those furnished via Theorem 8.3. We
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shall see much later that this is not the case. At present we can only begin to
show how this is demonstrated. Let us assume then that 7: M — M is any
covering of a manifold M by a connected manifold M. We indicate how this
may give rise to a group I" acting freely and properly discontinuously on M.

(92) Definition A diffeomorphism h: M — M is said to be a covering
transformation, or deck transformation, if mo h = .

Note that this is equivalent to the requirement that each set ~!(p) is
carried into itself. In case the covering is one arising from free, properly
discontinuous action of a group I' on M, then each heT is a covering
transformation of the covering n: M — M/T". We verify at once that the set T
of all covering transformations is a group acting on M. It contains at least
the identity so it is not empty.

Given any x € M and p = n(x), let U be an admissible neighborhood of p
son” '(U)={) U,, where a = 1, 2, ... (the collection of mutually disjoint
neighborhoods {U,} must be countable), and let x, = 7~ !(p) n U, . Then x
is one of the x,’s, say x;; the set of x,’s is exactly =z~ '(p) and h: =~ '(p) -
n~'(p) is a permutation of this set. It follows that h(x,) = x, and
h: U, - U, is a diffeomorphism; in fact h | U, = ng! - ng,. We can con-
clude that the points left fixed by h form an open set. By continuity of h they
also form a closed set, and—M being connected—this set is empty or h is the
identity. In particular, two covering transformations with the same value on
a point x must be identical. Thus covering transformations are completely
determined by the permutation a — o’ they induce on the set of points
{x,} = =7 !(p) for an arbitrary (but fixed) point pe M. In particular, the
action of " on M is free. If x, € n~'(p), then h — hx, maps I" into 7~ !(p).
This mapping is an injection so I must be countable, and as a discrete group
of diffeomorphisms of M, it acts differentiably on M. This proves, in part, the
following theorem:

(9.3) Theorem With the notation above, T acts freely and properly discon-
tinuously on M. If pe M and T is transitive on ™ '(p), then M/T" is naturally
diffeomorphic to M and relative to this diffeomorphism the covering map
n: M — M corresponds to the projection of each xe M to its orbit T,

Proof We have already seen that I" acts on M freely since only the
identity has a fixed point. We must check (using admissable neighborhoods)
that the action is properly discontinuous. If xe M and p = n(x), then
xe{x,}=n"'(p), say x=x,, and if h#e then h(x,)=x; # x, so
nO,) = Uﬂ with Uﬂ n U, = &. Thus the first part of proper discontinuity
is proved.

For the second part we take x, ye M not in the same orbit of I" and
consider two cases: either n(x) = n(y) or not. If they are the same, denote
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this point by p, as above, and note that in permuting {x,} = n~'(p),nohe "
takes x = x, to y = x, (« # B); whence U, is not carried to U, by any he T
This establishes (ii) of Definition 8.1 in this case. When, on the other hand,
n(x) = p and n(y) = q are distinct, it is even easier. Let U, V be disjoint
admissible neighborhoods of p, g, respectively. Then the open sets ™ '(U)
and n~'(V) are disjoint and carried into themselves by every he I, so they
answer to requirement (ii). Thus the action is properly discontinuous.
Now define a map n,: M/T' - M as follows If[y] is a point of M/T", that
is, an orbit Iy of T, then let m,([¥]) = n(). This makes sense since n(hy) =
n(y). Since M is connected, M/T" is connected The mapping =, is onto, since
n: M - M is onto. Further n, is a covering map (to see this one must merely
check the definition of M/T" from Theorem 8.3). Now suppose further that I"
is transitive on =~ ' (p) for some pe M. Then n{ !(p) consists of a single point.
This reduces the proof of the last part of the theorem to the following lemma,
whose proof is left to the exercises. ]

(94) Lemma Let n: M — M be a covering and suppose that for some
pe M, n~'(p) is a single point. Then n is a diffeomorphism.

Exercises

1. Prove Lemma 9.4 by using the connectedness of M.

If 1: M - M is a covering and the group I" of covering transformations
is not transitive on M, then show that we have naturally defined cover-
ings m,: M — M/T" and n,: M/T" > M such that = = m, o 7.

3. Show that the covering transformations form a group and that if
x, y€ M, a covering manifold of M, then there is at most one covering
transformation taking x to y.

4. Let I = [0, 1] be the closed unit intervaland I" = I x -+ x I, the n-fold
Cartesian product. Suppose F:["—> M is continuous with
p=F(,...,0). If 1: M - M is a covering and xe n™'(p), then prove
that there is a unique continuous map F: I" -» M such that F = no F
and F(0,...,0) = x.

5. Let MM be C* manifolds of dimension n and 7: M — M a C* map
which is onto and has rank n at each point. Prove or disprove the
statements: (a) = is locally a diffeomorphism; (b) = is a covering map.

6. Let m: M - M be a covering and X a connected space F: X - M a
continuous mapping. Suppose F,, F,: X — M have the property that
neoF, = F, and suppose they agree on one point of X. Show that

.F,=F,.

7. Letm: M - M bea covering and F: [a, b] - M a continuous curve from
F(a)=pto F(b) =q If xoen” !(p), show that there is a unique contin-
uous curve F: [a, b] » M such that F(a) = x, and n- F = F.
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Notes

The concept of differentiable manifold which was presented in this chapter is the result of
many influences and the work of many great mathematicians beginning with Gauss and Riem-
ann. In its present form it is of fairly recent creation. The early work in differential geometry was
of a local character—hence open subsets of Euclidean space were adequate models. Even the
space of non-Euclidean geometry, as a manifold, is equivalent to Euclidean space—it is only the
metric aspects of the geometry which are different. The same is true of Lie groups, as studied by
Lie, since only group germs or local Lie groups, that is, neighborhoods of the identity, were
considered. Except for Riemann surfaces and projective spaces, there was little to force the
global aspects of manifolds into prominence. However, in the present century, beginning
especially with the work of Poincaré, manifolds as they are now studied became a major
preoccupation of mathematics.

Poincaré, whose imprint is everywhere in this subject, studied manifolds from many points
of view: as phase spaces of dynamical systems, as Riemann surfaces (in which covering spaces
and discontinuous groups played an important role), and from the aspect of algebraic topology.
(For discussion of these topics the reader can consult the survey article by Smale [1] and the
books of Siegel [1] or Lehner [1].) All of the work of Cartan on Lie groups and differential
geometry (see Chern and Chevalley [1]) has had an enormous influence on the subject. Finally
Weyl's book [1] on Riemann surfaces and the paper of Whitney [1] did much to refine the
concept of differentiable manifold to its present form.



IV VECTOR FIELDS ON A MANIFOLD

In this chapter we introduce some of the most basic tools used in the study of differentiable
manifolds. First we define the tangent space T,(M) attached to each pe M, M a C* manifold.
Each element X, of T,(M) can be considered as an operator (directional derivative) on
C* -functions at p, generalizing one of the definitions in the case of R”. We also see thata C™
mapping F: M — N induces a linear map F_: T(M) — T;,(N) on the tangent space at each
point.

Assigning a vector X ,to each pe M we obtain a vector field on M, just as in the special case
R". Vector fields are intimately associated with the action of the Lie group R on M, that is,
one-parameter transformation groups. The relation between them is a consequence of—and in
some sense equivalent to—the fundamental existence theorem for solutions of systems of ordin-
ary differential equations. Section 2 gives the basic definitions of vector fields, Section 3 the
basic definitions of one-parameter transformation groups acting on a manifold and Section 4
the existence theorem. Systems of ordinary differential equations are shown to coincide with
vector fields on manifolds and their solutions with curves on the manifold which are tangent to
the vectors of the field. These curves are also orbits of the group action. In Section 5 a number
of examples are given, using Lie group action as a starting point.

In Section 6 a study is made of one-parameter {one-dimensional) subgroups of a Lie group
G. These are basic in the study of Lie groups, but we use them primarily as a source of examples
and to illustrate the basic ideas above. They are in one-to-one correspondence with the vectors
X, e T,(G) the tangent space to G at the identity element and, in the case of matrix groups, are
easily obtainable in terms of the “exponential™ of a matrix.

Section 7 is concerned with the set ¥ (M) of all C*-vector fields on M. It is a vector space
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over R and a module over the C* functions on M. Moreover it has a naturally defined product,
the bracket [X, Y]. Using all these ideas one is able to define the Lie derivative L, Y of the
vector field Y in the direction of the field X ; this gives a new vector field dependent on X and Y.
This derivative results from the group action associated with X, which enables us to compute
the change in Y as we move along the orbit.

The final two sections give Frobenius’ theorem, a very basic existence theorem in manifold
theory, and some applications. These two sections can be omitted on a first reading; they are
important but we make relatively few applications of them. For a first reading, in fact,
Sections 1-4 are the most crucial.

1 The Tangent Space at a Point of a Manifold

Let M denote a C* manifold of dimension n. We have defined for M the
concepts of C* function on an open subset U and of C* mapping to another
manifold. This allows us to consider C*(U), the collection of all C* func-
tions on the open subset U (including the special case U = M), and to
verify—as we did for U < R"—that it is a commutative algebra over the real
numbers R. As before, R may be identified in a natural way with the constant
functions and the constant 1 with the unit. Given any point pe M we
may—as for R"—define C*(p) as the algebra of C® functions whose domain
of definition includes some open neighborhood of p, with functions
identified if they agree on any neighborhood of p. The objects so obtained
are called “germs” of C* functions (Exercise 1). Choosing an arbitrary
coordinate neighborhood U, ¢ of p it is easily verified that ¢*: C*(¢(p)) —
C>(p) given by ¢*(f) = fo ¢ is an isomorphism of the algebra of “ germs”
of C* functions at ¢(p) € R" onto the algebra C*(p). This is to be expected
since locally M is C*-equivalent to R" by the diffeomorphism ¢. Our main
purpose is to attach to each pe M a tangent vector space T,(M), as was done
for R" and E™. [See Fig. IV.1 for the geometric idea of 7,(M).] Although our
first definitions in the latter case giving T,(R") as directed line segments do
not generalize, the identification (based on Theorem I1.4.1) of T,(R") with
directional derivatives does.

(1.1) Definition We define the tangent space T,(M)to M at p to be the set
of all mappings X ,: C*(p) — R satisfying for alla, f € R and f, ge C*(p) the
two conditions

(i) Xyof + Bg)=a(X,f) + B(X,9) (linearity),
(i) X,(fg) = (X,f)g(p) + f(p)(X,g)  (Leibniz rule),
with the vector space operations in T,(M) defined by
X, + L) =X, [+ Y
(@X,)f = (X, f).
A tangent vector to M at p is any X € T,(M).
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Figure 1V.1

One should check that this does in fact define a vector space T,(M) at
each point p of M. Although we are now dealing with C® functions on a
manifold, formally the proofs are the same as in Section I1.4 where it was
established that 2(a), the mappings of C*(a) to R having properties (i) and
(i), was a vector space.

We remark that the definition of T,(M) uses only C*(p), not all of M;
thus if U is any open set of M containing p, then T,(U) and T,(M) are
naturally identified. Of course, our proof that T,(M) is a vector space in-
cludes the earlier case of R", the difference is that we no longer have the
alternative “geometric” way of defining T,(M) as pairs of points pX as we
did in R", because that method used special features of R", namely the
existence of a natural one-to-one correspondence with the vector space V".
For manifolds in general, any such correspondence entails a choice of a
coordinate neighborhood and depends on the particular neighborhood
selected; so it is not natural in the sense we have used the term. However, for
each choice of coordinate neighborhood U, ¢ containing pe M we obtain an
isomorphism to ¥ as we shall see. It is by this method that we can establish
that dim T,(M) = dim M.

(1.2) Theorem Let F: M — N be a C* map of manifolds. Then for pe M
the map F*: C*(F(p)) = C*(p) defined by F*(f) = fo F is a homomorphism
of algebras and induces a dual vector space homomorphism F,: T(M)—
Te)(N), defined by F, (X ,)f = X ,(F*f), which gives F . (X,) as a map of
C*(F(p)) to R. When F: M — M is the identity, both F* and F, are the
identity isomorphism. If H = Go F is a composition of C* maps, then
H*=F*-G*and H, =G, F,.
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Proof The proof consists of routinely checking the statements against
definitions. We omit the verification that F* is a homomorphism and con-
sider F, only. Let X, e T,(M) and f, g€ C*(F(p)); we must prove that the
map F,(X,): C*(F(p)) — R is a vector at F(p), that is, a linear map satisfy-
ing the Leibniz rule. We have

F*(Xp)(fg) = XpF*(fg) = Xp[(f° F)(g ° F)]
= X,(f° F)g(F(p)) + f(F(p))X (> G),
and so we obtain

Fo (X, )(fg) = (FAX ) )9(F(p)) + f(F(P))F (X ,)g

(linearity is even simpler). Thus F.: T,(M) — Ty,(N). Further, F, is a
homomorphism

F (0X,+ BY,)f= (aX, + BY,)(F-f)

oX ,(F o f) + BY,(F = f)
oF ((X,)f + BF.(,)f
[2Fu(X,) + BE(V)1S B

(1.3) Remark The homomorphism F, T, (M) — Tg,(M) is often called
the differential of F. One frequently sees other notations for F, for example,
dF, DF, F’, and so on. The # is a subscript since the mapping is in the same
“direction” as F, that is, from M to N, whereas F*: C*(F(p)) - C*(p) goes
opposite to the direction of F. This notational convention can be quite
important and reflects a similar situation in linear algebra related to linear
mappings of vector spaces and their duals.

Although, once definitions are correctly made and rather mechanically
applied, the statements above have trivial proofs, nonetheless they are most
important and useful, even if M and N are Euclidean spaces. We shall
consider some of the consequences now.

(14) Corollary If F: M — N is a diffeomorphism of M onto an open set
Uc Nand pe M, then F: T,(M) — Ty, (N) is an isomorphism onto.

This follows at once from the last statement of the theorem and the
remark after Definition 1.1 if we suppose G is inverse to F. Then both
Gyo Fo: T,(M) > T, (M) and F, - G,: Tr,(N) > Tg,(N) are the identity
isomorphism on the corresponding vector space.

Remembering that any open subset of a manifold is a (sub)manifold of
the same dimension, we see that if U, ¢ is a coordinate neighborhood on M,
then the coordinate map ¢ induces an isomorphism ¢,: T,(M) - T, (R")
of the tangent space at each point pe U onto T,(R"),a = ¢(p). The map ¢,
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on the other hand, maps T,(R") isomorphically onto T,(M). The images
E,, = ¢, '(¢/0x"), i =1,...,n, of the natural basis 9/dx', ..., 3/0x" at each
a€ o(U) = R" determine at p = ¢~ '(a)e M a basis E,, ..., E,, of T,(M);
we call these bases the coordinate frames.

(1.5) Corollary To each coordinate neighborhood U on M there corre-
sponds a natural basis E,,, ..., E,, of T(M) for every pe U, in particular,
dim T,(M) = dim M. Let f be a C* function defined in a neighborhood of p,
and f=fo @' its expression in local coordinates relative to U, ¢@. Then
E;,f = (0f/0x") . In particular, if x'(q) is the ith coordinate function, X , x' is
the ith component of X, in this basis, that is, X , = Y7_; (X, x)E,,.

The last statement of the corollary is a restatement of the definition in
Theorem 1.2 for E;, = ¢, '(8/0x’), namely,

Bt = (02 (L) F= tr e

X

x=e(p)

If we take f to be the ith coordinate function, f(q)= x'(q) and
X, =Y «E;,, then

i
- )= T o oxt )
X, x'=) oE; x') = a’(-.) =qa'
g i a j 0x’ @(p)

We may use this to derive a standard formula which gives the matrix of
the linear map F, relative to local coordinate systems. Let F: M — N be a
smooth map, and let U, ¢ and V, ¥ be coordinate neighborhoods on M and
N with F(U) = V. Suppose that in these local coordinates F is given by

y=fix"....x"), i=1..,m,

and that p is a point with coordinates a = (a’, ..., a"). Then F(p) has y
coordinates determined by these functions. Further let 8y’/0x' denote
afijext.

(1.6) Theorem Let E;, = ¢, ' (¢/6x")and Ejp,y = ¢, '(8/0).i=1,...,n

and j = 1,..., m, be the basis of T,(M) and Ty, (N), respectively, determined
by the given coordinates neighborhoods. Then

m (‘;yj

F*(Efﬂ) - Z (ﬁxi

) Eper i=1..,n
ji=1 a

In terms of components, if X = Z a'E;, maps to F (X ,) = Z B’Ye(pp then we

have

i=1

) L v
B = Za‘(;%) s j=1..,m
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The partial derivatives in these formulas are evaluated at the coordinates of
p: a=(a',...,a") = o(p)

Proof We have F_(E,)=F, @, (0/0x)pp) and according to
Corollary 1.5, to compute its components relative to Ep,, we must apply
this vector as an operator on C*(F(p)) to the coordinate functions y;

(@ 8 - of!
FUE; = (Fy > 05 ‘(a_)a))yf = gt tilF 2@ = oo

these derivatives being evaluated at the coordinates of p, that is, at ¢(p); they
could also be written (8)/0x'), (). 1

We now obtain two corollaries to Theorem 1.6, in the first, F, M, and N
are as in Theorem 1.6.

(1.7) Corollary The rank of F at p is exactly the dimension of the image of
F (T,(M)). F, is an isomorphism into if and only if this rank is the dimension
of M; it is onto if and only if the rank equals dim N.

Proof We obtain this immediately from linear algebra since (3y/0x’) is
exactly the Jacobian of y o Fo ¢~ !, which we used to define the rank in
Definition 111.4.1, and is also the matrix of the linear transformation
F,: T, (M) - T,(N) in the given bases. i

This corollary gives a characterization of the rank which is independent
of any coordinate systems, a situation toward which we constantly strive in
studying properties of various objects on manifolds.

If we apply the theorem to themaps F=pog@ 'and F7!' = o p~!
which give the change of coordinates from U, ¢ to U, ¢ in U~ U on M,
then we obtain formulas for change of basis in T,(M) and the corresponding
change of components relative to these bases.

(1.8) Corollary Let peUn U and let E,=¢,'0/0x") and
E,, = . '(0/0x') be the bases of T,(M) corresponding to the two coordinate
systems. Then with indices running from 1 to n, we have

Oxk o ~ (ax’)
Ei = - E and E, = Pyt E, .
4 Zk (ax')q,(,,) kp jp Zl ox! N ip
IfX,=YdE, =Y PE,, then

. . Ox . ikl
o=y lﬁ and B’=Z,~aa—xi.



1 THE TANGENT SPACE AT A POINT OF A MANIFOLD 111

The proof is left as an exercise. The second set of formulas is often used to
define tangent vector at a point p of a manifold: a tangent vector X, is an
equivalence class of the collection of all n-tuples {(a', ..., a")y .|’ € R, U, ¢
a coordinate neighborhood of p}; two such n-tuples (a',...,a")y. , and
(B', ..., B")p.; being equivalent if they are related as in last formula of
Corollary 1.8 (see Exercise 4).

We may apply Corollary 1.7 to the following situation: M is a submani-
fold of N with F: M — N the immersion or inclusion map of M into N. In
either case, the mapping F from M (with its C* manifold structure) into N
(with its C* structure) is a C* mapping, and rank F = dim M. This means
that F,: T,(M) — T,(N) is an injective isomorphism so that T,(M) can be
identified with a subspace of T,(N). This identification being made we can
think of T,(M), the tangent space to M, as a subspace in T,(N) for each
pe M. Applying this principle to our examples of submanifolds of R",
especially when n = 2 or 3, will enable us to recapture some of the intuitive
meaning of tangent vector which was lost in the transition from Euclidean
space to general manifolds. Of course this applies only to those manifolds
which can be realized as, that is, are diffeomorphic to, a submanifold of R".

(1.9) Example Consider the case of a C® curve F: M — N in a manifold,
where M = (a, b) is an open interval of R; for the moment we drop the
requirement that F is an immersion. Given toe M, a <ty < b, then d/dt
taken at t, is a basis for T,(M). Suppose p = F(to) and fe C®(p), then
F,(d/dt) is determined by its value on all such f:

F*(%)f= (U F))

We shall call this vector the (tangent) velocity vector to the curve at p.
(Fig.IV.2). In this interpretation we use the parameter t € R as time, and we
think of F(t) as a point moving in M.

In particular, if U, ¢ are coordinates around p, then in the local coordin-
ates F is given by F(t) = ¢ o F(t) = (x'(t), ..., x"(t)). The ith coordinate x' is
a function on U and using somewhat sloppy notation, we write x'(t) =
(x' o F)(t); thus F,(d/dt)x' = (dx'/dt),,, which we denote X'(to), i =1,...,n.
So by Theorem 1.6 (with E,, = d/dt and E’s replacing E’s),

F*(jt) - izilx"(to)a,.p.

Now as a special case let N = R". With the usual (canonical) coordinates
of R" this formula means that the image of d/dt is just the velocity vector at
the point p = (x'(t). ..., X"(to)) of the curve. Its components relative to the
natural basis at the point p are x'(to), ..., X"(fo); it is the vector of T,(R")

lo
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Figure 1V.2

whose initial point is p = x(t,) and whose terminal point is (x'(to) + X'(to),
..es X™(to) + X"(to)). If the rank of F at ¢, is 1, then F, is an isomorphism and
we may identify the tangent space to the image curve at p with the subspace
of T,(R") spanned by this vector, thus obtaining the usual tangent line at the
point p of the curve. If the rank of F at t, is 0, then F(d/dt) = 0.

(1.10) Example We now suppose M to be a two-dimensional submani-
fold of R, that is, a surface. Let W be an open subset, say a rectangle in the
(u, v)-plane R* and 0: W — R® a parametrization of a portion of M
(Fig.IV.3). Namely, suppose 6 is an imbedding whose image is an open
subset V of M; V, 07! is a coordinate neighborhood on M. Suppose
B(uo, vo) = (X0, Yo, 20), where we now use (x, y, z) as the natural coordin-
ates in R*. We may assume that  is given by coordinate functions

x=f(uv), y=g(uv), z=h(uro)

Since 6 is an imbedding, the Jacobian matrix d(f, g, h)/0(u, v) has rank 2 at
each point of W. We consider the image of the basis vectors ¢/0u and d/dv at
(4o, vo). We denote these by (X,), and (X ), . According to the first formula
of Theorem 1.6, they are given by

0 O0x 0 dyéd 0z0
(Xu)o = "*(au) = udx T oudy T auor’
_ 0\ 0xd dyd 0z0
(X = 0*(51;) T ovox T avoy T dvor
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Figure IV.3

where we have written dx/0u, dx/dv for df/du, éf/év, and so on, these deriva-
tives being evaluated at uy, vo. Since 0, has rank 2, these are linearly
independent vectors, and they span a two-dimensional subspace of
Tixo. yo. z0(R?). This subspace is what we have, by our identification, agreed
to call the tangent space of M at the point (xq, yo, zo); it consists of all the
vectors of the form «f, (0/0u) + BO,(0/0v) = a(X,)o + B(X,)o, o BER;
their initial point, of course, is always at (xq, yo, zo). It is easily seen that this
subspace is the usual tangent plane to a surface, as we would naturally
expect it to be. We use one of the standard descriptions of the tangent plane
at a point p of a surface M in R?: the collection of all tangent vectors at p to
curves through p which lie on M. In fact let I be an open interval about
t =ty and let us consider a curve on N through (xq, yg, zo). It is no loss of
generality to suppose the curve givenby F: I -+ W composed with: W — R*;
thus u, v, are functions of t with u(ty) = ug and v(ty) = t, and the curve is
given by

O(F(1)) = (x(u(o). o(t)), y(u(e), o). 2(u(t). o(1))).

The tangent to the curve at (xq, yo, Zo) is given by

d . 0 . 0 . 3}
- F)*(di) = x(’o)ajc + )’(fo)g}‘) + Z(fo)a*Z,
where

x(to) = dx) _ Oxdu  Oxdv
" \dt),, oudt ' ovdt
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evaluated at (xo, yo, Zo) and ¢ = to. Substituting and collecting terms, we
have

d dufox 0 dyd 0z 0
‘9“”*(5) = a(m& Tauay 5uaz)
Ldvfox o oyd 020
dt\ovox oOvdy Ovoz

du 0 du 0
=Yool + 56—
dr 9*(au) T *(au)

= a(to)(X,)o + 0(to)(X,)o -

If we let u=1t, v =1y, we obtain just (X,)o = 0,(6/0u) and analogously
(X,)o is tangent to the parameter curve u = ug, v = t. The coordinate frame
vectors are tangent to the coordinate curves.

This could also be derived directly from the relation (0 - F), =6, - F,
of Theorem 1.2. This means that the (tangent) velocity to every curve in M
through p = (xo, o, 2o) lies in the subspace T,(M) < T,(R*) spanned by
(X,)o and (X,),. Conversely by suitable choice of the curve every vector of
T,(M) may be so represented.

Exercises

1. Let #, be the family of C* functions f on open sets W, of M which
contain the point p. Define a relation ~ on #,by f~giff=gona
neighborhood of p. Show that ~ is an equivalence relation and that the
equivalence classes, called germs of C* functions at p, form an algebra
C(p) with unit over R.

2. Let F:M—>N be a C® mapping of manifolds. Show that
f— F*(f) = F - fdefines a homomorphism F*: C*(F(p)) - C*(p)and
prove the statements of Theorem 1.2 about F*.

3. Prove Corollary 1.8.

4. For pe M let € be the collection of all coordinate neighborhoods con-
taining p. Let (ay, ..., o)y, , and (B4, ..., B,)5.5 be objects consisting of
an element of R" together with—or labeled by—a coordinate neighbor-
hood of €. They will be called equivalent if they correspond by the
formulas of Corollary 1.8. Show that this is an equivalence relation and
that the classes form a vector space naturally isomorphic to T,(M).

5. Using the notation of Example 1.10, show that for any «, f € R there isa
parametrized curve on M through p whose velocity vector is exactly
a(Xu)O + ﬂ(Xv)O

6. If the surface of Example 1.10 is given in the form z = h(x, y) with
zo = h(x,, yo), then show as a special case of our discussion that with



2 VECTOR FIELDS 115

suitable parametrization the tangent plane T, ,, .., (M) consists of all
vectors from (xq, yo, 2o) to points (x, y, z) satisfying

(g:)o(x — Xo) + (%’;)O(y — Yo) = (z2 — 20) = 0.

7. Let N c M be a regular submanifold and U, ¢ be a preferred coordinate
neighborhood relative to N with local coordinates (x',..., x™) and
frames (E,, ..., E,). If Nn U is given by x"*! = --- = x™ = 0, show
that E,, ..., E,, is a basis of T,(N) for every pe N n U. Modify this
statement so as to include immersed submanifolds.

2 Vector Fields

In a previous paragraph (Definition 1.1), we defined the notion of a
tangent vector to a manifold at a point pe M, that is, an element X, of
T,(M). In this section we will define and give examples of a C"-vector field on
M, r = 0. A vector field X on M is, first of all, a “function ” assigning to each
point p of M an element X, of T,(M) (see Fig. IV.4). We place the word
“function” in quotation marks since we have not really defined its range,
only its domain M. The range is, in fact, the set T(M) consisting of all

tangent vectors at all points of M, T(M) = | ), » T,(M).

Figure IV.4
Vector field X on M.
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For future reference we note some properties of T(M). It is a set that is partitioned into
disjoint subsets {T,(M)} which are indexed by the points of M, that is, to pe M corresponds its
tangent space T,{M). It follows that there is a natural projection n: T(M) > M taking the
vector X ,€ T(M) to p. The vector field X as a function X: M — T(M), must satisfy the condi-
tion m- X = iy, the identity on M. Further details are given in Exercises 5-7.

Second, a vector field X is required to satisfy some condition of regular-
ity, that is, of continuity or differentiability. We impose this as follows: For
pe M let U, ¢ be any coordinate neighborhood of p, and letE, , ..., E,, be
the corresponding basis (coordinate frames) of T,(M). Then X ,, the value of
X at p, may be written uniquely as X, = > 7_, a'E;,. If p is varied in U, the
components «', ..., a" are well-defined functions of p which must, then, be
given by functions of the local coordinates (denoted by the same letters)

o =ai(x!,...,x"), i=1L...,n on @U)cR"

We say that X is of class C", r > 0, if these functions are of class C" on U for
every local coordinate system U, ¢. Since the expressions given in
Corollary 1.8 (see also Exercise 4) are linear with C* coefficients, we see that
this definition is independent of the coordinates used. (Note that we include
the case r = 0 of continuous components.) Collecting these requirements
leads to the precise definition:

(2.1) Definition A vector field X of class C"on M is a function assigning to
each point p of M a vector X ,e T,(M) whose components in the frames of
any local coordinates U, ¢ are functions of class C" on the domain U of the
coordinates. Unless otherwise noted we will use vector field to mean
C=-vector field hereafter.

We remark that this definition is somewhat awkward, especially as re-
gards the regularity condition; our treatment places reliance on local coor-
dinates. One way to avoid this is to define X to be C" if for every C* function
f/ whose domain W, is an open subset of U, the function Xf, defined by
(Xf)p) = X ,f. is of class C". Another very elegant approach is to give T'(M)
the structure of a C* manifold and then X becomes a mapping, X: M —
T (M), of one C* manifold to another. In this case we have already defined
the meaning of C" in Definition I11.3.3. We shall develop these important
ideas in the exercises.

(22) Example If we consider M = R® — {0}, then the gravitational field
of an object of unit mass at 0 is a C*-vector field whose components
a', a2, a® relative to the basis 8/0x' = E,, 8/0x* = E,, and 8/0x* = E; are

a":rfj, i=1,23 with r=((x'P+ (2)?+ ()2
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(2.3) Example Given any coordinate neighborhood U, ¢ on a manifold
M, then U, being an open set of a manifold, is itself a manifold of the same
dimension, say n. The vector fields E; = ¢ '(6/éx'), i = 1, ..., n, have com-
ponents o/ = &{. These are constants and hence C* functions on U, so that
each E; is a C”-vector field on U. The set E,, .... E, is a basis of T,(M) at
each pe U, the coordinate frames (Fig. IV.5).

More generally, a set of k vector fields on a manifold M, dim M = n,
which is linearly independent at each point is called a ficld of k-frames on M.
If k = n, then the frames form a basis at each point. Of course, it would be
convenient if on a manifold one could always find such a field of n-frames,

Figure IV.S

Coordinate frames on U ¢ M.

for then the components of any vector field would be globally defined, that
is, functions whose domain is all of M. This would relieve us of the necessity
of using local coordinate neighborhoods and the associated frames
E,,.... E,. However, it is known that this is not possible in general, for
example. on the sphere §2 it is not possible to define even one continuous
vector field X which is linearly independent (nonzero) at each point of S
This a classical theorem of algebraic topology discovered by Brouwer; it will
be proved in Section VI.8. We shall give some further related examples for
which we need the following lemma:

(24) Lemma Let N be a regular submanifold of M and let X be a
C*-vector field on M such that for each pe N, X ,€ T,(N). Then X restricted
to N is a C*-vector field on N.
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Proof By hypothesis X assigns to each pe N the tangent vector X, in
the subspace T,(N) of T,(M). We must prove that X restricted to N is of class
C>. Let U, ¢ be a preferred coordinate neighborhood in M relative to N so
that V= Un N, y = @|y is a coordinate neighborhood on N such that
peV if and only if its last m — n coordinates are zero: x"*!(p) = =
x"(p) =0, dim N = n and dim M = m. If on U we have X = Y7, «'E;,
then on V = U N we must have «"*! = --- = «™ = 0. This is because
E,...., E,, span T,(N) for peV, a consequence of Corollary 1.7 (see
Exercise 1.7). The o are the same functions as in the case of U but with the
last m — n variables equated to zero when we restrict to V. Thus X restricted
to N has C*-components relative to the frames E |, ..., E, of preferred coor-
dinate systems. However, by Corollary 1.8 it is clearly sufficient to check that
X is C* for a covering by coordinate neighborhoods; it must then be C®
relative to any coordinates. |

(2.5) Example Although no nonvanishing continuous vector field exists
on the 2-sphere S, there are three mutually perpendicular unit vector fields
on §> ¢ R* that s, a frame field. Let $* = {(x', x?, x>, x*)| Y&, (x)? = 1}
and let the vector fields be given by

0 0 0
— 2 | 4 - 3
X = x6'+x62+x¢3x3 xax4,
0 0 0
Y——x3F—x4‘§;§+x‘ﬁ+x2W,
0 0 0
T 3 ¢ a2 v 1 Y
2= X d T X g T X gat X 5

at the point x = (x!, x2, x?, x*) of §3. Since at each point these are mutually
orthogonal unit vectors in R, they are independent. To see that they are
tangent to S it is enough to see that they are orthogonal to the radius vector
from the origin O to the point x of S3; this is easy to check. There remains
only the question of whether they are C*-vector fields. However, this is an
immediate consequence of the preceding lemma with N = §* and M = R*.

It is possible to show that all odd-dimensional spheres have at least one
nonvanishing C*-vector field and that—like S>—no even-dimensional
sphere has any continuous nonvanishing field of tangent vectors. It has
recently been proved that only the spheres S!, $3, S” have a C* field of bases
as we have just seen to be the case for S°. Manifolds with this very special

property are called parallelizable. As already mentioned, coordinate neigh-
borhoods are parallelizable.

Having established the concept of vector field on a manifold, we must
now consider what happens when we map a manifold N on which a vector
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field is defined into another manifold M. In Section 1 we saw that if
F:N—> M is a C* map, then to each point pe M there is associated a
homomorphism F,: T(N) = T, (M). If X is a vector field on N, then
F,(X,)is a vector at F(p). However, this process does not in general induce a
vector field on M for various reasons: first, F(N) may not be all of M, that is,
given g€ M it may well happen that for no pe N is F(p) = q. Second, even if
F~!(q) is not empty, it may contain more than one element, say p,, p, with
P1 ¥ p2,and then it may happen that F (X ,,) # F (X ,,) so that there is no
uniquely determined vector ¥, at g which is the image of vectors of the field
X on N. It is easy to construct examples of these mishaps, for instance, let N
be the half-space x' > 0in R* and F: N - M be projection to the coordin-
ate plane x* = 0. If X is the gravitational field of Example 2.2 restricted to
N, we see that the image vectors do not determine a vector field on M.

(2.6) Definition If, using the notation above, we have a vector field Y on
M such that for each ge M and pe F~!(g) = N we have F(X,) = Y,, then
we say that the vector fields X and Y are F-related and we write, briefly,
Y = F_(X). [We do not require F to be onto: If F~!(q) is empty, then the
condition is vacuously satisfied.]

(27) Theorem If F: N — M is a diffeomorphism, then each vector field X
on N is F-related to a uniquely determined vector field Y on M.

Proof Since F is a diffeomorphism, it has an inverse G: M — N, and at
each point p we have F,: T,(N) = T;,(M) is an isomorphism onto with G,,
as inverse. Thus given a C®-vector field X on N, then at each point g of M,
the vector ¥, = F,(Xg,,) is uniquely determined. It then remains to check
that Y is a C®-vector field. This is immediate if we introduce local coordin-
ates and apply Theorem 1.6 to the component functions. |

We remark that under the hypotheses of Lemma 2.4 we have a second
example of F-related vector fields: Let F: N — M be the inclusion map and
let X’ be X restricted to N. Then X’ and X are F-related by the lemma.
Further examples of F-related vector fields arise from the study of Lie
groups.

(2.8) Definition If F: M — M is a diffeomorphism and X is a C* vector
field on M such that F_(X) = X, that is, X is F-related to itself, then X is
said to be invariant with respect to F, or F-invariant.

(29) Theorem Let G be a Lie group and T,(G) the tangent space at the
identity. Then each X € T,(G) determines uniquely a C*-vector field X on G
which is invariant under left translations. In particular, G is parallelizable.
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Proof To each ge G there corresponds exactly one left translation L,
taking e to g. Therefore if it exists, X is uniquely determined by the formula:
X, = L,,(X,). Except for differentiability, this formula does define a left
invariant vector field since for ae G, we have L,,(X, ) Loy o Ly (X,) =
Lou(X.) = X,,. We must show that X, so determined, is C*. Let U, ¢ be a
coordinate neighborhood of e such that ¢(e) = (0,...,0) and let V be a
neighborhood of e satisfying VV < U. Let g, he V with coordinates
x=(x',...,x")and y = (', ..., y"), respectively, and let z = (z', ..., z") be
the coordinates of the product gh. Then z' = fi(x,y), i =1, ..., n, are C*
functions on ¢(V) x ¢(V). If we write X, = Y 7., Y'E;,, v, ..., y" real num-
bers, then according to Theorem 1.6 the formula above for X, becomes

af’
E;,
ay")(x 0)

since in local coordinates L, is given by z' = fi(x, y), i = 1,..., n, with the
coordinates x of g fixed. It follows that on V the components of X, in the
coordinate frames are C* functions of the local coordinates. However, for
any a€ G the open set gV is the diffeomorphic image by L, of V. Moreover
X, as noted above, is L,-invariant so that for every g = aheaV we have
X, = Ly (X,). It follows that X on aV is L,-related to X on V and therefore
X is C* on aV by Theorem 2.7. Since X is C* in a neighborhood of each
element of G, it is C* on G. |

X,=Ly(X)=Y w(

(2.10) Corollary Let G, and G, be Lie groups and F: G, = G, a homomor-
phism. Then to each left-invariant vector field X on G, there is a uniquely
determined left-invariant vector field Y on G, which is F-related to X.

Proof By Theorem 2.9, X is determined by X, its value at the identity
e; of G,. Let e, = F(e,) be the identity of G, and let Y be the uniquely
determined left-invariant vector field on G, such that ¥, = F (X ,,). That Y
should have this value at e, is surely a necessary condition for Y to be
F-related to X ; and it remains only to see whether this vector field Y satisfies
F(X,) = Y, for every ge G,. If so, Y is indeed F-related (and uniquely
determmed) We write the mapping F as a composmon F=LpgyoFoL,.
using F(x) = F(g)F(g~'x), and note that since both X and Y are left-
invariant by assumption, this gives

F*(Xa) = Lrgw © Fu © Lg‘l*(Xg),
F*(Xg) = Lrg ° F.(X.) = Legy Yoy s
F*(Xg) = Yry.

Therefore Y meets all conditions and the corollary is true. |
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Exercises

Show that a function X assigning to each pe M an element of
T,(M)—as in Definition 2.1—is C* if and only if whenever f'is a C*®
function on an open set W, of M, then Xf, defined by (Xf)(p) = X, f, is
C* on W,.
Show that a C*-vector field X on M defines a derivation on C*(M) by
/= Xf as defined in Exercise 1.
Show that the derivations of C*(M), M a C* manifold, are in a natural
one-to-one correspondence with ¥ (M) the collection of all C*-vector
fields on M.
Show that the collection ¥ (M) of all C*-vector fields on M, is closed
under addition and multiplication by C* functions [both defined poin-
twise: (X + Y), = X, + ¥, and (fX), p)X,].
Define a C* structure ofa mamfold on T(M) in such a manner that for
each coordinate system U, ¢ on M, with local coordinates (x', ..., x")
and frames E,, ..., E,, the set U = n~*(U) with mapping ¢: U —
R*™ = R" x R" defined as follows is a coordinate neighborhood For
peU, X, e U we suppose X = Z,-=1 «'E;, and define $(X ,) = (x*(p),
x"(p L a") = (e(p); o, ..., a").

Usmg Exerc1se 5 show that m: T(M) — M is C* and that T,(M) =
7~ !(p) is a submanifold of T(M).
Using Exercise 5, show that the C®-vector fields on M correspond
precisely to the C* mappings X: M — T(M)satisfyingn o X = iy, the
identity map on M [n(X,) = p)].
Show that if F: N - M is C* and X is a C*-vector field on N, then an
F-related vector field Y on M, if it exists, is uniquely determined if and
only if F(N) is dense in M. Let F: N - M be a one-to-one immersion
and Y a C*-vector field on M such that for each ge F(N) we have Y,
tangent to the submanifold F(N). Then show that there is a unique
C~-vector field X on N such that X is F-related to Y. [We call it the
restriction of Y to the submanifold F(N).]
Show that the restriction of

d é 0 0
U R
on R"*! to §?"! defines a nonvanishing C*-vector field on §2"~ !,
Let F: M - M be a C* covering and Y any C*-vector field on M.
Show that there is a unique C*-vector field X on M such that X and Y
are F-related.
Show that any C*-vector field Y on S"~! < R" can be extended to a
C™-vector field X on R" so that Y is i-related to X, i being the inclusion

mapping.
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12. Given a C* mapping F: N - M and C®-vector fields X on N and Y
on M, show that Y is F-related to X if and only if for any C* function g
on M we have (Y,) o F = X(g o F) on the inverse image F~'(W,) of the
domain W, of g.

3 One-Parameter and Local One-Parameter Groups Acting
on a Manifold

We shall now subject the case of a connected Lie group of dimension 1
acting on a manifold M to the same scrutiny as we did the case of a Lie
group of dimension 0 in Section IIL.8, but with very different emphasis. At
that time we were interested in the space of orbits; in the present instance we
are mainly concerned with the relation to vector fields on M. For this reason
we shall limit ourselves to the action of R, by which we denote the additive
(Lie) group of real numbers R, acting on M since this will illustrate all the
relevant facts—it can be shown that R and S! are the only connected Lie
groups of dimension 1. These two cases, discrete Lie groups and the one-
dimensional Lie group R acting on M, will give some idea of the depth and
diversity of the whole subject of group action on manifolds. Later we shall
have something to say about another special case: transitive action of a Lie
group G on a manifold.

Thus, in the present section, we consider Definition IT1.7.1 specialized to
an action  of R on M. Let 8: R x M — M be a C™ mapping which satisfies
the two conditions:

(i) Oo(p) = pforall pe M,
(i) 6,°04p)=0,,4(p) =0, 0,p)for all pe M and s, te R.

[We will often write 0(t, p) as 6,(p) or 0,(t), depending on which variable is to
be emphasized.)

(3.1) Example Suppose that M = R* and a = (@', 4%, a?) is fixed and
assumed different from 0. Then 6,(x) = (x' + a't, x? + a%, x* + a%)
defines a C* action of R on M. To each te R we have thus assigned the
translation 6,: R® — R3, taking the point x to the point x + ta. This is a free
action and the orbits consist of straight lines parallel to the vector a. A
particularly simple special case is given by a=(1,0,0) so that
0,(x) = (x" + ¢, x%, x3).

Suppose that 8: R x M — M is any such C® action. Then it defines on
M a C=-vector field X, which we shall call the infinitesimal generator of 6,
according to the following prescription: For each pe M we define
X,:C*(p) > R by

(32) X, f= lim 2 [1(0ulp)) - £(0)
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We may check directly from (3.2) that X, is a vector at p in the sense of
Definition 1.1, and then verify that p — X, defines a vector field, or we may
proceed as follows. Let U, ¢ be a coordinate neighborhood of pe M and let
I, x V be an open subset of (0,p) in Rx M, where I={teR|
— & <t < d},and V and § > O are so chosen that 8(I; x V) < U. In particu-
lar, V = 0y(V') is contained in U and contains p. Restricted to the open set
I, x V, we may write 0 in local coordinates

yt = hl(, x', ..., x"),
y" = h(t, x*, ..., x"),

or y = h(t, x), where x = (x!,..., x") are the coordinates of ge V and
y=(y', ..., y") of 8,(q), its image. The h' are defined and C® on I, x ¢(V)
and the range of h(t, x) is in @(U). The fact that 6, is the identity and
0, +:, = 6, < 8,, is reflected in the conditions:

K(0,x)=x' and  hi(t; + t;, x) = hi(t,, h(t , X))

fori=1,...,n.Nowiff(x',..., x")is the local expression for f& C*(p), then

L) ~ 50 = 3, L7 (h(AL ) — ()]
and

X,s= i L (00 -7l = S0 Z)
At—0 i=1 o(p)

where we have used a dot to indicate differentiation with respect to ¢. This
formula is valid for every pe V and implies that on ¥, X, = ¥ (0, X)E,,
with E; = @, '(8/0x") and x = ¢(p), which shows that X is a C*-vector field
over V. Since every point of M lies in such a neighborhood, X is C* on M.
Note that definition of X at pe M involves only the values of @ on Iy x V,
that is, like derivatives in general, it is defined locally and involves only
values of t near t = 0.

(3.3) Definition If0: G x M — M is the action of a group G on a mani-
fold M, then a vector field X on M is said to be invariant under the action of G
or G-invariant if X is invariant under each of the diffcomorphisms 6, of M to
itself, in brief if 0,,(X) = X (as in Definition 2.8).

(34) Theorem If 0:R x M — M is a C* action of R on M, then the
infinitesimal generator X is invariant under this action, that is, 0,,(X ) = X,
for all te R.
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Proof Letfe C*(0,(p)) for some (t, p)e R x M and compute 8,,(X ) f:

OualXp)f = Xp(f < 0) = lim = f° 0.(0adp)) — S 0,(p)].

Al—'O

However, R is Abelian and we have 6,0 05, = 8,,,, = 04,° 6, s0

o1
0u(Xp)f = Almi) ;[ 0a)(04p)) = £ (0P))] = Xon S
Since this holds for all £, the result follows. [ ]

(3.5) Corollary If X, = 0, then for each q in the orbit of p we have X, = 0,
that is, at the points of an orbit the associated vector field vanishes identically
or is never zero.

Proof The orbit of p consists of all g such that g = 6,(p) for some t € R;
thus by the theorem X, = 6, X . Since 6, is a diffeomorphism, we know
that 8, is an isomorphism of T,(M) onto T,(M)so that X, = 0 ifand only if
X,=0. ]

(3.6) Theorem The orbit of p is either a single point or an immersion of R in
M by the map t — 0,(p), depending on whether or not X, = 0.

Proof The orbit of p is the image of R under the C* map ¢t — 6,(p) into
M. Denote this map by F so that F(t) = 6,(p). Let t, € R and d/dt denote the
standard basis of T, (R); F is an immersion if and only if F (d/dt) # 0 for
every toe R. Let fe C°°(F to)) = C*(6,,(p)) and observe that

F (;t)f Elfe Flo= llmw[f F(to + At) — fo F(to)]

At—'OA

= hm f(910+m p)) = f(6:.(P))]

At—~0

=X am(p)f

by precisely the same arguments as we used to prove Theorem 3.4. This
formula and Corollary 3.5 show that either X, # 0 and F is an immersion
or else Xp, = F,(d/dt) =0, in which case F is a constant map with
F(R) = p. For the proof of this last statement see Exercise 1. ]

We remark that the formula just obtained, namely,

d
F*(E) = X(Jm(p) = XF(!D) *

shows that at each point pe M the vector X, is tangent to its orbit and in
fact is the (tangent) velocity vector of the curve t — F(t) in M in the sense in
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which we have previously (Example 1.9) defined the velocity vector to a
parametrized curve, that is, to a differentiable map of an open interval J of R
into M, namely F,(d/dt). This latter notation is not too precise since it does
not indicate that d/dt e T, (R) and that F, is a homomorphism of this one-
dimensional vector space into Tg,(M). For this reason we often will write
either F(t,) or (dF/dt),, to denote the velocity vector. Sometimes it is conven-
ient to let t — p(t) denote the mapping rather than F. Then its velocity vector
is written dp/dt or p(t). For example, in the notation of Theorem 3.6, the
formula above can be written 8(t, p) = Xy, -

If we change parameter by a function t = f(s) so that s — G(s) = F(f(s))
gives the curve, then for 1y, = f(so),

dG d d dr d
(3)., = &l =+ () = ()

which give the formula
dG de d
(), = () 7).

Thus the velocity vector with respect to s is a scalar multiple by (dt/ds),, of
the velocity vector with respect to t. This may be conveniently written

(At dp _dpr
(37) G—( dS)F(f(.s)) or AP dret.

This vector equation is, of course, just a special case of the chain rule.

(3.8) Definition Given a vector field X on a manifold M, we shall say that
a curve t — F(t) defined on an open interval J of R is an integral curve of X if
dF/dt = X gy on J.

We have just shown that each orbit of the action 6 is an integral curve of
X, the infinitesimal generator of 0, that is, for each fixed pe M,
0(t, p) = Xou. py-

At this point some natural questions arise concerning vector fields and
one-parameter group actions: Is every C*-vector field the infinitesimal gen-
erator of some group action? Can two different actions of R on M give rise
to the same vector field X as infinitesimal generator ? These questions will be
answered in this and the next section. However, a simple but instructive
example will illustrate the difficulties we face and show the necessity for a
less restrictive concept of one-parameter group action.

(39) Example Let M = R? and let 6:R x M - M be defined by
6(t, (x, y)) = (x + , y). Then the infinitesimal generator is X = d/0x. This
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action is given by translation of each point (x, y) to a point ¢ units to the
right. Suppose now that we remove the origin (0,0) from RZ?; let
M, = R* — {(0,0)}. For most points 6, is defined as before; however, we
cannot obtain an action of R on M, by restriction of § to R x M, since
points of the closed set F = {(t, (x,0)) |1+ x =0} =607'(0,0) of R x M
are mapped by 0 to the origin. On the other hand, let W < R x M be the
open set defined by W = R x My — Fn (R x Mg). Then § = 6| W maps
W onto M, and preserves many of the features of # which we have used. For
example, let p = (x, y)e My, then

(i) (0, p)e W and 84(p) = p,
(ii) 6,0 6,(p) = O,,,(p) = 6, 0(p)

if all terms are defined, and the infinitesimal generator X is defined by (3.2)
just as before and is again X = ¢/dx. Finally we have orbits t — 6,(p), which
are the lines y = constant as before when p = (x,y), y # 0, and for
p = (x, 0) the portion of the x-axis minus the origin which contains p. This
curve is not defined for all values of t in the case of the orbit of a point on the
x-axis. A careful study of this example will motivate the following com-
plicated definition.

First let M be a C® manifold and W < R x M an open set which
satisfies the following condition:

(3.10) For every pe M there exist real numbers a(p) < 0 < B(p) such that
W (R x {p}) = {(t, p) | alp) < t < B(p)}-

We shall denote by I(p) the interval a(p) < t < B(p) and by I, the inter-
val defined by |t| <4. Condition (3.10) simply states that
W = {J,em I(p) x {p}. Then using this notation and with W as above we
make the following definition:

(3.11) Definition A local one-parameter group action or flow on a manifold
M isa C* map 0: W — M which satisfies the following two conditions:

(i) Oy(p) = pforall pe M.

(i) If (s, p)e W, then «(8,(p)) = a(p) —s, B(0(p)) = B(p) — s, and
moreover for any ¢ such that a(p)™* <t < B(p)~", 6,,(p) is defined and

0, > 0(p) = 0,,(p).

It is easy to check that the Example 3.9 given above has these properties.
This example also shows that if we are to have any prospect of obtaining a
correspondence between one-parameter group actions and vector fields, we
must abandon the requirement that W is all of R x M, which we shall call a
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global action. Since W is open and contains (0, p) for each pe M, it also
contains I, x U, U a neighborhood of p, for sufficiently small § > 0. There-
fore the definition of the vector field X (infinitesimal generator) associated
with 6 as given by (3.2) is valid in the case of local action also and associates
a C*-vector field to each flow 6.

When R acts on M, as in the case of any group acting on M, for each ¢,
0,: M — M is a diffeomorphism with §; ! = 0_,. Something like this is also
true for the local case of Definition 3.11, except that 0, is not defined on all of
M in general. Let V,c M be the domain of definition of 0,, that is,
V,={peM|(t, p)e W}, then we have the following consequence of
Definition 3.11:

(3.12) Theorem V, is an open set for everyte R and 0,: V, - V_, is a diffeo-
morphism with 67 ' = 0_,.

Proof Let poeV,, so that (tq, po)e W. Since W is open, there is a
6 > 0 and a neighborhood V of pg such that {t| |t — 15| <8} x V = W.
In particular, {to} x V < W so that V < V, . Next, note that according to
Definition 3.11(ii), if pe V;, then a(p) < t < B(p) and by (3.10) ¢t + (—1) lies
in the same interval. It follows that 6,(p)e V_, and 6_, < 0,(p) = p. Similarly,
0_(V_)c V,and 0,-0_,q) = q for any ge V_,. Combining these state-
ments with the fact that 8,, 8_, are C* on any open subsets of M on which
they are defined completes the proof. |

(3.13) Remark For local one-parameter action we may show as in the
global case that: 0,,(X ) = X,,,, if pe V;. As before, F(t) = 0,(p) defined for
a(p) <t < B(p) is a C*-integral curve of X, which is an immersion of I{p) in
M provided that X, # 0 and is a single point if X, = 0. We shall continue
to refer to these curves as orbits of the local one-parameter group, just as in
the global case. It is a consequence of our definitions that these curves (and
points) partition M into a union of mutually disjoint sets. The proofs are the
same, essentially, as in the global case.

Finally, we wish to prove that in a neighborhood of any p for which
X, # 0, Example 3._9 is a prototype for every local (or global) one-
parameter group action on a manifold.

(3.14) Theorem Let O: W — M be as in Definition 3.11 and let X be the
associated infinitesimal generator. If pe M such that X, # O, then there is a
coordinate neighborhood V., around p, a v > 0, and a corresponding neigh-
borhood V' of p, V' < V, such that in local coordinates 0 restricted to I, x V'
is given by

Ly V)= O+ YY)

In these coordinates X = . '(0/0y"') at every point of V'.
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Proof We shall use the notation and formula for X, developed in the
discussion of (3.2). In W introduce coordinates U, ¢ around p and express ¢
in the local coordinates by x — h(t; x), where x = (x', ..., x") and h(t; x)
stands for an n-tuple of functions satisfying: (i) h(0; x) = x, and
(ii) h(t; h(¢'; x)) = h(t + t'; x). We will assume coordinates so chosen that
o(p) = ,...,0), that @(U)= C20), and that X, = ¢, '(0/0x') = E;,.
Then the expression for X,, X, =Y h(0;0,...,0)E,, implies that
h(0;0,...,0)is 1 for i = 1 and is O for i > 1.

Choose & >0 small enough so that V"= ¢ (C30)) < U and
0(I; x V") = U. Then map the cube Cj(0) = I, x R"™! into C3(0) = ¢(U)
by a map F, given in local coordinates by

F:(y' ...y = (B0, 0% ), .., BV 0, Vi y)
From the expression for X, we see that (6h'/dy'), = di; and from
¥ = h'(0; 0,2, ..., y") we see that (0h'/dy'), = &, for j > 1. Thus the Jacob-
ian of F at y = (0, ..., 0) is the identity matrix; hence there is a 4 > 0 with
p < & such that F is a diffeomorphism of C;(0) onto an open set of C7(0) =
@(U). Let V = ¢~ ' o F(C30)) and y = F~' - ; this is a coordinate neigh-
borhood of p with V < U.
The relations satisfied by h(t, x), i = 1, ..., n, give

(i) ¥(p)=F Y(elp))=F'0,...,0)
and for (y',...,y")e C,(0) and || < v with v = p/2 they give

(ii) A+ y'50,p% ..y = KL R0, 0% Y i= 1.0
Formula (ii) may be interpreted as follows: In the coordinate system (V, ¢),
if Y(g)=(y',..., ") then Y(6,(q)) = (¢ + y',..., y"), provided only that
|t| <v and gey~'(C5(0)), so that all functions are defined. In other

words, in the y-coordinates of V, y, the mapping 6, is expressed by functions
h'(t, y) defined on I, x C"(0) by

Ry ) =t +y,
Rt !, ...,y") =y for i> 1.
From these and the formula

; o _ 0
Ua(X,) =Y KO, Y)g;; =
we have X, = l//;‘(a/ay') onV’ = l//—l(C:(O)). |
Exercises

1. Let F: M — N be a C* mapping whose rank is everywhere zero (that is,
F, = 0 at each pe M). Show that F maps each component of M into a
single point.
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Let F: M — N be a C* mapping and X and Y vector fields on M and N,
respectively, which are F-related. Show that any integral curve of X is
mapped by F into an integral curve of V.

Give a proof without using local coordinates that the infinitesimal gen-
erator X of 0 as defined in (3.2) is a C*-vector field on M. [Hint: Use
Exercise 2.1].

Verify the statements of Remark 3.13.

In Exercises 5-8, show directly that X is invariant under the action and

determine the orbits.

5.

Suppose that a C* action of R x M, M = R? has infinitesimal genera-
tor X = x d/0x + y 6/0y on M. Determine 6. [Hint: Try to find func-
tions h'(t, x,y) and h%(t, x, y) by solving the system of ordinary
differential equations dx/dt = x, dy/dt = y with initial conditions
x(0) = a, y(0) = b as in Exercise 9.]

Let R act on M = R? according to the formulas

X Xxcost+ ysint, y— —Xxsint + ycost,

which give 0,(x, y). Show that this is a globally defined group action of R
on M and find X, the infinitesimal generator.
Show that (x, y) — 0(t; x, y), defined by

x_’err’ y_’ye—:!t
defines a C* action of R on M = R? and determine the infinitesimal

generator.
Let M = GI(2, R) and define an action of R on M by the formula

o(t, A) = ((l) ’l) ‘A, AeGIQ2R),

with the dot denoting matrix multiplication. Find the infinitesimal
generator.

Let X = Y7, fi(x)(0/0x") be a C*-vector field on R" which generates
an action 0 on R". Suppose 0 to be given on its domain W by 0(t, x) =
(h'(t, x), ..., h"(t, x)) and suppose a = (a',...,a")e R". Then using
Remark 3.13 show that x' = K(t,a), i = 1, ..., n, are solutions of the
differential equations

dx! )
— =/ i=1,...,n,
i Six), i n

satisfying x' = a',i = 1, ..., n, when t = 0. Verify this for Exercises 6-8.



130 IV VECTOR FIELDS ON A MANIFOLD

4 The Existence Theorem for Ordinary Differential Equations

In this section we state a very basic theorem of analysis which we need in
order to answer some of the questions raised in the previous section and
which will be applied in essential ways throughout the remainder of the
book.

(4.1) Theorem (Existence theorem for ordinary differential equations)
Let U = R" be an open set and 1., ¢ > 0, denote the interval —e <t <eg,
te R. Suppose fi(t, x', ..., x"), i = 1, ..., n, to be functions of class C", r > 1,
onl, x U.

Then for each x € U there exists & > 0 and a neighborhood V of x,V < U,
such that:

(I) For each a = (a',...,a")e V there exists an n-tuple of C" functions
x(t) = (x'(¢), ..., x"(t)), defined on 1, and mapping I; into U, which satisfy the
system of first-order differential equations

(+) %‘ =fit,x), i=1...,n

and the initial conditions
(**) xi(O) = ai, i= 1, veey N

For each a the functions x(t) = (x'(t), ..., x"(t)) are uniquely determined
in the sense that any other functions x(t), ..., X"(t) satisfying (*) and (+*) must
agree with x(t) on their common domain, which includes 1.

(I) These functions being uniquely determined by a = (a', ..., a") for
every ac V, we write them x'(t, a’, ..., a"), i = 1, ..., n, in which case they are
of class C" in all variables and thus determine a C" map of I; x V - U.

A proof of (I), which uses the contracting mapping lemma is given in an
Appendix to this section (see p.172). The proof of (II) is more difficult and
may be found in the work of Hurewicz [1], Dieudonné [1], or Lang [1].

If the right-hand side of (x) is independent of ¢, then the system of
differential equations is called autonomous. Throughout the remainder of
this chapter we shall deal only with autonomous systems. In this case it is
possible to restate the hypotheses and conclusions of the fundamental exist-
ence theorem in coordinate-free form using the concepts of vector field and
integral curve. This will allow us to derive various global theorems useful in
both geometry and analysis from a purely local existence theorem about
open subsets of R".

We first reinterpret the existence theorem in the autonomous case, in

which the functions f* depend on x = (x!, ..., x") alone. For simplicity we
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shall also assume hereafter that all data are C*. Define on U = R" a
C>*-vector field X by

i, i,
X =fl(x)5;+ +f"(x)g,.-

By Definition 3.8 an integral curve of X is a C* mapping F of an open
interval (a, B) of R into U such that F(1) = X, foralla < t < B.If we write
F in terms of its coordinate functions

F(t) = (x'(t), ..., x"(t)),

then the vector equation F(t) = Xj, is satisfied if and only if
dx' .
» = fi(x'(t), ..., x"(1)), i=1,...,n

which states precisely that the functions x(1) = (x'(t), ..., x"(¢)) are a solu-
tion of (). Given xe U, (I) of Theorem 4.1 states that for each a in a
neighborhood V of x there is a unique integral curve F(t) (see Fig. IV.6),
satisfying F(0) = a. F(t) is defined at least for —6 < t < é whered > Qs the
same for every ae V. If we use a notation for these integral curves through
points of V which indicates dependence on the initial point a, say

F(t.a) = (x'(t.a)...., x'(t, @)},

and use an overdot for differentiation with respect to ¢, these equations
become

X(t,a) = fi(x(t,a)) and Xx{(0,a)=d, i=1,..,n

Figure IV.6
Integral curves of a vector field.
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Part (II) of Theorem 4.1 states that these functions x(t, a) are C*—in all
variables—on I; x V, an open subset of R x U.

As an aid to intuition we may interpret the mapping F: [, x V — U asa
“flow,” that is, a motion within U of the points of V so that the point at
position g at time t = 0 moves to F(t, a) at time ¢ (see Fig. IV.7). The path of
a moving point is the integral curve, and its velocity at any of its positions is
given by the vector X assigned to that point of U.

We now turn to a vector field X on an arbitrary manifold, considering
first a purely local question.

Figure IV.7

(42) Theorem Let X be a C*-vector field on a manifold M. Then for each
p€ M there exists a neighborhood V and real number & > 0 such that there
corresponds a C* mapping

0" I; x V- M,
satisfying
(*) 9V(t, q) = Xal’(" P
and
(++) 6"(0,q)=q  forall qeV.

If F(t) is an integral curve of X with F(0) = qe V, then F(t) = 6" (1, q) for
|t| < o. In particular, this mapping is unique in the sense that if V,, 8, is
another such pair for pe M, then 6" = 0" on the common part of their
domains.
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Proof This is basically a restatement of the existence theorem as fol-
lows. For pe M we choose a coordinate neighborhood U, ¢ and map X to
the g-related vector field X = ¢,(X)on U = ¢(U) = R". After applying the
local existence theorem to obtain F:I; x ¥V — U defined by F(t,a) =
(x'(#, a). ..., x"(t, a)) on a neighborhood ¥ = U of p(p), weset V = ¢~ (V)
and define 0": I, x V > U by 68"(t, q) = ¢ '(F(t, ¢(q)). Since ¢ and ¢!
are diffeomorphisms, we see at once that 0 satisfies (+) and (+*). The final
assertion is a consequence of the uniqueness of solutions. |

Finally we consider the global aspects of the theory, that is, given a
vector field X on M, what can be said that goes beyond the description of the
situation in a neighborhood of a point. Our main purpose is to establish the
relation between vector fields on M and local one-parameter groups acting
on M (Theorem 4.6). The first result depends only on (I) of the existence
theorem.

(4.3) Theorem Let X be a C*-vector field on a manifold M and suppose
pe M. Then there is a uniquely determined open interval of R, I(p) = {a(p) <
t < B(p)} containing t = 0 and having the properties:

(1) there exists a C*-integral curve F(t) defined on I(p) and such that
F(0) = p;

(2) given any other integral curve G(t) with G(0) = p, then the interval of
definition of G is contained in 1(p) and F(t) = G(t) on this interval.

Proof Let F(t) and G(t) be two integral curves such that F(0) = p =
G(0), and suppose I, I; to be the open intervals on which they are defined,
I* the set on which they agree. I* is not empty since it contains ¢ = 0 and it
is closed since F(t) and G(t) are C* mappings (hence continuous). Suppose
se I*. Since se I n I, an open set, there is some interval —6 <t < J on
which F(t) = F(t + s) and G(t) = G(r + s) are both defined. They are both
integral curves satisfying the same initial condition: when (=0,
F(0) = F(s) = G(s) = G(0). From the existence theorem they agree on some
open interval |t| < around t=0. Thus F(t) = G(r) on an open set
around s and I* is open. It follows that I* = Ip n I;. Therefore I(p) is
defined: it is the union of the domains of all integral curves which pass
through p at r = 0; the asserted properties are immediate. Note that it is
quite possible for a(p) = —oo and/or f(p) = +o0. If both occur, then
I(p) = R. |

We shall use the notation F(t) = 6(t, p) for the unique integral curve F(t)
such that F(0) = p. When we wish to emphasize dependence on ¢, we may
write #,(t) for 0(t, p).
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Now let the subset W = R x M be defined by

W ={(t,p)eR x M|a(p) <t < B(p)}-

According to what has been shown thus far both W and 0 are uniquely
determined by X and W is the domain of #: W — M. Moreover we have the
following properties of # and W':

(i) {0} x M c W and 6(0, p) = p for all pe M.
(ii) For each (fixed) pe M, let 6,(t) = 6(t, p). Then

6,:1(p) > M

is a C-integral curve, that is, 8,(t) = X 8,00 -
(iii) For each pe M there is a neighborhood V and a 6 > O such that
Iy x VecWandfisC®onl; x V.

Using this notation and the same facts that we used in the proof of
Theorem 4.3, we obtain the following addendum relating I(p) and I(q) for
any two points p and g of the same integral curve.

(4.4) Corollary Let sel(p) and q = 0,(s) = 0(s, p) be the corresponding
point of the integral curve determined by p. Then a(q) = a(p) — s and B(q) =
B(p) — s so that

I(q) = 1(6,(s)) = {o(p) — s <t < B(p) — s}.
Thus te 1(q) if and only if t + s I(p), and then we have

6(t, 0(s, p)) = 6(t + s, p).

Proof Suppose that sel(p) and let F(t) = 0,(s + t). Then F(t) is
defined on the open interval a(p) < s + t < f(p) and F(0) = 0,(s) = ¢. By
the fact that F(t) is an integral curve and by uniqueness we have F(t) =
6(t, 0,(s)) = 6(t, q) so its domain must be I(g) = {«(q) < t < B(q)}. |

We take note that what has been proved to this point answers any
questions we might have about the existence of integral curves of a vector
field X on a manifold. It does not describe completely the nature of W. We
do that now and at the same time specify the relation between vector fields
and one-parameter group action.

(45) Theorem For any C*-vector field X the domain W of 6(t, p) is open in
R xMand 0 isa C® map onto M.

Proof We must show that for each (t', p) € W there is a neighborhood
V of po and 6 > O such that the openset (t' — d,t' + 8) x Visin Wand 0 is
C® on it. This is already known to be the case for (0, p,). If the theorem fails,
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then there must be some (ty, po) € W such that for each 0 < t' < ¢, there
exists (¢’ — d,¢ + ) x V with the above properties, but not for (¢4, po)-
[We have assumed, without loss of generality, that t, > 0).] We shall show
by contradiction that there can be no (tq, po)-

Should there be such, then using Theorem 4.2, we find d, > 0 and a
neighborhood V; of g, = 0(t, po) such that I;, x V, = Wand 0is C* on it.
By continuity of 0(t, p,) in t we may find t; < to withboth |1, — ;]| < 48
and 0(t,, po)e V,. Since t, < ty, by our assumption on (to, po) there is a
8, > 0 and a neighborhood V, of p, such that (¢, — 8, t, +8,) x V, =« W
and such that 6 is C* on this open set. In particular, 8(t,, p,) is in ¥, and
0,,:Vy > M is defined and C*, so we may suppose by continuity (and
restricting V, if necessary) that 6, (V,) = V,. We now have 0(s + t,, q)
defined and C*® on the open set |s| < &, and g€ V;;and its values fors = 0
are in V. By Corollary 4.4 for o(0(t,, q)) < s < (6(t,, q)) the equation

O(s + t1, q) = 0(s, 0(t,, q))

is valid. Since 0(t,, q) is in V,, by the definition of , and ¥}, the interval
1(6(z,, g)) contains all s for which |s| < 8,. Thus 8(s + t,, g) is defined and
C*® for |s| <&, and any gqe V;. However, this is an open set containing
(to. Po) since |ty — ;| < 38,. This shows that our assumption on (to, po)
leads to a contradiction.

We recall that the definition of a (local) one-parameter group 0 acting on
M was defined (Definition 3.11) in terms of a C* mapping @ of an open set
W <= R x M into M—with both 6 and W satisfying certain properties. If 0;,
W, i = 1,2, are two such local group actions, we shall say that 8, = 0, if
they are equal (as mappings) on W; n W, . From expression (3.2) it is at once
clear that if 8, = 6,, then they have the same infinitesimal generator X. We
note once again that if W = R x M, then 0 defines an action of R on M, that
is, a global one-parameter group action. Collecting Theorems (4.3) and (4.5)
and Corollary 4.4 we have the following:

(4.6) Theorem To each local one-parameter group action 6 on M is asso-
ciated a unique maximal domain of definition W. If 0,, W, is equal to 0, W, then
W, c W and 0, = 0| W,. Two local one-parameter groups are equal if and
only if they have the same infinitesimal generator X ; and each vector field X on
M determines a local one-parameter group 0, W of which it is the infinitesimal
generator.

This theorem summarizes the results of the last two sections—at least for
the autonomous case in which the vector field X does not depend on t
(time), but only on the point of the manifold. Not only does it follow from
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the existence theorem but, conversely, it implies it as a special case when M
is assumed to be an open set of R". (The reader should verify this,
Exercise 8.)

(4.7) Remark A general nth order ordinary differential equation in the
independent variable ¢t and dependent variable x and its derivatives is given

by a relation
dx d"x
s Xy s ey T = 0.
F (' * dr dt")
We suppose that this is a function of class C” defined on some neighborhood

in R"*? of the point (0, a, 4y, a5, ..., a,) and that in a neighborhood U of
this point we can write it in the form

n m— 1
)

dr" dt de!

(This can be done if the derivative of F with respect to its last variable is not
zero at the point.)

Now let x = x!, dx/dt = x?,...,d" " 'x/dt"~' = x"and consider the first-
order system of ordinary differential equations

dx! , dx? 3 dx"
(*) I—x, I—x, ceny d

with initial conditions
) x'(0) = d', i=1,...,n

The original nth order equation has a solution x(t) satisfying initial condi-
tions (at t = 0):

dx dn—lx
s =a, (2) =at .., (£) =a
©) (dt)o (dt" l)o

if and only if the first-order system () has a solution satisfying (+«). Hence
the existence theorem (Theorem 4.1) gives the existence and uniqueness of
solutions of ordinary differential equations of nth order. This can be ex-
tended also to systems of ordinary differential equations of higher order than
one. The conclusions of Theorem 4.1 concerning uniqueness of solutions
and differentiability of dependence on initial conditions are also valid in this
more general situation.

A second generalization is the case in which the functions f* of system ()
of Theorem 4.1 depend on parameters z', ..., z" so that the system becomes

d i

X . .
71?=fl(t,xls-"9x"’zly---,zn), l=1,...,n.

= G(t, x, x%, ..., x""1),
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If we assume that the functions f* are of class C" in the z’s also on some open
set U’ = R™ that is, /' is a function of class C" on I, x U x U' < R x
R" x R™, then the solutions will depend on the z’s as well as on the initial
conditions:

x'=xa',....d" 2", ..., 2").

It is a further consequence of Theorem 4.1 that these functions are of class C"
in all variables on an openset I, x V x V' = R x R" x R™. This is very
easily proved by introducing new equations of the form dz//dt = 0,j = 1,...,
m, so that we are dealing with a system of n + m ordinary equations to
which we apply Theorem 4.1.

An application will be made of this idea in the following case. Choose a
basis E,, ..., E, of the tangent space at the identity e of a Lie group G and let
X,(z',..., z") denote the value at ge G of the uniquely determined left-
invariant vector field X whose value X, at e has components z!, ..., z" that
is, X, = Yi-, z'E;. With the choice of basis fixed, the left-invariant vector
fields on G are thus parametrized by R". The dependence on g and on the
parameters is C* so that the solutions of the system of equations corre-
sponding to each of the vector fields X(z', ..., z")is C* in all variables. Thus
we have 0(t;g;z', ..., z"), which gives a C* mapping 0:R x G x R" - G
and, for g, z fixed, determines the integral curve through g.

Exercises

1. Consider a system of n ordinary differential equations of second order in
n unknown functions:

*x* . dx! dx"
= ey XN ey =1,...,n
di? / (['x’ 0 dt) k "

State as precisely as you can an existence theorem for solutions and
derive it from Theorem 4..1.

2. Give a detailed statement and proof of the two generalizations indicated
in Remark 4.7.

3. LetM = R? the xy-plane,and X = y(3/0x) — x(d/dy). Find the domain
W and the one-parameter group 6: W - M.

4. Let X and Y be vector fields on manifolds M and N, respectively, and
F: M — N a C* mapping. Show that X and Y are F-related if and only
if the local one-parameter groups 0 and ¢ generated by X and Y satisfy
F - 8,(p) = o, F(p) for all (¢, p) for which both sides are defined.

5. Give a precise meaning to the following statement and then prove it: If
the vector field X on M generates the local one-parameter group 6
acting on M, X is invariant under the action.
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6. Show that the orbits of a local one-parameter group may be defined in
terms of an equivalence relation, just as in the case of a group G acting
on a manifold. Show by example that the orbit space may fail to be
Hausdorfl.

7. Show that the general (nonautonomous) system on R" of Theorem 4.1
can be reduced to the autonomous case on R** ! by lettingr = x"** and
adding an equation dx"*!/dt = | with x"*!(0) = 0.

8. Derive Theorem 4.1 from Theorem 4.6.

5 Some Examples of One-Parameter Groups Acting on a Manifold

We shall now consider a local one-parameter group ¢ with (maximal)
domain W and infinitesimal generator X acting on a manifold M. For pe M,
we continue to denote by I(p) the set a(p) < t < B(p) of all real numbers ¢
such that (r, p) is in W. The integral curve of X through p is given by
0,: 1(p) = M, 0,(t) = 0(t, p). Il X, = 0, the curve is a single point p; other-
wise 0, is an immersion as was shown earlier. In this latter case we consider
now the nature of the integral curves on M.

(5.1) Lemma Suppose that (p) < oo and that {t,} = I(p) is an increasing
sequence converging to f(p). Then {6(t,, p)} cannot lie in any compact set. In
particular, the sequence {0(t,, p)} cannot approach a limit on M. A similar
statement holds for a decreasing sequence approaching a(p) if a(p) is finite.

Proof Let K be a compact subset of M and X a C*-vector field on M.
By the existence theorem to each ge M corresponds a d > 0 and a neighbor-
hood V of g such that 6 is defined on I; x V. A finite number of such
neighborhoods cover K and we let 8, be the minimum ¢ for these neighbor-
hoods. Then for each ge K, 0(t, q) is defined for |1| < &,. Suppose
{0(t,, p)} = K and that N is so large that B(p) — ty <3d,. Then we see that
0(ty + t, p) = 6(t, O(ty, p)), where the right-hand side is defined for all ¢ with
|t] < 84 since O(ty, p) € K. Then the left-hand side is also defined for such ¢,
for example, for ty + 48, > B(p), which is a contradiction to Corollary 4.4.
This proves the first statement. The second is an immediate consequence for
if lim, , , 6(t,, p) = q, then there is a neighborhood of g whose closure K is
compact and contains all but a finite number of terms of the sequence
{6(t,, p)}- We discard the terms not in K and obtain the same contradiction.
Obviously the same arguments apply to decreasing sequences approaching
a(p)—if «(p) is finite. |

(5.2) Corollary If I(p) is a bounded interval, then the integral curve is a
closed subset of M.
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(53) Corollary If X, =0, then I(p) = R.
We leave the proofs of these two corollaries to the exercises.

(54) Remark A point p of M at which X, = Ois called a singular point of
the vector field and any other point is referred to as regular. We have seen
(Theorem 3.14) that in the neighborhood of a regular point the integral
curves are—to within diffeomorphism—the family of parallel lines
x2=¢2, ..., x" = ¢" in R". On the other hand the pattern of integral curves
at an isolated singularity can take many forms, even in the two-dimensional
case, and has been extensively studied. At least in the two-dimensional case
singularities can be visualized in terms of the integral curves of the vector
field X near p. Some possibilities are shown in Fig. IV.8a-d. The cases (a)
and (b) correspond to the field

o 6 oo

X=gradf=a—xa agy

(0) Extremum of 7{x, y) (b) Saddle point of f{x, y)

{c) (d}
Figure IV.8
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at a point p = (x,, yo) Which is a simple extremum or saddle point of the
function f(x, y). The level curves f(x, y) = constant are the dotted lines
orthogonal to the integral curves. If p is a singularity of a general vector field,
the pattern can be more complicated; possibilities are shown in (c) and (d).
Interesting relations between the topological nature of the surface and the
possible types of singularities possessed by a vector field on it were dis-
covered by Poincaré, Hopf, and others (see Milnor [2]). A consequence of
these relations is the fact already mentioned that a vector field on $2—in fact
on any closed orientable surface except T2—must have at least one singular
point.

Another important question about a vector field X on M is whether or
not it has closed integral curves—diffeomorphic to the circle S' (see
Exercise 3). This can be of importance, for instance, in applications to dyna-
mics. In these applications one considers the points of a manifold as corre-
sponding to, or parametrizing, the states of a dynamical system. For
example, if the system consists of the earth, sun, and moon, then in a fixed
coordinate system the positions of the three objects can be characterized by
nine numbers (three sets of coordinates) and their velocities, or momenta, by
nine more (the components of three vectors). Thus each state or
configuration corresponds to a point on a manifold M of dimension 18. The
laws of motion can be expressed as a system of ordinary differential equa-
tions or vector field X on M, and the integral curves correspond to the
motions beginning from various initial states. A closed integral curve corre-
sponds to a periodic motion, like that of the planets. This approach to
mechanics was extensively studied by Poincaré and Birkhoff, and is still an
active area of research (see Smale [2]). It has led to many interesting
questions about vector fields and curves on manifolds. For example, it was
very recently shown by Schweitzer [1], that there exist everywhere regular
vector fields on S* without any closed integral curves—contrary to a long
standing conjecture. Classical mechanics in the framework of manifold
theory is very clearly set forth by Godbillon [1]. An excellent recent book
on differential equations and dynamical systems is Hirsch and Smale [1].

(55) Definition A vector field X on M is said to be complete if it generates
a (global) action of R on M, that is, if W = R x M.

This is clearly the most desirable case and we find it very convenient to
have sufficient conditions for completeness. One of them is an immediate
corollary of Lemma S.1.

(5.6) Corollary If M is a compact manifold, then every vector field X on M
is complete.
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To see that this is so we take K = M in the lemma and note that in this
case a(p) = —oc and fi(p) = + oo, that is, I(p) = R, for every pe M.

This gives one important case in which we may be sure that a vector field
is complete. A second case, which we will study in some detail, is a left-
invariant vector field on a Lie group, as is shown by the corollary to the
theorem which follows.

(5.7) Theorem Let X be a C*-vector field on a manifold M and F: M - M
a diffeomorphism. Let 0(t, p) denote the C* map 0: W — M defined by X.
Then X is invariant under F if and only if F(0(t, p)) = 0(t, F(p)) whenever
both sides are defined.

Proof Suppose that X is invariant under F. If 0,: I(p) - M is the inte-
gral curve of X with 0,(0) = p, then the difffomorphism F takes it to an
integral curve F(6,(r)) of the vector field F,(X). Since F, (X)= X and
F(6,(0)) = F(p), from uniqueness of integral curves we conclude that
F(0,(r)) = 0(t, F(p)). This proves the “only if ” part of the theorem.

Now suppose that F(6(t, p)) = 6(r, F(p)) and prove that
F(X,) = Xgg,- This could be done directly from expression (3.2) for the
infinitesimal generator X, but we shall proceed in a slightly different way.
Let 6,(t) = 0(t, p) and let d/dt be the natural basis of Ty(R), the tangent space
to R at t = 0. Then, by definition, X, = 8,(0) = 0,,,(d/dt) and applying the
isomorphism F,: T,(M) = Ty, (M) to this definition we have

F*(Xp) = F* (),,*(d/dt) = (F ° op)*(d/dt) = HF(p)*(d/dt) = XF(p)'

The second equality is the chain rule for the composition of mappings
applied to 0),: R - M and F: M — M. The third equality uses the hypothesis
that F o 0,(t) = Op,(1)- ]

We remark that in the notation of Section 3 this theorem could be
stated: F (X) = X ifand only if 0, F = F -0, on V,.

(5.8) Corollary A left-invariant vector field on a Lie group G is complete.

Proof Let X be such a vector field. There is a neighborhood V of e and
a & > 0such that 6(t, g) is defined on I; x V.For he G, let L, denote the left
translation by h. If we apply Theorem 5.7 with F = L,, then 6(t, L, g) =
L,0(t, g), which shows that 6 is defined on I; x L,(V), a neighborhood of
(0, h) in R x G. It follows that for every he G there is a neighborhood
U = L,(V)suchthatI; x U c W, the domain of 6 with the same 6 > 0 that
we first obtained for V, that is, ¢ is fixed and independent of h. By the same
argument as in the compact case we obtain a contradiction if we assume for
any g € M that either a(g) or f(g) is finite. Therefore W = R x M and X is
complete. ]
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We shall now carry our analysis of the Lie group situation somewhat
further and in this way will obtain a number of examples of actions of R on
manifolds.

(5.9) Definition Let R be the additive group of real numbers, considered
as a Lie group, and let G be an arbitrary Lie group. A one-parameter sub-
group H of G is the homomorphic image H = F(R) of a homomorphism
F:R-G.

We give here several simple examples of one-parameter subgroups. In
the next section it will be shown how all such subgroups may be determined
for linear Lie groups, that is, subgroups of Gl(n, R). Since we are interested in
the action of R on manifolds, we recall at this point a comment and
examples of Section IIL.7. Namely, let G be a Lie group which acts on a
manifold M by #: G x M > M and let F: R - G be a homomorphism.
Then 6: R x M —» M defined by 6(t, p) = 8(F(t), p) defines an action of R
on M. Now applying Sections 3 and 4 we have an associated infinitesimal
generator X, integral curves as orbits of the action, and so on. Since the same
G may act on different manifolds, or in different ways on the same manifold,
a fixed one-parameter subgroup of G will give many examples of a one-
parameter group of transformations of a manifold.

(5.10) Example Let G be the group GI(3, R). We consider two one-
parameter subgroups, that is, two homomorphisms F,, F, of R into G,
defined as follows (a, b, c € R are constants):

0 0 1 at bt + dact®
Fii)y=10 e 0 and Fy(t)=[0 1 ct
0 0 ¢ 0 0 |

It is left as an exercise to check that these are homomorphisms. Now
GI(3, R) acts naturally on R* (Example I11.7.4) and hence each F, defines an
action on R*. In the case of F, we have 6(t, x', x2, x*) = (¢"x!, e‘"x2 e"'x?).
Therefore the infinitesimal generator X is given at x e R® by

. il 0 il
X,=6(O,x)=ax1&T+ax F+ax Pl
and the integral curves, or orbits, are the lines through the origin (see
Fig. IV.9).

The group Gl(n, R) also acts on P"~'(R), since it preserves the equi-
valence relation (proportionality) of n-tuples which defines it. Therefore
GI(3, R) acts on two-dimensional projective space P?(R). In this case F,
defines a trivial action 0(t, p) = p.
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Figure IV.9

(5.11) Example Let G be the Lie group SO(3) of orthogonal matrices with
determinant + 1. Define F: R —» SO(3) and thus a one-parameter subgroup
by
cosat sinat 0
F(t)= | —sinat cosat O
0 0 1

Again, it is easily checked directly that this is in fact a homomorphism. Thus
SO(3) acts on the unit sphere 2 in a standard manner which we previously
discussed (Section I11.7 and Exercises). The action is just the usual rotation
of the sphere, and F defines a one-parameter group of rotations holding the
x3 axis fixed:

(1, x!, x?, x3) = (x! cos at + x?sin at, —x" sin ar + x? cos at, x).

The orbits are the lines of latitude and the generator X is tangent to them
and orthogonal to the x*-axis. X =0 at the north and south poles
(0,0, +1). (See Fig. IV.10.)

(5.12) Example We recall also that a Lie group G acts on itself (on the
right) by right translations. Thus if we are given a homomorphism
F: R - G, we may define an action 6 of Ron M = G by 0(t, g) = Ry,)(g) =
gF(t). We have used R, to denote right translation: R,(g) = ga. As
previously noted in Section II1.7, this is a composition of C* maps, F, and
right translation. It is an action since F is a homomorphism and multiplica-
tion is associative:

(i) 0(0.g)=gF(0) =gy,
(i) 6(c + s,9) = gF(t + s) = g(F(t)F(s))
= (gF(1))F(s) = 6(t. 0(s, g)).
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Figure 1V.10

Thus the examples above furnish further examples of one-parameter group
action, namely, on M = GI(3, R) and M = O(3), respectively.

Recalling that a left-invariant vector field on G is uniquely determined by
its value at the identity e, we may use these ideas to characterize one-
parameter subgroups of a Lie group.

(5.13) Theorem Let F:R — G be a one-parameter subgroup of the Lie
group G and X the left-invariant vector field on G defined by X, = F(0). Then
0(t, g) = Rpyy(g) defines an action 0: R x G — G of R on G (as a manifold)
having X as infinitesimal generator. Conversely, let X be a left-invariant vector
field and 0: R x G — G the corresponding action. Then F(t) = 0(t,e) is a
one-parameter subgroup of G and 0(t, g) = Rg,)(g).

Proof Given the C* homomorphism F: R — G, then 0: R x G - G,
defined by 0(t, g) = Ry (g) = gF(t) is, as we have just seen, an action of R
on G. If aeG, then L,0(t, g) = a(gF(t)) = (ag)F(t) = 0(t, L,(g)). By
Theorem 5.7 it follows that the generator X of 0 is L, -invariant, for any
ae G. However, 0(t, e) = F(t), and so X, = 6(0, ¢) = F(0), which proves the
first half of the theorem.

For the converse X, being left-invariant, is both C* and complete and it
generates an action 6 of R on G. By Theorem 5.7 for any left translation L,
we have L,0(, g) = 6(r, L,(g)) or equivalently, hO(t,g) = 0(t, hg). Let
F(t) = 6(t, e) and h = F(s). Then this relation implies

F(s)F(t) = F(s)0(t, ) = 6(t, 0(s, e)) = O(t + s, ¢) = F(s + ).

Thus ¢ — F(t) is a C* homomorphism. But £(0) = (0, ¢) = X, and since X
is left-invariant, we see by uniqueness of the action generated by X that
0(t, g9) = Rgy)(g), the action defined just previously. |
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(5.14) Corollary There is a one-to-one correspondence between the ele-
ments of T(G) and one-parameter subgroups of G. For Ze T,(G) let
t = F(t, Z) denote the (unique) corresponding one-parameter subgroup. Then
F:R x T(G) - G is C* and satisfies F(t, sZ) = F(st, Z).

Proof According to Theorem 5.13, each Z € T,(G) determines a unique
homomorphism t - F(t, Z) of R into G such that F(0, Z) = Z. By our exten-
sion of the existence theorem at the end of Remark 4.7 we see that F is C*
simultaneously in t and Z [identifying T,(G) with R" by some choice of
basis]. Using the rule for change of parameter in a curve on a manifold, we
have

d d
[dr F(ts, Z)]':0 = 5[{“ F(t, Z)]I:O = sZ.

On the other hand ¢t — F(ts, Z) is a homomorphism. Therefore, by uni-

queness, F(st, Z) = F(t, sZ). |
Exercises

1. Prove Corollary 5.2.

2. Prove Corollary 5.3.

3. Let X be a vector field on M and let F: I(p) —» M be the integral curve

determined by F(0) = p. Suppose for some real number ¢ > 0, F(c¢) =
F(0). Show that this implies I(p) = Rand F(t) = F(t + c¢)forallte R. If
X, # 0, then prove that there is a diffeomorphism G:S' — M and a
number ¢, O0<c¢g<c¢, such that F=Gon, with m:R-
S' = [zeC| || = 1} denoting the mapping n(r) = >~/

4. Given pe M, show that if I(p) is bounded for a C*-vector field X on M,
then ¢ — 0(t, p) is an imbedding of I(p) in M.

5. Given pe M and a C*-vector field X on M, let {t,} be a monotone
increasing (decreasing) sequence of /(p) which has no limit on I(p). Show
thatiflim,_, . 6(t,. p) exists, then a(p) = + oo (B(p) = — o0, respectively).
Let L*(p) [or L (p)] denote the collection of all such limit points
for increasing (decreasing) sequences. Show that L*(6(t, p)) = L*(p)
for every t € I(p) and that L*(p) is a closed set and a union of integral
curves.

6. Show that a one-parameter subgroup H of a Lie group G which is not
trivial, that is, H # {e}, is cither an isomorphic image of S' or R and a
closed submanifold, or it is a one-to-one immersion of R and is properly
contained in its closure. Give examples of each case.

6 One-Parameter SUbgroups of Lie Groups

We have seen that one-parameter subgroups of a Lie group G are in
one-to-one correspondence with the elements of T,(G). We shall use this to
help determine all one-parameter subgroups of various matrix groups. We
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first consider G = Gl(n, R). The matrix entries x;;, 1 <i,j < n, for any
X = (x;)e Gl(n, R) are coordinates on a single neighborhood covering the
group, which is an open subset of .#,(R), the n x n matrices over R. There-
fore 0/0x;;, 1 <i, j<wn, is a field of frames on G and, relative to these
frames as a basis at e, there an isomorphism of .# ,(R) as a vector space onto
T,(G) given by A = (a;) = Y. j a;(0/0x;;).. [When G = Gl(n, R), e is the
n x n identity matrix I.]

(6.1) Definition The exponential e* of a matrix X € # ,(R) is defined to be
the matrix given by
1

l
(+) K=l 4 X X4 X

if the series converges.
(6.2) Theorem Series () converges absolutely for all X € #,(R) and uni-
formly on compact subsets. The mapping #,(R) — # ,(R) defined by X — e*

is C* and has nonsingular Jacobian at X = 0. Its image lies in Gl(n, R). If
A, Be #"(R) such that AB = BA, then e?* % = e4e®.

Proof 1f we denote by x% the entries of the matrix X* with

X'=X = (x;) and X° = [ = (9;;), and we let p = sup; .; j<n | X;;|, then
by induction on k we have the inequality

| xP| < (np)

This is true for k = 0, and if it holds for k, then

x| = ’;xzf’x,,- < nlpltp = (mp}*"

From this it follows that the sequence e* converges absolutely for every X
and that it converges uniformly on every compact subset of .#,(R); indeed
each compact set is contained in a set K, = {X | | x;;| < p}. By uniformity
of convergence it follows that the mapping X — e* is C* (even analytic) as a
function of x;;'s since the entries of the partial sums are polynomials in these
variables.

If we denote by f; (X) the coordinate functions of the mapping, then the
terms of degree less than 2 in the variables x;; are

filX)=06;+x;, 1<ij<n;

hence the Jacobian matrix at X = 0 reduces to the n? x n? identity matrix.
Finally, using the fact that the convergence is absolute, so that we may
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rearrange terms, and an analog of Cauchy’s theorem for multiplication of
series, when AB = BA we obtain the equality

[0 6] ] o 1 e 3} m 1 1 1

Ak B’) = o Am P _Br =Y " (4 + B)"
(SN2 0] =5 B B =Tt + B
From this we may deduce e?e® = e4*# (see Exercise 1). In particular, this
implies efe™ 4 = ¢° = I so that e* is nonsingular, that is, e? € Gl(n, R) for
any ae .# ,(R). This completes the proof of the theorem. [ |

(6.3) Corollary t — é'* is the one-parameter subgroup of Gl(n, R) whose
corresponding left-invariant vector field has the value Y ; ; a;{(0/0x;;),. All
one-parameter subgroups of Gl(n, R) are of this form.

Proof The corollary is an immediate consequence of the theorem. For
every te R, t; A and t, A commute, thus e"1*'24 = ¢''4e"24 and t - ¢'1is a
group homomorphism; it is C*® since it is a restriction of a C*-map on
M ,(R) to the submanifold {t4 | r € R}. Finally, writing x;;(t) for the ijth entry
of ¢’ and letting 4 = (a;;), we have

xi(t) = 8 + tay; + O(?)

so that x;0) = a;;, 1 <i, j < n or, equivalently (de'*/dt),—o = A. This
proves the corollary. |

(6.4) Example

€.#3(R)

p S

Il
o o O
S O 8
o a o

implies
M=T+tA+432+ .
However, 4* = 0 if k > 2 so that we obtain once again Example 5.10:
1 ta th+ it?ac
et=10 1 te
00 |

By virtue of the following theorem, we can use the mapping X — ¢¥ to
determine the one-parameter subgroups of other matrix groups, for exam-
ple, O(n), Sl(n, R) (see Exercise 6), and so on.

(6.5) Theorem If H is a Lie subgroup of G, then the one-parameter sub-
groups of H are exactly those one-parameter subgroups t — F(t) of G such that
F(0)e T.(H) considered as a subspace of T,(G).
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Proof Let F:R — H be any one-parameter subgroup of H. Since
H < G and the inclusion is an immersion, in particular is C*, the map F
followed by inclusion is a one-parameter subgroup of G. Its tangent vector at
any point is tangent to H. In particular, F(0)e T,(H) a subspace of T,(G).
Conversely, if F: R — G is a one-parameter subgroup such that F(0) e T,(H),
then F(0) determines a one-parameter subgroup of H, F,: R — H, with
F,(0) = F(0). As we have just seen, F, can be considered a one-parameter
subgroup of G, but since F and F, have the same tangent vector at e, they
must agree. Therefore the correspondence is one-to-one as claimed, which
completes the proof. |

Suppose that G = Gl(n, R) in the discussion above, then we have the
following application.

(6.6) Corollary The one-parameter subgroups of a subgroup H = Gl(n, R)
are all of the form t — e'4, where A = (a;;) are the components of a vector
Y. ;ail6/ox ;). € T,(G) which is tangent to H at e, that is, is in T,(H) = T,(G).

This is an immediate consequence of the theorem and the fact that every
one-parameter subgroup of G = Gl(n, R) is of the form F(t) = ¢'4.

(6.7) Example Let H = O(n), G = Gl(n, R), and determine the one-
parameter subgroups of H. If ¢'4 € H for all t, then (¢'4){e’*)’ = I, where the
prime indicates the transpose. It is an immediate consequence of
Definition 6.1 that (e'1) = ¢'*'; and, by Theorem 6.2, (¢'4)”! = ¢™'4. From
these facts we conclude that ¢'4 € H implies &' = ¢ '“. Moreover, X — ¢*
maps the (linear) submanifold of .#,(R) of skew symmetric matrices to the
submanifold O(n) of G; both manifolds have the same dimension and the
Jacobian of the mapping is nonsingular at X = 0 by Theorem 6.2. Hence
some neighborhood of the O matrix, X — e is a diffeomorphism. Therefore
there is a ¢ such that if || < J, thent4’ = —tA. It follows that 4 is skew
symmetric. Conversely, if 4 = — A4, then e'4(e'1) = €'’ = e'e™'4 = |,
which means that ¢'“ is an orthogonal matrix. This proves the following:

The homomorphism t — €' is a one-parameter subgroup of O(n) if and only
if A= — A, which is the necessary and sufficient condition on A = (a;;) in
order that the tangent vector Y ; ; a;{0/0x;;). to Gl(n, R) at the identity be
tangent to the subgroup O(n).

Finally we recall that if G is a Lie group and Z € T,(G), then Z determines
uniquely a one-parameter subgroup which we denoted earlier by F(t, Z). We
use this to define an exponential mapping on an arbitrary Lie group.

(6.8) Definition The exponential mapping, exp: T,(G) — G, is defined by
the formula exp Z = F(l1, Z).
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According to Theorem 5.13 we have the following properties:

(6.9) Theorem For any Lie group G the mapping exp: T,(G) = G is C* and
F(t) = exp tZ is the unique one-parameter subgroup such that F(0) = Z. The
Jacobian matrix at 0 of exp is the identity, that is, at e, exp, is the identity.T
Finally, if G is a subgroup of Gl(n, R), then for each Z € T(G) there is an
A = (a;;) € .# (R) such that Z =Y a;(0/0x;),, and for this Z, exp tZ = ¢'*.

Exercises

1. Complete the proof that when A, B are commuting n x n matrices, then
e**8 = ¢40% [Hint: first prove this for the exponential function on R,
using multiplication of power series; then try a similar proof.]

2. Check directly that the mapping t — ¢'* of Example 6.4 is a group
homomorphism.

3. Let A = (g;;) be ann x nmatrix such that a;; = 0if j < i. Prove that the
one-parameter subgroup ¢'” is not a circle group in Gl(n, R).

4. Find the one-parameter subgroups of GI(2, R) corresponding to A and B

with
p 0 1 B 0 1
'(—1 0)’ _(0 0)‘
Find the corresponding actions on R? and their infinitesimal generators,
starting from the natural action of GI(2, R) on R2.

5. Show that for any Lie group G, the rank of exp: T,(G) — G at 0 (the
0 vector) is n = dim G.

6. Prove that if 4 is a nonsingular n x n matrix and X € .#,(R), then
AeXA™ ! = ¢*¥47' From this deduce that det ¢¥ = ¢ *. Use this to
determine those matrices A such that ¢'* is a one-parameter subgroup of
Si(n, R).

7. Using the coordinate frames d/dx;;, i < i, j < n on Gl(n, R), show that
the vector field Z on Gl(n, R) whose matrix of components at the iden-
tity is A = (a;;) and X~ 'A at the element X = (x;) of Gl(n, R) is a
left-invariant vector field.

7 The Lie Algebra of Vector Fields on a Manifold

We denote by ¥ (M) the set of all C*-vector fields defined on the C*
manifold M. It is itself a vector space over R since if X and Y are C*-vector
fields on M so is any linear combination of them with constant coefficients.

* This requires that we identify the tangent space to T,(G) at Z = 0 with T,(G) itself, a
common practice when working with vector spaces; exp,, is the mapping of tangent spaces
induced by exp.
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In fact any linear combination with coefficients which are C* functions on
M is again a C®-vector field. For X, Y € ¥(M) and f, ge C*(M) implies that
the vector field Z = fX + gY, with the obvious definition Z, = f(p)X, +
g(p)Y, for each pe M is a C*-vector field. We may express this as follows:

X(M) is a vector space over R and a module over C*(M).

As a vector space ¥ (M) is not finite-dimensional over R (Exercise 1). In fact
X(M) is something more than just a vector field as we shall see.

(7.1) Definition We shall say that a vector space & over R is a (real) Lie
algebra if in addition to its vector space structure it possesses a product, that
is,amap £ x &£ — <, taking the pair (X, Y) to the element [X, Y] of &,
which has the following properties:

(1) it is bilinear over R:
[y Xy +02X,, Y] = o[ Xy, Y]+ o[ X5, Y],
[X,a, Yy + 0, Vo] = o[ X, V] + o;[X, Y7];
(2) it is skew commutative:
[X,Y]=—-[X,Y];
(3) it satisfies the Jacobi identity:
[X.[Y, Z]] + [V, [Z, X]] + [2,]¥, Y]] = O.

(7.2) Example A vector space ¥*, of dimension 3 over R with the usual
vector product of vector calculus is a Lie algebra.

(7.3) Example Let .4 ,(R) denote the algebra of n x n matrices over R
with XY denoting the usual ma* ix product of X and Y. Then [X, Y] =
XY — YX, the “commutator” of X and Y, defines a Lie algebra structure
on # (R) as is easily verified.

Now suppose that X and Y denote C*-vector fields on a manifold M,
that is, X, Y € ¥(M). Then, in general, the operator f — X (Yf) defined on
C*(p}—f being a C* function on a neighborhood of p—does not define a
vector at p. Thus XY, considered as an operator on C* functions on M, does
not in general determine a C®-vector field. However, oddly enough,
XY — YX does; it defines a vector field Ze¥(M) according to the
prescription

For if fe C*(p), then Xf and Y[ are C® on a neighborhood of p, and this
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prescription determines a linear map of C*(p) — R. Therefore if the Leibniz
rule holds for Z,, then Z, is an element of T,(M) at each p e M. Consider
£, g€ C*(p). Then f, ge C*(U) for some open set U containing p. We have
the relations:

(XY = YX),(f9) = X,(Yfg) — Y,(Xfg)
= X,(fYg — g¥f) - Y,(fXg — gX[)
= (X, f)NYg), + f(p)X ,(Yg) — (X,9)(Yf),
= g4(pP)X(YS) = (Y, /)(X9), — f(p)Ys(X9)
+ (Y9)(XSf), + g(p)(Y, XS),
so that

Z,(fg) = (XY = YX),(fg) = f(pXY — YX),g — g(p)(XY — YX), f

=f(p)Z,9 + 9(P)Z, /.

Finally, if fis C* on any open set U = M, then so is (XY — YX)f, and
therefore Z is a C*-vector field on M as claimed.

We may define a product on ¥ (M) using this fact; namely, define the
product of X and Y by [X, Y] = XY — YX.

(7.4) Theorem X (M) with the product [X, Y] is a Lie algebra.

Proof 1fa,Be Rand X,, X,, Y are C*-vector fields, then it is straight-
forward to verify that

[0X, + BX,, Y] =ofX,, Y]f + B[X,, Y]/

Thus [X, Y] is linear in the first variable. Since the skew commutativity
[X, Y] = —[Y, X] is immediate from the definition, we see that linearity in
the first variable implies linearity in the second. Therefore [X, Y] is bilinear
and skew-commutative. There remains the Jacobi identity which follows
immediately if we evaluate [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] applied
to a C*-function f. Using the definition, we obtain

[X.[Y. Z])f = X(([Y. 2)S) = [, Z)(XS)
= X(Y(Zf)) - X(Z(Yf)) - Y(Z(X()) + Z(Y (X))
Permuting cyclically and adding establishes the identity.

(7.5) Remark [X,Y] is not C*(M) bilinear. In fact for fe C*(M),
[X,fY] = f[X, Y] + (X/)Y as is shown in Exercise 2. This may be used to
derive a formula for the components of [X, Y] in local coordinates
(Exercise 3).
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We now make use of a vector field X on M to define a method of
differentiation which has many applications in manifold theory. We have
already defined the derivative of a function fe C*(M) at a point p in the
direction of X; it is just X,f This generalizes from R" to an arbitrary
manifold the notion of directional derivative of a function. However, if we
wish to determine the rate of change of a vector field Y at pe M in some
direction X ,, we have trouble as soon as we leave R", for it is only in R" that
we are able to compare the value of Y at p with its value at nearby points,
which we must do to compute a rate of change. Now, given a vector field X
on M, there is an associated one-parameter group 8: W — M generated by
X. For each t € R we know (Theorem 3.12) that 6,: V, — V_, is a diffeomor-
phism (with inverse 0_,) of the open set V,, provided V, is not empty. In
particular for each pe M there is a neighborhood V and a § > 0 such that
V < ¥, for |1| < 4. The isomorphism 8,,: T,(M) - T, (M) and its inverse
allow us to compare the values of vector fields at these two points.

Indeed, suppose Y is a second C*-vector field on M. We may use this
idea to compute for each p the rate of change of Y in the direction of X, that
is, along the integral curve of the vector field X passing through p. We shall
denote this rate of change by L, Y; it is itself a C*-vector field.

(7.6) Definition The vector field Ly Y, called the Lie derivative of X with
respect to Y is defined at each pe M by either of the following limits.

!
(Lx Y)p = lmg ' [0—1*(),0(1. p)) - Yp]
r—'

.1
= lim- [Yp - 0:* YB(—!. p)]'

-0 !

The second definition is obtained from the first by replacing t by —¢. We
interpret the first expression as follows: Apply to Yy, , € Ty, ,(M) the iso-
morphism §_,, , taking Ty, (M) to T,(M). Then in T, (M) take the differ-
ence of this vector and Y,, multiply by the scalar 1/t, and pass to the limit as
t - 0. This limit is a vector (Ly Y), € T,(M); if it exists at all, that is! The
existence as well as the fact that the vector field so defined is C* may be
verified by writing the formula above in local coordinates (Exercise 6). We
shall give another characterization of L, Y which requires a modification of
Lemma I1.4.3, following Kobayashi and Nomizu [1, p. 15].

(7.7) Lemma Let X be a C*-vector field on M and 0 be the corresponding
map of W c R x M onto M. Given pe M and fe C*(U), U an open set
containing p, we choose 6 > 0 and a neighborhood V of p in U such that
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0I5 x V)< U. Then there is a C* function g(q, t) defined on V x 15 such
that for qe V and t e I; we have
f(09) =1 +tg9(g.1)  and X, f=g(q,0).

Proof There is a neighborhood V' of p and a § > 0 such that 6,(p) =
0(t, p) is defined and C* on I; x V and maps I; x V into U according to
Theorem 4.2. The function r(t, g) = f(0,{¢)) — f(g) is C* on I; x V and

(0, ¢) = 0. We denote by r(r q) its derlvative with respect to 1. We define
glg, t)—for each fixed g—by the formula

q,r)=} (ts, q) ds.

This function is also C* on I; x V (verified by use of local coordinates and
properties of the integral). By the fundamental theorem of calculus,

1

ty(g, t) = . s, g)t ds = r(t, q) — r(0, q) = r(1, q).

0
Using the definition of r, this becomes
T(649)) = £ (@) + tylg. 1).
On the other hand, by the definition (3.2) of the infinitesimal generator of 0,

ol4.0) = lim (g, 1) = lim | r(1.) = lim  [£(0a)) = /)] = X, . N

t—0 1»o !l -0l
We use the lemma 1o prove the following theorem:

(7.8) Theorem If X and Y are C*-vector fields on M, then
LyY =[X.Y].
Proof By definition
1
(LX Y)pf= lim VI [Yp - 01*(),(),(11))]).[
t—0

This differential quotient and that of the following expression, whose limit is
the derivative of a C* function of 1, are equal for all 0 < || < &; hence
equal in the limit

(LyY),/=lim [Y = Yo (S 0]
l—~0
Using Lemma 7.7 and denoting g(q, t) by g,, we have
( ) ’_ llm [Y ’ Yél—r(p)(f+ [gr)]'

t—0
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Then replace t by —t and rearrange terms giving

(L), = lim  [(VFXOp) = (F)p)] = lim Y.

Now, using both the formula (3.2) with freplaced by Yfand At by ¢, and the
fact that g, = g(g, 0) = Xf(q), we obtain in the limit

(LxY), f= X,(Yf) = Y, (X[) = [X, Y], /.

This completes the proof of the theorem; it also shows that L, Y is C*. |

(79) Theorem Let F: N - M be a C* mapping and suppose that X ,, X,
and Y|, Y, are vector fields on N, M, respectively, which are F-related, that is,
fori=1,2, F(X;)=Y,. Then[X,, X,] and [Y,, Y,] are F-related, that is,
F*[Xl’ X,] = [F.(X,), F(X2)]

Proof Before proving the theorem we note the following necessary and
sufficient condition for X on N and Y on M to be F-related: for any g which
is C® on some open set V < M,

(*) (Y))o F = X(g- F)

on F~!(V). This is essentially a restatement of the definition of F-related, for
if ge F71(V), then F(X,)g = X,(g° F) = X(g - F)(g); and Y g is the
value of the C* function Yg at F(g), that is, ((Yg) o F)(q). Thus the condition
holds if and only if F,(X,) = Yz, for all ge M.

Returning to the proof we consider fe C*(V), V < M, so that Y, fand
Y,fe C*(V) also. Apply (x), first with g = Y, f and then with g = f giving
the equalities

[Yl(yzf)] oF = Xl((yzf)° F) = Xl[Xz(f° F)]
Interchanging the roles of Y, Y, and X,, X, and subtracting, we obtain
(Y, Y21f) o F = [Xy, X,)(f < F),

which according to (*) is equivalent to [X |, X,] and [Y,, Y,] being F-related.

We now define the Lie algebra g of a Lie group G.

(7.10) Corollary If G is a Lie group, then the left-invariant vector fields on
G form a Lie algebra g with the product [X, Y] and dim g = dim G. If
F: G, = G, is a homomorphism of Lie groups, F,: g, = g, is a homomorphism
of Lie algebras.
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Proof Letae G,andlet X and Y be left-invariant vector fields. L, (left
translation) is a diffeomorphism and L,, X = X, L,, Y = Y. Therefore
L,[X, Y] =[X, Y] by the theorem, so [X, Y] is L,-invariant for any a.
Hence the subspace g of left-invariant vector fields is closed with respect to
[X, Y]. Since each X € g is uniquely determined by X, the mapping X — X,
is an isomorphism of g and T,{G) as vector spaces. The last statement follows
from Corollary 2.10 and Theorem 7.9. ]

(7.11) Remark If H < G is a Lie subgroup, then Corollary 7.10 implies
that i {h) is a subalgebra of g. It consists of the elements of g tangent to H
and its cosets gH.

(7.12) Theorem Let X and Y be complete C*-vector fields on a manifold M
and let 0, ¢ denote the corresponding actions of Ron M. Then 6,0 6, = a0 0,
for all s,te R if and only if [X, Y] = 0.

Proof We first suppose that 8,- g, = 0,0 0, for all 5, te R. Applying
Theorem 5.7 to the diffeomorphism 0, M — M, we see that Y is
f,-invariant; in particular 0,, Y = Y. This implies that

[X,Y]=LyY = lim[Y —0_,, Y] =0.

Ar—0
Next assume [X, Y] = 0, then from the previous theorem
0=0,XY]=10,X,0,Y]=[X,0,Y]

From this we conclude that for any pe M and any fe C*(p) we have

0= (Ly(0 ¥))yf = lim | [0 )y S~ Orenen V), ]

Ar—0 At
so that d(0,, Y),f/dt = 0 for every t, that is, (8, Y),f is constant. When
t = 0 this constant function has the value Y, f, therefore (8,, Y),f = Y,f.
Since p and fe C*(p) were arbitrary, it follows that 6,, Y = Y and from
Theorem 5.7 we conclude that for each te R

0('30s=0s°91' I

Exercises

1. Show that ¥ (M) is infinite-dimensional over R but locally finitely gen-
erated over C*(M), that is, each pe M has a neighborhood V on which
there is a finite set of vector fields which generate ¥ (M) as a C*(V)
module.

2. Let X.Ye¥(M)and f,ge C*(M) and prove that

[/X,gY]=fo[ X, Y]+ f(Xg)Y — g(Yf)X.



156

10.

IV VECTOR FIELDS ON A MANIFOLD

Suppose U, ¢ is a coordinate neighborhood on M, X, Y € ¥(M), and
E,. ..., E, the coordinate frames, and note that [E;, E]] =0 on U. If
X =Y,4E and Y = Y ; f'E; on U, then show that
Op Oatf
= ! ~ i - ! ~ E U.

[X’ Y] LZJ (a axl ﬂ axl) J on
[We are using the same letters a, f for functions on U < M and their
expressions in local coordinates.]
Given the vector fields in R® (with coordinates x, y, z)

d é 0 é é 4 0

X=y(;);-—xby, Y=z—-

ax T oy T oz
compute the components of the three pairs of products.

Show that (Ly Y), depends on the fact that we have vector fields, that
is, if X, X" agree at p but are not the same as vector fields, then (Ly Y),
may differ from (Ly. Y),.

Write the expressions defining (Ly Y), (Definition 7.6) in local coordin-
ates of a coordinate neighborhood U, ¢ and show that L, Y is a
C*-vector field on U.

Let G = Gl(n, R) with matrix entries as local coordinates. To each
X eg we assign the n x n matrix 4 = (a;;) of components of X,
X, =Y, ;a;{0/0x;).. Denote this mapping of g onto .#,(R) by p.
Show that g is an isomorphism and that

ulX, Y] = u(X)(Y) = p(Y)u(X).

Show that whenever H is a (Lie) subgroup of the Lie group G, then the
Lie algebra of H may be naturally identified with a subalgebra of g,
thus verifying Remark 7.11.

Show that two one-parameter subgroups F(t) and G(t) commute
elementwise if and only if their Lie algebras, in the sense of Exercise 8,
satisfy [X, Y] =0 for each X,Y in the algebra of F(t), G(t),
respectively.

If F: M — N is a diffeomorphism of M onto N and X, Y are C*-vector
fields on M, then prove that F (Lx Y) = Lp,x, F,(Y), that is, Ly Y is
F-related to Lg, 4 F (Y).

8 Frobenius’ Theorem

The concept of vector fields on a manifold can be used to give a

coordinate-free treatment of certain first-order linear partial differential
equations which is useful even for local questions in R" and indispensable in
many global questions. First consider an example.
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(8.1) Example Let
F(x', x3, x3 v ply=0, a=1,...,6,

be a system of six partial differential equations involving two unknown
functions y' and y? of three variables x!, x2, x* and their first derivatives
py = 0y¥/0x'. To simplify matters we assume that these equations can be
solved for pf and written equivalently

Ay .

o = Gi(x; ), k=1,2 and 1=1,23,
in some neighborhood U of a point (a; b)
consists of functions y* = f*(x!, x2, x*), k =
equations

art

ax! =

and for which f (a) = b, this last being “ initial conditions.” This is equivalent
to defining a three-dimensional submanifold of R® = R> x R? given by
(x', x%, x*) - (x', x%, x*; f1(x), f3(x)) whose tangent plane at the point
(x; y) is spanned by three vectors X, X,, X with components given by

X, = (10,0, Gi(x, y). Gi(x, y)),
X3 = (0, 1,0, G3(x, y), G3(x, y)).
X3 =1(0,0, 1, G(x, y), G3(x, y)).

Any such surface gives a solution, the initial conditions add the requirement
that it pass through (a; b).

Such solutions may not exist ; the equations must satisfy certain neces-
sary conditions on the functions G} which reflect the fact that if there is a
solution, then one can interchange the order of differentiation of f! and f2.
These conditions can be written as relations among X; and [X;, X ],
Lj=123.

The vector fields X, X,, X, are determined by the system and define at
each point g of U a three-dimensional subspace A, = T,(R®), at least if they
are linearly independent, which we will assume. Thus a system of equations
of the type we are considering determines in some domain of R® three
linearly independent vector fields X, X, X ; at each point and a solution is
a three-dimensional submanifold whose tangent space at each of its points g
is spanned by X,, X,, X;. Two systems of differential equations will be
equivalent if they determine at each g of this domain the same three-
dimensional subspace A, of T,(R®) in which case they would—if some sort of
uniqueness prevailed—have the same solutions. A system of equations is
completely integrable, roughly speaking, if there is a single such solution

= (a', a% a*; b, b?). A solution
1, 2, which satisfy the system of

Gi(x;f'(x),f%(x))  ina neighborhood of x =a
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manifold through each point of some domain of R®, that is, if the domain, up
to diffeomorphism, is like an open subspace of R* presented as a union of
disjoint “surfaces,” like the surfaces obtained by holding two coordinates
fixed and letting the other three vary. With this as background one can
motivate the following definitions:

(82) Some Definitions Let M be a manifold of dimension m = n + k and
let us suppose that to each pe M is assigned an n-dimensional subspace A,
of T,(M). Suppose moreover that in a neighborhood U of each p e M there
are n linearly independent C*-vector fields X, ..., X, which form a basis of
A, for every ge U. Then we shall say that A is a C* distribution of dimension
nonM and X, ..., X, is a local basis of A.

We shall say that the distribution A is involutive if there exists a local
basis X, ..., X, in a neighborhood of each point such that

X, X]=YdX,, 1l<i j<n
l ! k—ll *

[The ¢}; will not in general be constants, but will be C* functions on the
neighborhood.]

Finally, if A is a C* distribution on M, N is a connected C* manifold,
and F: N - M is a one-to-one immersion such that for each ge N we have
F,(T,(N)) © Ap,, then we shall say that the immersed submanifold is an
integral manifold of A. Note that an integral manifold may be of lower
dimension than A.

An example of a system in involution is the following: Let M = R" x R*
and X; = 0/0x'i = 1, ..., n. Then the distribution is the subspace of dimen-
sion n consisting of all those vectors parallel to R” at each point g of M. We
shall see that this apparently rather special example is actually typical,
locally, of involutive distributions.

Let A be a C® distribution on M of dimension n, the dimension of M
being m = n + k. We shall say that A is completely integrable if each point
p € M has a coordinate neighborhood U, ¢ such that if x, ..., x™ denote the
local coordinates, then the n vectors E; = «, 1(9/0x%),i = 1,..., n, are a local
basis on U for A. Note that in this case there is an n-dimensional integral
manifold N through each point g of U such that T(N) = A, that is, the
tangent space to N is exactly A. In fact, if (a', ..., a™) denote the coordinates
of g, then an integral manifold through g is the set of all points whose
coordinates satisfy x"*! = a"*!, ..., x™ = g™, that is, N = ¢~ '{xe o(U)|
x/=dl,j=n+1,...,m},aslice of U. Of course, in this case the distribution
is involutive for

|8 0
[E,',E}-]=(P*1[

a‘x',avx}}=0, ISI, an
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Thus any completely integrable distribution is involutive. However, most
distributions are not involutive, for example, on R* the distribution

0 0 0 0
X, =x} - - = 4
V=Xt MiT et
is not involutive since [X,, X,] = —8/0x", which is not a linear combina-

tion of X, and X,. This means, in particular, that X, X, could not be
tangent vectors to a surface x> = f(x*, x?) (see Exercise 1).

An important and instructive example of an involutive distribution is
furnished by the Lie algebra b of a subgroup H of a Lie group G; | consists
of left-invariant vector fields on G which are tangent to H at the identity. As
we have seen (Remark 7.11), this determines a subalgebra, the image of the
Lie algebra of H under the inclusion mapping. These give a (left-invariant)
distribution A on G such that A, = T,(H) for every he H. The cosets gH are
the integral manifolds of this distribution—which is evidently involutive
since b is a subalgebra of g.

A distribution A of dimension 1 is just a field of line elements, that is,
one-dimensional subspaces. A local basis is given by any nonvanishing
vector field X which belongs to A at each point and, of course, an integral
curve of X is an integral manifold. We know from the existence theorem that
such integral manifolds passing through any given point exist and are
unique. In fact, Theorem 3.14 says precisely that any such distribution is
completely integrable. It is also involutive since [X, X] = 0. In the light of
these remarks, the following theorem may be considered a generalization of
the existence theorem (Theorem 4.1) to certain types of partial differential
equations. In the general case, however, there is a necessary condition which
is not automatic—as it is in the case of a one-dimensional distribution. This
condition is the involutivity of A.

(8.3) Theorem (Frobenius) A distribution A on a manifold M is com-
pletely integrable if and only if it is involutive.

Proof We showed above that a completely integrable distribution is
involutive. This is an easy consequence of the definitions. We shall prove
that involutive distributions are completely integrable by induction on their
dimensions, which we denote by n. We let m = dim M.

When n = 1 we have seen that we may introduce local coordinates V,
such that E, = y, '(0/0y"') is a local basis for A (Theorems 4.6 and 3.14),
which establishes complete integrability when n = 1.

Suppose that the theorem is true for involutive distributions of dimen-
sions 1,2, ..., n — 1, and let A be of dimension n and in involution. Around
any pe M we may find (using Theorem 3.14 again) local coordinates V,
and a local basis X, ..., X, of A on V such that X, = E,. By assumption,
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[X:, X;] = Yi-1 ¢; X, and letting y', ..., y" denote the local coordinates,
we may suppose that y/(p) = 0. We know that the components of X relative
to the coordinate frames E,, ..., E,, are X;y' ..., X;y" whichare C00 func-
tions on V. Define a new basns ofA on V by

Y, =X, (=El)’
,=X, - (Xzyl)Xh

Yn = Xn - (Xnyl)Xl'

n

are linear combinations of E,, ..., E,, at each point and do not involve
E, (= Y,). Therefore they are tangent to the manifolds y' = constant and it
follows that [Y,,Y), 2 < _] < n, must be tangent to the submanifolds
y' = constant also. Hence d}; =0, and the distribution on V defined by
Y,,..., Y, is in involution on V and on each submanifold y' = constant of
V including N, = U defined by y* = 0. The functions (y?, ..., y™) restricted
to N, give coordinates on ¥V n N,. By the induction hypothesis we may
change coordinates on N, in a neighborhood of p by, say, functions

By involutivity [¥;, Y]] = Y7, d}; Y, but we have arranged that Y,,..., Y,

y=fix% ..., x™), i=2...m
defined on a neighborhood of the origin of R™~ !, so that the image on N of
6/0x*, ..., 0/0x" is a basis at each point of the subspace spanned by

Y,,..., Y, and so that we have f¥(0,...,0)=0, i=2,....,m
We extend this to a change of coordinates in a neighborhood U = V of p
by adding the function f'(x) = x' giving

y! = x!, yo=fi(x% ..., x™), i=2...m

This is a valid change of coordinates since the Jacobian matrix is nonsingu-
lar at the origin. We may suppose with no loss of generality that the image of
U in the (x', ..., x™) space is the cube C™(0). Let ¢ denote the coordinate
map. Then ¢ = ¢ - F~! with F(x',...,x") = (f'(x), ..., f™(x)), then
o(p) = (0,...,0) and in terms of the new coordinates we have the following
three facts:

(i) Y= o5 @/0x");

(ii) Ngon U consists of those points for which x' = 0, so (x2, ..., x™)
are coordinates on this submanifold;

(iii) at each point of Ngn U, Y,,..., Y, are linear combinations of
E,= (p*(a/(?x ) ooy E,=¢,(0/0x"), or equivalently, when x'=0,
Y,x!=-=Y,x'=0forl=n+1,..., m, that is, the last m — n compon-
ents vanish.
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We shall now prove that (iii) holds throughout U, without restriction on
x'. We consider Y;(Y;x)for j = 2,..., nand each | > n. We have, using the
definition of brackets,

Yi(Yx') = V(Y xX) + [V, Y]x'
But Y, x' = ax'//ox' = 0and [Y,, Y]] = Y7, d}; Y,, so that
Y,(Y,x') = Zd (Y, x!).

If we write d%; and Y, x' as functions of (x', ..., x™), passing from functions
on U to the corresponding functions in local coordinates, then we see that

Y,x, ..., Yx, for fixed | >n and fixed x%,..., x™ are solutions of the
system of ordinary differential equations
dz; "
= ds .z, , =2, ...,n,
ao = Blne
satisfying initial conditions z; = 0, j = 2, ..., n, when x' = 0. However, the

functions z; = 0 also satisly the system and these same initial conditions, so
by the uniqueness of solutions, whenever [ > n,

V,x'=-=Y,x'=0 forall values of x!.

This shows that the vectors Y,, ..., Y, are linear combinations of the vectors
E,, ..., E, (of the coordinate frames) throughout U. Since E; = Y,, it fol-
lows that E; = ¢, '(0/0x), i = 1,..., n, is a local basis for A and this com-
pletes the proof. |

Theorem 8.3 implies the following corollary which is essentially a local
uniqueness statement for integral manifolds of an involutive n-dimensional
distribution A in a manifold M of dimension m.

(84) Corollary Let U, ¢ be a cubical coordinate neighborhood of pe M,
relative to the involutive distribution A, whose slices—corresponding to x"*!,
, X" fixed—are integral manifolds in U. Then any connected integral mani-
jold V < U lies on such a slice, that is, there are constants a"*?, ..., a™ such
that
VelgeU|x"g)=da""", ..., x"(q) = a™}

Proof Since V is an integral manifold, its tangent space at each point
lies in the space spanned by the first n vectors E,, ..., E, of the coordinate
frames. If x/ is a coordinate function of U withj > n, p is any point of V', and
X, is any vector at p tangent to V, then X, = /_, o, E;, and

n n Ayd
) j_ ((x ) —0
X'} ()



162 IV VECTOR FIELDS ON A MANIFOLD

Since x/ is defined on all of V and V is connected, this means that x’ = a/, a
constant, on V. ]

The following result should be compared with Lemma IIL6.7.

(85) Theorem Let N = M be an integral manifold of an involutive distribu-
tion A with dim N = dim A and suppose F: A - M is a C* mapping of a
manifold A into M. If F(A) = N, then F is C* as a mapping into N.

Proof Let pe A and let g = F(p) be its image. Choose a cubical coor-
dinate neighborhood U, ¢ of ¢ with ¢(q) = (0,...,0) and ¢(U) = C7(0)
such that its slices x"*! =a"*!, ..., x™ = a™ are integral manifolds,
n = dim A, and m = dim M. Since the inclusion i: N — M is an immersion,
i"Y(U)= N U is an open set in N, and therefore an open submanifold.
Manifolds are locally connected so that the components of N n U are open
sets of N and countable in number. Each is itself a (connected) integral
manifold and thus lies on a slice by Corollary 8.4. It follows that if x/, j > n,
is a coordinate function on U, it can have only a countable number of values
on N n U. The function x/ maps any connected set C = N n U contin-
uously into this countable subset of R, and hence must be constant on C.
[The only connected, countable subset of R is a single point.]

Now, using the continuity of F: 4 - M, choose a connected coordinate
neighborhood W, ¥ of p such that F(W) < U. Since F(W) is a connected
subset of U and lies in N n U, it lies on a single slice. Because q e F(W), this
is the slice x"*! = --- = x™ = 0. Let U be the subset of N which lies on this
slice. It must, by what we have seen, be a union of components of
i"'(U) = N~ U and so it is an open subset of N—in the topology of N. The
coordinate functions x!, ..., x" restricted to U are coordinates on U, that is,
they define a mapping @: U — R" such that U, § is a coordinate neighbor-
hood of g on N (compare Remark IIL.5.6). Let y!,..., y" be the local coordin-
ates on W,y and suppose F: A - M is given on W by C* functions

Xt =L y),  j=1..,m

Then fi(y)=0,j=n+ 1,...,m, and as a mapping into N, F is given (in
local coordinates) on W by the same functions f#(y), | < j < m, so it must be
C* as claimed. |

(8.6) Definition A maximal integral manifold N of an involutive distribu-
tion A is a connected integral manifold which contains every connected
integral manifold which has a point in common with it.

It is immediate from Corollary 8.4 that a maximal integral manifold has
the same dimension as A. It is also clear that at most one maximal integral
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manifold can pass through a point p of M. It is true but more difficult to
prove that there is a maximal integral manifold through every point of M.
The idea is to piece together local slices using Corollary 8.4 and build up an
immersed submanifold. The difficulty is in showing that there are not too
many such slices, that is, in proving that we have a countable basis of open
sets. We shall not prove this here. Proofs are given by Chevalley [1] and
Warner [1], for example. We shall state one theorem whose proof requires
this fact and show how it is used.

(8.7) Theorem Let G be a Lie group, g its Lie algebra, and b a subalgebra of
g. Then there is a connected subgroup H of G whose Lie algebra is b.

Proof Let the left-invariant vector fields X, ..., X, on g be a basis of .
They define a distribution A which is invariant under left translations, hence
each integral manifold N is carried by any left translation L, diffeomor-
phically to an integral manifold L,(N). Let H be the maximal integral mani-
fold through the identity element e. If h € H, then L,_,(h) = e so that both H
and L,-,(H) have e in common. Since H is maximal, L,_,(H) = H. It follows
that if h,, h, € H, then h; 'h,e H and H is thus a subgroup as well as an
immersed submanifold. The product mapping H x H — H is a composition
of inclusion i: H x H = G x G and the product mapping 8: G x G = G.
Both are C® so that 8-i is C* as a mapping into G. Its image is in H
because H is a subgroup; and by Theorem 8.5 we see that the product
mapping H x H — H is also C*. A similar argument shows that the map-
ping taking each he H to its inverse h™! is also C®. This completes the
proof, subject to the unproved assertion concerning integral manifolds. [

Exercises

1. Consider a system of two partial differential equations (analogous to
Example 8.1 but in fewer variables):

0 0
Ge=hlonzh = glnz)

0x
Let X = 8/0x + hd/oz and Y = 8/dy + ¢d/0z and show: (a) if z = f(x, y)
is a solution, then X and Y span the tangent space at each point of
the surface z = f(x, y) in R?; (b) interchangeability of the order of
differentiation for f is equivalent to the distribution given by X, Y
being in involution.
2. Show that if a distribution is involutive with respect to one choice of
local basis on an open set U, the same will be true for any local basis
whose domain is in U.
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3. A vector field X is said to belong to a distribution A if for each pe M we
have X, A,. Show that a C* distribution is involutive if and only if for
every pair of C*-vector fields X, Y on M which belong to A the vector
field [X, Y] belongs to A.

4. Let U be an open subset of R* and X a nonvanishing C*-vector field on
U. Show that the distribution A of dimension 2 defined for each
p=(x,y z)of UbyA,={YeT(R’)|(X, Y)=0}is involutive given
that curl X = 0. In this case show that there is, locally at least, a
function f'such that grad f = X and using this prove that A is completely
integrable. (For definitions of curl and gradient, consult any advanced
calculus book, for example, Apostol [1].)

5. Let N be a connected, immersed submanifold of M and suppose that it is
an integral manifold of a distribution A on M with dim N = dim A.
Show that if N is closed (as a subset), then it is a submanifold of M.

9 Homogeneous Spaces

In this section we consider the action of a Lie group on a manifold in a
special but very important case, transitive action. Let 0: G x M - M
denote such an action. Then we recall that it is transitive if for every pair
p. g€ M, there is a ge G such that 6,(p) = q. This means that as far as
properties preserved by G are concerned, any two points of the manifold are
alike.

(9.1) Definition A manifold M is said to be a homogeneous space of the
Lie group G if there is a transitive C* action of G on M.

Many examples of group action have this property: O(n) acts transitively
on §"~ ', Gl(n, R)acts transitively on R" — (0) and so on; these were discussed
in Section IIL.7. But one of the most important examples remains to be
treated, since until this moment we have lacked an essential tool: Frobenius’
theorem. This example, viewed first from a purely set theoretic standpoint,
is the following: Let G be a group, H any subgroup, and G/H the set of left
cosets. We define a left action A:G x G/H — G/H by A(g, xH) = gxH; it is
a left action since

(i) A(e, xH) = xH, and
(ii) 1(91, Mg2, X\H)) = Mg, g2 xH) = (9, g2)xH = A(g, 9., xH).

Moreover, if n: G — G/H is the natural mapping of each ge G to the
coset which contains it, n(g) = gH and if L,: G — G denotes left translation,
then we have the property:

(iii) mo L, = A, n (for all ge G).

The transitivity is apparent: A, ,(xH) = yH for all x, ye G.
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Of course, we are far from being able to assert that when G is a Lie group,
then G/H is a manifold and the mappings 4 and = defined by G and H are
C*. We did see, however, that if H is closed in G (a Lie group), then the
quotient topology on G/H makes it a Hausdorff space and n an open—as
well as continuous—mapping (Theorem II1.7.12). We left it as an exercise to
the reader to show that with this topology on G/H, A is a continuous group
action. In this section we shall go further and show that G/H is a manifold
and A is a C* action. Aside from the fact that this will give us many new
examples of manifolds and group action, this is important for another
reason: the manifolds G/H with G acting by left translation form a universal
model for all transitive actions, that is, for all homogeneous spaces.

First, consider this last statement from the set-theoretic viewpoint—
without topology or differentiable structure. Let X be a set on which a group
G acts transitively by the rule 0: G x X — X. Choose, arbitrarily, a point
ae X and let the isotropy subgroup (or stability group) of a be H,

H ={geG|0,(a) = a}.

We then define a mapping F: G — X by F(g) = 0,(a). Since 0 is transitive, F
is onto; moreover for any xe X, F~!(x) = gH, where g is any element of G
such that F(g) = x. It is then easily verified that F induces a one-to-one onto
mapping F: G/H — X by F(gh) = F(g). For these mappings we have the
relation F - n = F. Finally F carries the natural action of G on G/H, which
we denoted by 4 above, to the action 0, that is,

F . i,=0,-F

for every g€ G. Thus from the set-theoretic and abstract group viewpoint,
1:G x G/H - G/H is equivalent as an actionto 0: G x X - X.

Of course, it is very interesting and important to see to just what extent
this still holds in the case of the transitive action of a Lie group on a
manifold. Recall that by Definition I11.6.17 a Lie subgroup H of a Lie group
G is an immersed submanifold which is a Lie group with respect to the group
operations of G. Since we shall use the quotient topology on G/H, we must
restrict our attention to those Lie subgroups that are closed subsets if G/H is
to be a Hausdorff space (Theorem I11.7.12). Therefore H will be assumed to
be a closed Lie subgroup. [We prove later that this implies that H is a
submanifold of G (compare Remark 111.6.19).] A section V, ¢ on G/H will
mean a continuous mapping ¢ of an open subset V of G/H into G, : V — G,
satisfying n - o as the identity on V. We then have the following basic fact.

(9.2) Theorem Let G be a Lie group and H a closed, Lie subgroup. Then
there exists a unigue C*-manifold structure on the space G/H with the proper-
ties: (1) m is C* and (ii) each g€ G is in the imuge a(V) of a C* section V, o on
G/H. The natural action A: G x G/H — G/H described above is a C* action
of G on G/H with this structure. The dimension of G/H is dim G — dim H.
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Now suppose that a Lie group G acts transitively on a manifold M, the
action being given by the C*-mapping 6: G x M — M. Using the notation
above, with X replaced by M, we suppose ae M and that H is the isotropy
subgroup of a. We then have the following closely related theorem to com-
plete the picture.

(9.3) Theorem The mapping F: G > M, defined by F(g) = 0(g, a), is C*
and has rank equal to dim M everywhere on G. The isotropy group H is a
closed Lie subgroup so that G/H is a C* manifold. The mapping F: G/H - M
defined by F(gH) = F(g) is a diffeomorphism and F o A, = 0, F for every
geag.

Before proving these theorems we give some examples of their use. First
consider briefly some of the spaces associated with classical geometries:
E"—Euclidean space, P"(R)—the space of real projective geometry, and
H?—the space of plane non-Euclidean geometry. All of these were dis-
covered and studied before Lie groups (or groups of any kind) were in-
vented. However, in each case there is an underlying group, the group of
automorphisms of the geometry; it is the group by which we can bring
congruent figures into congruence. In fact each geometry studies precisely
the objects and properties which are invariant under the transformations of
this group acting on the space. For E", or R", the group consists of all
isometries (rigid motions): translations, rotations, and reflections; for P*(R)
it is the projective transformations; and for H? it is the group which leaves
non-Euclidean distances unchanged (“rigid” motions again!) In each case
the group is a Lie group and in each case it is transitive. This means that the
theorems above can be used as a sort of underlying unifying principle of all
these geometries, a fact which was recognized by F. Klein [1] and resulted in
a famous approach to geometry called the “Erlangen Program™ (1872).
Thus the study of any of these classical geometries can be reduced to a study
of Lie groups G and their subgroups H. This point of view pervades much of
modern geometry. Consider now what G and H are for the cases above.

(9.4) Example We have seen in Example I11.7.6, that the group of rigid
motions of E", identified with R", is a group G which is O(n) x V" as a
manifold, but whose group product was defined by (A4, v)(B, w)
= (AB, Bv + w) and whose action on R" is given by (A4, v)-x=Ax +v
(see Exercise I11.7.6). Another approach is the following: we identify G with
the (n + 1) x (n + 1) matrices of the form

Ay Gy, | Uy

9=\a, - a,|v| A= : . ) eO(n),
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and points x = (x', ..., x") of R" with the column vector X = ‘(x', ..., x", 1).
Then 0(g, x) = gX, the product of the matrices g and x. The subgroup H
leaving the origin x = (0, ..., 0) fixed is the set of all of these matrices for
which v, = --- = v, = 0; hence it is a closed Lie subgroup isomorphic to
O(n).

(9.5) Example The group G = Sl(n + 1, R) acts transitively on P*(R) as
follows: let [x]€ P"(R). Then [x] is an equivalence class of nonzero elements
x=(x'.....x""')of R""!.Given any ge Sl(n + 1, R), we define 6(g, [x]) by

8(g, [x]) = [gx],

where gx is the matrix product of g with x written as a column vector
((n + 1) x 1 matrix). This isa C* action and is transitive; the proof is left to
the exercises. The isotropy subgroup H of [(1, 0, ..., 0)] is the set of elements
(a;;) of Sl(n + 1, R) with a;, # 0 and all other entries of the first column
equal to zero. It is easily seen that H is a closed, Lie subgroup of G.

The non-Euclidean (or hyperbolic) plane H? will be discussed in the last
chapter. It is equivalent to S/(2, R)/O(2) in the sense of Theorem 9.3.

One of the more important uses of these ideas and of Theorem 9.2 is the
relatively simple way it provides for establishing that certain sets are C*
manifolds in a natural way. The best illustrations are the Grassman mani-
folds G(k,n) of k-planes through the origin in R". It was proved in
Section II1.2 that these were manifolds, but the proof was quite complicated
and only sketched at some points. This same result may be shown as follows.
The group Gl(n, R) acting in the natural manner on R" is transitive on
k-planes through the origin. This is an immediate consequence of the fact
that it is transitive on n-frames: given {v,, ..., v,} any linearly independent
set of vectors, then there is a uniquely determined, nonsingular, linear trans-
formation taking it to any second linearly independent set {w,,..., w,}.
However, if Gl(n, R) is transitive on n-frames, it is necessarily transitive on
k-frames since each set of k linearly independent vectors can be completed to
a basis. It follows that Gl(n, R) acts transitively on the set M = G(k, n) of
k-planes through 0. If the isotropy subgroup H of some point of M, that is, a
k-plane through 0, is a closed Lie subgroup, then Gl(n, R)/H is a C* mani-
fold by Theorem 9.2 and is in natural one-to-one correspondence with M.
Thus we may take on M the topology and C® structure which makes this
correspondence a diffeomorphism. However, *H is such a subgroup, for the
k-plane of R" spanned by the vectors e, =(1,0,...,0), ...,
e,=(0,...,1,0,...,0) is carried onto itself by the subgroup H < Gl(n, R)
consisting of matrices of the form

- (19
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where A4 e Gl(k, R), Be Gl(n — k, R), and C is an arbitrary k x (n — k)
matrix. Therefore the Grassmann manifold G(k, n) is indeed a C”* manifold.
This method is frequently used in practice to show that some rather com-
plicated objects can be endowed with the structure of a differentiable mani-
fold (uniquely, according to Theorem 9.3). It may be summarized as follows:

(9.6) IfGisa Lie group and G acts on a set X transitively in such a way that
the isotropy subgroup of some point a of X is a closed Lie subgroup, then there
exists a (unique) C* structure on X such that the action is C*.

This principle as well as other results of this section are susceptible to
further refinements and weakening of hypotheses (see, for example. Helga-
son [1, Chapter I, Sections 3 and 4]). Of course, our treatment above of
G(n, k) depends on Theorem 9.2, which we are now ready to prove.

Proof of Theorem 9.2 The topology on G/H is given: it is uniquely
determined by the requirement that n: G - G/H be open and continuous.
Moreover i: G x G/H — G/H is a continuous action. For let U be an open
set of G/H, then we will show that A~ '(U) is open. Let W be the subset of
G x G such that every pair (y,.g,)e W has its product g, g, in n~}(U),
which is an open subset of G. W is open since it is the inverse image of
n~'(U) under the continuous mapping (¢,. g2) — ¢ g - The natural map-
ping of G x G — G x G/H given by (g,.9,) = (9, n(g)) is open so it car-
ries W onto an open set which is exactly 2~ }(U).

We now need to use Frobenius’ theorem, which we apply to the left-
invariant distribution A determined by A, = T,(H). As a basis A has any
basis of left-invariant vector fields in l), the Lie algebra of H viewed as a
subalgebra of gq; and the integral manifolds of A are exactly the left cosets
gH—as remarked in the previous section. It follows that there is a cubical
neighborhood of ¢ whose intersections with the cosets gH are a union of
slices. To complete the proof we need a sharper result given by the following
lemma.

(9.7) Lemma [f H is a Lie subgroup of G which is closed as a subset, then
each coset gH is a submanifold, and there is a cubical neighborhood U, ¢ of any
g € G such that for each coset xH either xH ~ U is empty or a single (con-
nected) slice.

Proof That H and each of its cosets is a submanifold is an immediate
consequence of the sccond part of the statement, which asserts, in particular,
that H and its coscts have the submanifold property (Definition II1.5.1).
Since each coset is un integral manifold of the distribution A, as we saw in
the previous section. cvery g€ G has a cubical coordinate neighborhood
with ¢(g) = C(0). m = dim G, whose slices—determined by fixing the last
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m — n coordinates (n = dim H = dim A)—are integral manifolds, each an
open set of a coset xH of H. We must now verify that U may be taken
sufficiently small that each coset xH ~ U is empty or is a single slice. Since A,
integral manifolds, and so on, are invariant under left translation by ele-
ments of G it is enough to check this for the special case g = e. Moreover, if
U’, ¢’ is a cubical neighborhood of e whose slices are cosets of H, and if
U’ n H consists of a single slice, then we need only choose U <= U’ small
enough that U~ 'U < U’ and so that U, ¢ = ¢’ | U is also a cube in order to
complete the proof. Thus if x, ye U are on distinct slices of U but belong to
the same coset, that is, xH = yH, then y~'x and e are elements of U' n H
but lie on distinct slices (because L, _, is a diffeomorphism and carries slices
into slices). Since this contradicts our assumption about U’, it cannot
happen. It remains to show the existence of U’, ¢’. We begin with an arbi-
trary cubical neighborhood V,y of e, ¥ (V)= C"(0) whose slices
S@*!,....d")={qeV|xi(q)=d, j=n+ 1, ...,m} are integral mani-
folds. We saw in the proof of Theorem 8.5 that the collection of distinct slices
on H, that is, V ~n H, is countable and hence corresponds to a countable set
of points {(a"* . ..., a™)} of the cube C§~"(0). Restricting slightly to a closed
cube V' =y~ 1(C5(0)), 6 > &' > 0, we may suppose this countable set is
closed, for H is closed and V' n H is closed. Since a closed countable subset
of R™™" must contain an isolated point (Exercise 8) it follows that H n V’
contains an isolated slice. By translation invariance we may suppose this to
be the slice through e. Then it is possible to choose ¢, 6’ > ¢ > 0, so that
Y~ '(Cr0)) = U’ and ¢' = ¥ | U’ have exactly the property we have seen is
needed: H n U’ is a single slice and contains the identity e. This U’, ¢’ as we
have seen enables us to complete the proof of the lemma.t 1

Resuming the proof of Theorem 9.2, we restrict our discussion entirely to
cubical neighborhoods U, ¢ of the type described above with o(U) = C™(0)
and suppose that in the local coordinates x', ..., x", x"*!, ..., x™, the slices
obtained by holding x"*!, ..., x™ fixed are the intersections of cosets gH
with U. Let A = {qe U|x'(¢q) = --* = x"(¢) = 0} and

WA C""0)c R™"

be defined by ¥'(q) = (x""'(g), ..., x™(¢)); A is a C* submanifold of G,
contained in U, and y is a diffeomorphism. By our choice of U, ¢ we see that
A meets each coset of H which intersects U in exactly one point. Therefore, =
maps A homeomorphically onto an open subset V of G/H. We denote the
inverse by o; thus ¢: V' — G is a continuous section with a(V) = A. Suppose
that U, ¢ and U, § as just chosen are such that ¥ = n(4) and V = n(4)

t As remarked earlier (compare Remark 111.6.19), the conclusion follows from the much
weaker hypothesis: H is an algebraic subgroup and a closed subset of G.
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have common points. The set ¥ n ¥ is open and it is not difficult to verify
that the corresponding subsets W = o(V n V) and W = &(V n V) are dif-
feomorphic with respect to the natural correspondences & o n: W — W and
ocom: W > W (Exercise 4). It follows that the collection of open sets
V = n(A) over all U, ¢ of the type above together with the homeomor-
phisms Y =y’ o a: V - CI' "(0) determine a C® structure of the type
required by the conclusions of the theorem. The uniqueness follows from
requirements (i) and (ii). For if we have two differentiable structures on G/H,
we see that the identity is a diffeomorphism as follows: factor it locally into a
section a: V — G of the first structure followed by projection z, which is C*
onto the second structure. Thus the identity is a C* mapping of G/H with
structure one to G/H with structure two since this holds on each domain V.
But the converse is also true, so the structures agree. Finally 1:G x G/H
- G/H is C™ since it may be written on the domain V of a section as
Mg, xH) = n(go(x)). This completes the proof of Theorem 9.2. |

We now prove the second principal result.

Proof of Theorem 9.3 F:G — M is C* since F(g) = 6(g, a) and 0 is C*
by assumption. From

FoL,(x)=F(gx) =0, - F(x),

from the chain rule, and from the fact that both L, and 0, are diffeomor-
phlsms we see that the rank of F is the same at every ge G It follows that
F~'a) = H is a closed submanifold (Theorem II1.5.8) and satisfies the
hypotheses of Theorem 9.2. At e we have F,: T,(G) — T,(M); but each
X, e T,(G) is the tangent vector at ¢t = 0 to the curve g(t) = exp tX so that
the vector F,(X,) is the tangent vector to F(exp tX) = O(exp tX,a) at a
(which corresponds to t = 0). Since 0 restricted to g(t) = exp tX is an action
of R on M, then by Theorem 3.6 F,(X,) is zero if and only if
O(exp tX, a) = a for all 1, that is, exp tX = H, or X e T(H) the subspace of
T,(G) corresponding to the subgroup H. Hence ker F,, = T,(H) = ker n,,
and, as noted, dim ker F is constant on G as is dim kcr m, . Since F is onto,
it follows from Theorcm I1.7.1 that dim M = dim G — dlm H = dim G/H.
Now consider F: G/H - M. Let ge G/H and V, ¢ a section defined on a
neighborhood V of ¢. Since g is C* and F |V = F o g, we see that Fis C* in
a neighborhood of every point, hence C* on G/H. We know that F is
one-to-one and onto from set-theoretic considerations and if ker F, = {0},
that is, rank F = dim G/H = dim M everywhere, then F must be a diffeo-
morphism. Let g be any point of G/H and suppose g = n(g). Then using
F = F - n and the chain rule we see that F,: T,(G) - Tx,(M) is given also
by F, o m,. Since dim ker F, = dim ker =, we must have dim ker F, = 0,
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as we wished to prove. The fact that F 7 = 0, F was already noted: both
44 and 0, are diffeomorphisms. the former by Theorem 9.2 and the latter by

hypothesis. This completes the proof of Theorem 9.3. ]

Exercises

. Verily in detail statements (i)-(iii) at the beginning of the section con-
cerning the action of G on G/H ;and that if G acts transitively on a set X,
then the mapping F: G/H — X defined above is in fact one-to-one, onto,
and satisfies F 4, =0, F as claimed.

2. Check that the isotropy subgroup H < Gl(n, R) defined in discussing
G(n, k) is, in fact, closed and a Lie subgroup.

3. A sequence of n subspaces of R, V,=R">V,_>- >V, with
dimV,=j,j=1, ..., n is called a flag of R". Verify that the natural
action of Gl(n, R) on R" is transitive on the set of flags M and use this to
obtain the structure of a C” manifold on M. What is dim M?

4. Verily that the sets W, W corresponding 1o the overlapping part V n V
of the domains of two sections V, ¢ and V, & as defined in the proof of
Theorem 9.2 are diffeomorphic. [Note that translations on G by ele-
ments of H are diffetomorphisms and have the property that - R, = n.
They may be used to bring a pair of corresponding points p, p of W, W
into coincidence.]

5. Let G be a Lie group and H a closed Lie subgroup which is normal in G.
Then show that G/H is a Lie group with the C* structure of
Theorem 9.2 and n: G —» G/H is a Lie group homomorphism.

6. Let G, and G, be a Lie group and F: G, - G, a Lie group homomor-
phism. Then show that the kernel of F is a closed Lie subgroup and if F
is onto, then G, = G /ker F.

7. Show that the subgroup O(n) of Gl(n, R) acts transitively on the Grass-
mann manifold G(k, n) and find the isotropy subgroup of the k-plane in
R" spanned by e,. .... e,, the first k vectors of the standard orthonormal
basis (compare the remarks preceding Example 111.7.4).

8. Prove that a closed countable subset of a Euclidean space R* has an
isolated point.

Notes

For those readers who wish to delve somewhat further into some of the important topics
taken up in this chapter and. especially. to find complete proofs of the basic existence theorem
for systems of ordinary differential equations, the existence of maximal integral manifolds for
involutive distributions, and more details on homogeneous manifolds, a comment on some of
the references may be helpful.

Theorem 4.1 and the material of Sections 3 5§ may be found in many places. A concise and
very straightforward treatment of this theorem and related material is to be found in the book



172 IV VECTOR FIELDS ON A MANIFOLD

of Hurewicz [1]. It is also very elegantly treated (as is Frobenius’ theorem and the inverse
function theorem) in Dieudonné [1, Chapter X]. Although it is well along in the book, the basic
ideas can be followed without reading through all of the previous chapters. For a treatment
which is specially adapted to differentiable manifolds (including local one-parameter group
action) and is beautifully done see Lang [1]; the author found all of these sources very helpful.
Both Dieudonné and Lang treat the subject from a very general point of view. that of Banach
spaces and manifolds modeled on them. Although this may disturb some readers, it will appeal
to others. In any event, it is not difficult to reduce the level of generality—the ideas and proofs
are very clear. Another, recent source is Hirsch and Smale [1].

For Frobenius' theorem, particularly from the global point of view, as well as other topics
such as Lie groups and the fundamentals of homogeneous spaces, every reader should be
acquainted with the classical book by Chevalley [1], which greatly influenced all subsequent
treatments. The recent book by Warner [1] and notes of Spivak [2] should also be helpful to the
reader who wants to fill in gaps or just to read another (and more complete) treatment of the
material of Sections8 and 9. Finally, the books by Helgason[1] and Kobayashi and
Nomizu [1] go much further into the ramifications of subjects treated here (especially
Section 9). Many of these books have rather complete bibliographies from which the reader can
search out further sources. The theorem of Cartan on closed subgroups is given by
Chevalley [1], Helgason [1], and Hochschild [1].

Appendix Partial Proof of Theorem 4.1

Proof (Part (I) of the existence theorem (Theorem 4.1) for ordinary
differential equations) We are given n functions f*(t, x) defined and of class
C'onanopensubsetl, x Uc R x R* I, = {—¢ <t <¢&¢>0). Wemust
show that for each x € U there is a neighborhood V and a 6 > 0 such that for
each a e V there exist unique functions x'(t), —d < t < J satisfying

dx’ ;
(*) it = f(t, x(1))
and
(+) x"(O) =da, i=1,...,n

First note that if x'(), i = 1, ..., n, are continuous functions defined for
|t| < & and they satisfy

xi(t)=d" + L:f"(r, x(t)) dr,

then by the fundamental theorem of calculus they are of class C*! at least and
satisfy both (x) and (x+). From (x) it then follows that they must be of class
C"*1! at least, since their derivatives are of class C".

We may write this set of integral equations for x!(¢), ..., x"(t) as an
equation in n-tuples

x(t)=a+ jo £t (1)) dr.
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For a given xy,e U we choose r, 0 < r < 1 such that B,,(x,) = U and an ¢
satisfying ¢ > ¢ > 0, so that I, < I,. Thus f(t, x) are of class C", r > 1, on
the compact set I,, x Bs,(x,); therefore both the given functions £ and their
derivatives are bounded on this set. It follows that we may choose M > 1
such that both M > sup || f(t, x)|| and M|x — y| > | f(z, x) = f(t, y)|| for
all te I, and x, y € By,(x,). The last inequality results from the mean value
theorem and the continuity of the derivatives. Choose a positive & such that
d < r/M2.

We shall prove the theorem with this 4 and with V' = B,(xs)—denoted B,
in what follows. Let a € B, and let .# be the collection of all continuous maps
o(t) = (' (1), ..., ¢"(1)) of Iy into B,,(a) satisfying x(0) = a. By virtue of the
preceding comments it is enough to show that there is a unique member of
this collection satisfying

0 =Llo)=a+ | (o) dr

in order to finish the proof. This will be done by provingthat L: # —» F isa
contracting mapping on a complete metric space and applying
Theorem 11.6.5; we have:

(1) # is a complete metric space with d(p, ) = sup,;, [|e(t) — ¥(1)|
since this is the topology of uniform convergence of continuous functions on
a compact space.

(2) Ifee.7,then L(p)e .# so that L maps .¥ to .#. It is clear that
L(¢p) is continuous; in fact, it is at least C', and when ¢ = 0 the function
L(p) has the value a. It is only necessary to check that if |¢| < 4, then
| L(e)(t) — a| < 2r. This results from

L)) — af = |

[ S o@)de| < [ 1/ (o) de < M5 < g <

(3) Finally, L is contracting. Let ¢, € #,
ILlo) = LW < [ 1z o) = /(= w(2)] do

< oM sup|o(r) — y(1)]

tely

r
< oM d(o. ¥) = (2 ).
But r < 1 and M > 1 so that we have

[L(@) — LW)|| < k d(e. ¥), where 0 <k < 1.

By the contracting mapping theorem there is a unique ¢(r) satisfying the
conditions. This completes the proof.



V TENSORS AND TENSOR FIELDS ON MANIFOLDS

With some minor exceptions this chapter contains all of the basic material on tensor ficlds
on manifolds which is used in the succeeding chapters. We limit ourselves to discussing covar-
iant tensors since we will rarely need any other type—except vector fields; any other cases will
be developed as needed.

A covariant tensor on a vector space V is simply a real-valued function ®(v,,...,v,) of
several vector variables v ,...,v, of ¥, linear in each separately (that is, multilinear). The
number of variables is called the order of the tensor. A tensor field @ of order r on a manifold M
is an assignment to each point pe M of a tensor ®,, on the vector space T (M) which satisfies a
suitable regularity condition (CY, C", or, C*) as p varies on M. Sections 1 and 2 discuss the two
simplest examples: r = 1 corresponding to functionals on a vector space and r = 2 correspond-
ing to bilincar forms on a vector space. The latter includes the important case of a Riemannian
metric, which is a covariant tensor field ® of order 2 with the property that @, is an inner
product on T(M) for every pe M. It is the added structure given by such a tensor which enables
us to measure distances, angles, volumes, and so on, on a manifold M and thus to carry over
large portions of Euclidean geometry to abstract manifolds. This concept was foreshadowed in
the work of Gauss for surfaces, but was discovered and expounded by Riemann for whom the
mctric tensor was named. Many of the consequences of Riemann’s discovery are treated in
Chapters Vil and VIII; only one or two of them here. In particular, in Section 3 we show that a
Riemannian metric gives rise to a metric d(p, g) on M; and in Section 7 we show that it defines a
volume element on M.

In Section 4 the basic notion of partition of unity is introduced. This is an indispensable
tool used to piece together functions, mappings, forms, vector and tensor fields and other
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objects, which can be defined locally on a coordinate neighborhood (that is, on an open subset
of R™), to obtain a globally defined objects on M. The first application is to prove the existence
of a Riemannian metric on any C* manifold. Several other applications are given here and in
the remainder of the chapter.

In Section 5 covariant tensor fields are discussed in more generality and in particular we
treat the case of symmetric and alternating tensors—tensors which are unchanged (respectively,
change sign) when two variables are interchanged. Of these two, the alternating are the most
important to us since they correspond to exterior differential forms which we use frequently in
the next chapters. In Section 6 we see that tensors can be added and multiplied (like any
functions to the real numbers) resulting in an algebra of tensors. A slight modification of the
product gives the exterior product of alternating forms. When we add to this the basic notion of
derivatives of such forms, which is defined in the last section, we have all of the basic ingredients
for the calculus of exterior differential forms on M. The exterior forms on M form an algebra
A(M) on which differentiation is a linear operator. As we shall see, this algebra plays a basic role
in the geometry of manifolds.

(Sections 6-8 are used in an essential way in Chapter VI, but much of Chapter VII and
parts of Chapter VIII may be read without knowledge of differential forms.)

1 Tangent Covectors

In this chapter we suppose that V¥ is a finite-dimensional vector space
over R and let V* denote its dual space. Then ¥* is the space whose elements
are linear functions from V to R; we shall call them covectors. If € V*, then
a: V — R, and for any ve ¥, we denote the value of ¢ on v by a(v) or by
v, 6. Both notations are useful. Recall that addition and multiplication by
scalars in V* are defined by the equations

(01 + 62)(¥) = 01(¥) + 03(v),  (ao)(v) = a(a(v)),

giving the values of o, + 0, and ag, a€ R, on an arbitrary ve V, the right-
hand operations taking place in R.

Knowledge of linear algebra is assumed, but by way of review we men-
tion three frequently used facts.

(i) If F.: ¥V - W s a linear map of vector spaces, then it uniquely
determines a dual linear map F*: W* — V* by the prescription

(F*o)(v) = a(F,(v)) or (v, F*(a)) = (F,(v), o).
When F, is injective (surjective), then F* is surjective (injective).

(i) If ey ...,e, is a basis of V, then there exists a unique dual basis
w', ..., " of ¥* such that w'(v;) = &;. (The symbol &} is zero if i # jand +1
ifi=j)

If ve ¥, then w'(v), ..., ®"(v) are exactly the components of v in the basis
e, ..., e, In other words v =", w/(v)e;. This is a consequence of the
preceding definitions (see Exercise 1).
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Observe that in property (i), the definition of F* does not require the
choice of a basis; therefore F* is naturally or canonically determined by F,.
According to (ii), the vector spaces ¥, V'* have the same dimension, thus
they must be isomorphic. There is no natural isomorphism; however, we do
have the following property:

(iii) There is a natural isomorphism of ¥ onto (V*)* given by
v — (v, >, that is, v is mapped to the linear function on ¥* whose value on
any g€ V* is (v, g). Note that (v, ¢) is linear in each variable separately
(with the other fixed).

This shows that the dual of ¥* is V itself, accounts for the name “dual”
space, and validates the use of the symmetric notation <v, ¢) in preference to
the functional notation a(v). We shall see in the next section that when
further structure is assumed, for example, an inner product on V, then there
is an associated natural isomorphism of ¥ and ¥*; thus V, V*, and V** can
all be identified in this case. This is apt to be more a source of confusion than

Joy.

Covectors on Manifolds

Let M be a C* manifold and assume pe M. We denote by T¥(M) the
dual space to T,(M), thus a,€ T¥(M) is a linear mapping o,: T¥(M) - R
and its value on X ,e T,(M) is denoted by a,(X ) or (X, g,>. Given a basis
E,,. ..., E,, of T(M), there is a uniquely determined dual basis w}, ..., @}
satisfying, by definition, wi(E;,) = J;. The components of g, relative to this
basis are equal to the values of g, on the basis vectors E,,,....E,,, thus

nps
n
G, = .Zl an(Eip)w‘n;
;S

this is the dual statement to property (ii) above.

Just as we defined a vector field on M, so may we define a covector field:
It is a (regular) function g, assigning to each pe M an element a,, of T%(M).
As with vector fields, we denote such a function by g, 4, ... and we denote by
Gps Ay, ... its value at p, that is, the element of T}(M) assigned to p. If g is a
covector field and X is a vector field on an open subset U of M, then a(X)
defines a function on U: to each pe U we assign the number a(X)(p)
= d,(X,). [Note: We often write a(X,) for 6,(X,) if o is a covector field].
These remarks enable us to state the formal definition.

(1.1) Definition A C’-covector field ¢ on M,r > 0, is a function which
assigns to each pe M a covector g,€ T5(M) in such a manner that for any
coordinate neighborhood U, ¢ with coordinate frames E,, ..., E,, the func-
tions a(E;), i = 1,..., n, are of class C" on U. For convenience, “covector
field” will mean C*-covector field.
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We remark that the following (apparently stronger) regularity condition
could be used to replace the requirement of the definition—thereby avoiding
the use of local coordinates.

(1.2) Suppose that o assigns to each pe M an element o, of THM). If o is of
class C', then for any C*-vector field X on an open subset W of M the function
a(X) is of class C" on W, and conversely.

To see this we take a covering of W by coordinate neighborhoods of M
(whose domains are in W); let U, ¢ be such a neighborhood. Then
X =Y o'E;on U, where o’ are C* on U. Thus 6(X) = ) a‘a(E;)on U and is
Crif o(E,), ..., 6(E,) are. Hence the condition just given implies a(X) is of
class (" on a collection of open sets covering W and so on W itself. The
converse is obvious.

Note that if E,, ..., E, is a field of (C*) frames on an open set U = M,
then the dual basis at each point of U defines a field of dual bases ', ..., "
on U satisfying '(E;) = 0%. We call this a field of coframes—coordinate
coframes if E,, ..., E, are coordinate frames. The w!, ..., »" are of class C*
by the criterion just stated, and covector field ¢ is of class C" if and only if for
each coordinate neighborhood U, ¢ the components of a relative to the
coordinate coframes are functions of class " on U.

(1.3) Remark It is important to note that a C"-covector field defines a
map of X(M) — C"(M) which is not only R-linear but even C"(M)-linear.
More precisely. if /. ge C"(M) and X and Y are vector fields on M, then

a(/X + gY) = fa(X) + ga(Y).

for these functions are equal at each pe M (as the reader should verify).

(1.4) Example If fis a C* function on M, then it defines a C*-covector
field, which we shall denote df, by the formula

Ky dfyy=X,f o dX,)=X,f

For a vector field X on M this gives df (X) = X/, a C* function on M. This
covector field df'is called the differential of [ and df,, its value at p, the
differential of f at p. In the case of an open set U — R", we verify that it
coincides with the usual notion of differential of a function in advanced
calculus, and. in fact, makes it more precise. In this case the coordinates x' of
a point of U are functions on U and, by our definition, dx' assigns to each
vector X at pe U a number X, x/, its ith component in the natural basis of
R". In particular {&/ox/, dx'y = éx'/dxi = &' so we see that dx', ..., dx" is
exactly the field of coframes dual to ¢/dx!, ..., 3/dx". Now if fis a C*
function on U, then we may express df as a linear combination of
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dx', ..., dx". We know that the coefficients in this combination, that is the
components of df, are given by df (0/0x’) = 9f/0x". Thus we have
o, f

Suppose ae U and X, e T,(R"). Then X, has components, say, h', ..., h"
and geometrically X, is the vector from a to a + h. We have

df(X,) (Zh‘ )f Zh(ax,),

in particular, dx(X,) = K, that is, dx' measures the change in the ith coor-
dinate of a point which moves from the initial to the terminal point of X,.
The preceding formula may thus be written

of ) of n

a0 = (35) xex)+ o+ (7)) aeec)
This gives us a very good definition of the differential of a function f on
U < R df'is a field of linear functions which at each point a of the domain
of f assigns to the vector X, a number. Then X, can be interpreted as the
displacement of the n independent variables from a, that is, it has g as initial
point and a + h as terminal point, and df (X,) approximates (linearly) the
change inf between these points. [Compare this with our earlier discussion in
Section II.1 of differentiability of a function; the expression above has mean-
ing even if fis not C®, in fact exactly when f is differentiable in the (weak)
sense of Section I1.1.]

Covector Fields and Mappings

We shall give further examples of covector fields presently. First,
however, we must study what happens when we map one manifold to an-
other. Let F: M — N be a smooth mapping and suppose p € M. Then, as we
know, there is induced a linear map F,: T,(M) — T;,(N). As we have
pointed out in (i) at the beginning of this sectlon F, determines a linear map
F*: T}, (N) — T}M), given by the formula

(1.5) FHorp)(X,) = GF(p)(F*(Xp))'

In general, F, does not map vector fields on M to vector fields on N. It is
surprising, then, that given any C'-covector field on N, F* determines
(uniquely) a covector field of the same class C" on M by this formula. We
state this as a theorem.
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(1.6) Theorem Let F: M — N be C* and let ¢ be a covector field of class
C" on N. Then formula (1.5) defines a C'-covector field on M.

Proof If g is the covector field on N, then for any p e M, there is exactly
one image point F(p) by definition of mapping. It is thus clear that F*(g) is
defined uniquely at each point of M. Now suppose that for a point p, e M we
take coordinate neighborhoods U, ¢ of py and V, y of F(p,) so chosen that
F(U) < V. 1f we denote the coordinate on U by (x', ..., x™) and those on V
by (y',...,)"), then we may suppose the mapping F to be given in local
coordinates by

)r"=f"(x1,...,x'"), i=l,...,n.

Let the expression for g on V' in the local coframes be written at ge V as
n .
aq = Z a,(q)d); ’
i=1

where (I)“‘, ..., @} is the basis of T;‘(N) dual to the coordinate frames. The
functions a'(g) are of class C" on V by hypothesis. Using the formula defining
F*, we see that if p is any point on U and g = F(p) its image, then

(F*(U))p(Ejp) = UF(p)(F*(Ejp)) = Z ai(F(P))d)l.V(p)(Ft(Ejp))'
However, we have previously in Theorem 1V.1.6 obtained the formula

n (‘3}”‘ - .

Fullip) = k§1 Oxt Egp. Jj=1...m
the derivatives being evaluated at (x'(p)...., x"(p)) = ¢(p). Using
@'(E;) = 9}, we obtain

(F*0)u(Ejp) = i a,.(F(p))(gi;) @

As p varies over U these expressions give the components of F*(a) rela-

tive to w?, ..., w™ on U, the coframes dual to E|, ..., E,,. They are clearly of
class (" at least, and this completes the proof. ]

The formulas are themselves of some interest and may be used for
computation, so we shall display them in a corollary.

(1.7) Corollary Using the notation above, let ¢ = Y7_, a;@ on V and
F*(o) = Z}":‘, B; «’ on U, where a; and f3; are functions on V and U, respec-
tively, and oy, o/ are the coordinate coframes. Then

m AL n (‘)yi

FHa')= Y ({'ijf and ;=) LY i=1...n

j=1 i=1
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The first formulas give the relation of the bases; the second those of the
components. If we apply this directly to a map of an open subset of R™ into
an open subset of R", these give for F*(dy') the formula

(18) F*d)) = i a—y i=1,...n

(1.9) Remark Suppose that we apply the above considerations to the
diffeomorphism ¢: U — R" of a coordinate neighborhood U, ¢ on M. Let
V < R" denote ¢(U) and dx', ..., dx" the differentials of the coordinates of
R" that is, the dual basis to 8/0x!,...,3/0x". By definition we have
¢, '(0/0x") = E; and hence PL(E) = 0/6x for each i. Further, the definition
of F, above gives for ¢, (dx')

CE;, @, (dx')y = (@, (E,), dx'> & .

It follows that ¢,(dx') = o', i = 1,..., n, the field of coframes on U dual to
the coordinate frames E,, ..., E,.
There is a potential source of confusion in notation here. The coordin-

ates x', ..., x" can be considered as functions on U and as such have differen-
tials dx' defined by

(X, dxy = Xx',

the ith component of X in the coordinate frames. In particular (E;, dx') =
E;x' = §i,so thatdx',..., dx" are dual to E,, ..., E, and therefore dx’ = o',
i =1,...,n. Combining this with the formula above gives dx' = @*(dx’),
which is nonsense unless we are careful to distinguish x' as (coordinate)
function on U = M, on the left, from x' as (coordinate) function on p(U) =
V < R", on the right (cf. Remark 111.3.2).

(1.10) Example We may apply Theorem 1.6 to obtain examples of covec-
tor fields on a submanifold M of a manifold N. Let i: M — N be the inclu-
sion map and suppose o is a covector field on N. Then i*(s) is a covector
field on M called the restriction of ¢ to M. It is often denoted a,, or simply o.
Recalling that for each p e M, T,(M) is identified with a subspace of T,(N) by
the isomorphism i, , we have for X e T, (M)

om(X,) = (*a)(X,) = a(i (X)) = a(X,)

The last equality is the identification.
As an example, let M < R", and let ¢ be a covector field on R", for
example take ¢ = dx'. Then ¢ restricts to a covector field g,, on M. Note
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that in this example dx' is never zero as a covector field on R", but on M it is
zero at any point p at which the tangent hyperplane T,(M) is orthogonal to
the x'-axis.

Exercises

1. Verify properties (i}-(iii) of ¥, V'*, and V**,
[For (ii), suppose that v = «,e, + -*- + a,e, and use the equality

v,y = Cajey + - + a, e, 0]

2. Let G = Gi(n, R) and define n* covector fields 9;;, 1 < i,j < n,on G by
;= Dr=1 Vix dx,j, where Y = (y,;)) is the inverse of X = (x,;). Show
that these forms are invariant under R ,: G — G, right translation by A.
Further show that {c,;} is a field of frames on G.

3. Letfi,....f,,r < n be C* functions on an open set U of a manifold M.
Prove that there are coordinates V, i in a neighborhood of pe U such
that f,,...,f, are among the coordinate functions if and only if

df\, ..., df, are linearly independent at p.

4. Determine the subset of R? on which ¢! = x!dx' + x? dx* and
o2 = x?dx' + x! dx? are linearly independent and find a frame field
dual to a', a2 over this set.

5. Show that the restriction of 6 = x! dx? — x?dx! + x3dx* — x* dx® of
R* to the sphere S* is never zero on S°.

6. Show that the set .7 '(M) of all covector fields on M, like the set ¥(M) of
all vector fields on M is a C*(M) module. Prove also that g € .7 (M) if
and only if ¢ is a C*(M)-linear mapping from ¥(M) to C*(M).

7. Try to determine a C* manifold structure on T*(M) = (), s T7(M)in
such a fashion that a covector field 6 on M is a C* mapping from M into
T*(M) and so that the natural mapping = taking each g,€ T*(M) to p
is C™*.

2 Bilinear Forms. The Riemannian Metric

In the case of a vector space ¥ over R a bilinear form on V is defined to be
a map ®: ¥ x ¥V — R that is linear in each variable separately, i.e., for
a, feRand v, v, v,, w,w, w,e V,

Dav, + vy, w) = ad(v,, w) + BD(v, , w),
O(v, aw; + fw,) = ad(v, w;) + SD(v, w,).

A similar definition may be made for a map ® of a pair of vector spaces
V x W over R. We will not pursue this generalization at the moment except
to point out that the map assigning to each pair ve V, o ¢ ¥* a number
(v, 6, as discussed in the preceding section, is an example.
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Bilinear forms on V are completely determined by their n? values on a
basis e,...,e, of V. If ;= ®(e,e;), 1 <ij<n, are given and if
v=) Me;, w=) ple;are any pair of vectors in ¥, then bilinearity requires
that

O(v, w) = Y a Al
i,j=1

Conversely, given the n x n matrix 4 = (a;;) of real numbers, the for-
mula just given determines a bilinear form ®. Thus there is a one-to-one
correspondence between n x n matrices and bilinear forms on V once a
basis ey, ..., e, is chosen. The numbers «;; are called the components of ®
relative to the basis.

We will mention some special cases which will be of interest to us. A
bilinear form, or function, is called symmetric if ®(v, w) = ®(w, v), and skew-

symmetric if ®(v, w) = —®(w, v). It is easily seen that regardless of the basis
chosen, these correspond, respectively, to symmetric, '4 = 4, and to skew-
symmetric, '4 = — A4, matrices of components.

A symmetric form is called positive definite if ®(v, v) > 0 and if equality
holds if and only if v = 0; in this case we often call ® an inner product on V.
We shall be particularly interested in this case in the succeeding chapters; a
vector space with an inner product is called a Euclidean vector space since @
allows us to define the length of a vector, ||v|| = (®(v, v))!/2, and the angle
between vectors, as was remarked in Section I.1.

(2.1) Definition A field ® of C'-bilinear forms, r > 0, on a manifold M
consists of a function assigning to each point p of M a bilinear form ®, on
T,(M), that is, a bilinear mapping ®,: T,(M) x T,(M) — R, such that for
any coordinate neighborhood U, ¢ the functions «;; = ®(E;, E;), defined by
® and the coordinate frames E,, ..., E,, are of class C". Unless otherwise
stated bilinear forms will be C*. [To simplify notation we usually write
®(X,, Y,) for ,(X,, Y,)]

The n? functions a;; = ®(E;, E;) on U are called the components of ® in
the coordinate neighborhood U, ¢. Properties similar to those of covectors
hold in this case also. As in (1.2) if @ is a function assigning to each pe M a
bilinear form, then @ is of class C" ifand only if for every pair of vector fields
X, Y on an open set U of M, the function ®(X,Y) is C" on U. As in
Remark 1.3 we have the fact that ® is C*(U)-bilinear as well as R-bilinear:
Je C*(U) implies ®(fX, Y) = f®(X, Y) = ®(X, fY) (Exercise 2).

Suppose F,: W — V is a linear map of vector spaces and @ is a bilinear
form on V. Then the formula

22)  (F*O)v W) = O(F,(v). F,(w)

defines a bilinear form F*® on W. We have the following properties:
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(i) If ® is symmetric (skew-symmetric), then F*® is symmetric
(skew-symmetric).

(i) If @ is symmetric, positive definite, and F, is injective, then F*® is
symmetric, positive definite.

In particular, this latter applies to the identity map i, of a subspace W
into V. In this case i*® is just restriction of ® to W:
((*®)(v, w) = D(i,v, i,w) = O(v, w).

Now let F: M — N be a C* map and suppose that @ is a field of bilinear
forms on N. Then just as in the case of covectors this defines a field of
bilinear forms F*® on M by the formula for (F*®), at every pe M:

(F*®)(X,, Y,) = O(F (X,), F (Y,))

We state this in the form of a theorem.

(2.3) Theorem Let F: M — N be a C® map and ® a bilinear form of class
C" on N. Then F*® is a C'-bilinear form on M. If ® is symmetric (skew-
symmetric), then F*® is symmetric (skew-symmetric).

Proof The proof parallels those of Theorem 1.6 and Corollary 1.7 and
we analogously obtain formulas for the components of F*® in terms of those
of ®. We suppose U, ¢ and V, y are coordinate neighborhoods of p and of
F(p) with F(U) = V. Using the notation of Theorem 1.6 and Corollary 1.7
we may write f;(p) = (F*®)(E;,, E;,) = ®(F,(E;,), F(E;,)). Applying
Theorem IV.1.6 as before, we have

20y Oy~ ~
Biilp) = Z Oﬁ 0;, O(Er(py » Eipp)-

s.t=1

This gives the formula

dy* 0y' .
@) B = T s(FE) Isijsm
for the matrix of components (f;;) of F*® at p in terms of the matrix (ay,) of
® at F(p). The functions f;; thus defined are of class C" at least on U which
completes the proof, except for the statements about symmetry and skew-
symmetry which are obvious consequences of (i) above. |

(2.5) Corollary If F is an immersion and ® is a positive definite, symmetric
Jorm, then F*® is a positive definite, symmetric bilinear form.

Proof All that we need to check is that F*® is positive definite at each
peM. Let X, be any vector tangent to M at p. Then F*®(X,, X,) =
O(F,(X,) F,(X,)) = 0 with equality holding only if F, (X ,) = 0. However,
since F is an immersion, F_(X,) = 0 if and only if X, = 0. |
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(2.6) Definition A manifold M on which there is defined a field of sym-
metric, positive definite, bilinear forms @ is called a Riemannian manifold and
® the Riemannian metric. We shall assume always that @ is of class C™.

The simplest example is R" with its natural inner product

- ini i 0 . _ i 6
CD,,(X,,,Y“)—’_;a/i where X—Zaai and Y—Zﬁ(-;x.'-
At each point we have ®(0/0x', 9/0x’) = §;;so that the matrix of components
of @, relative to the standard basis, is constant and equals I, the identity

matrix. It follows that @ is C*.

Corollary 2.5 enables us to give many further examples. Any imbedded
or immersed submanifold M of R" is endowed with a Riemannian metric
from R" by virtue of the imbedding (or immersion) F: M — R". Thus, for
example, a surface M in R® has a Riemannian metric. The idea of the
corollary in this case is very simple: If i: M — R? is the identity and X ,, Y,
are tangent vectors to M at p, then *®(X,, V) =0>,X,.i,Y,)=
®(X,, Y,), that is, we simply take the value of the form on X, ¥, considered
as vectors in R?, using our standard identification of T,(M) with a subspace
of T,(R?). In particular S2, the unit sphere of R’, has a Riemannian metric
induced by the standard inner product in R*.If X ,, Y, are tangent to S* at p,
then ®(X,, Y,) is just their inner product in R>.

Classical differential geometry deals with properties of surfaces in
Euclidean space. The inner product @ on the tangent space at each point of
the surface, inherited from Euclidean space, is an essential element in the
study of the geometry of the surface. It is known as the first fundamental form
of the surface.

We terminate with a few remarks about bilinear forms on an n-
dimensional vector space V. We continue the numbering from properties (i)
and (ii) which precede the discussion of mappings. We define the rank of a
form ® on ¥ to be the codimension of the subspace W = {ve V| ®(v, w) =
0V we V), that is, rank ® = dim ¥ — dim W. This concept is elaborated in
the exercises. The following facts are often useful:

(i) If @ is a bilinear form on ¥V, then the linear mapping ¢: V — V*
defined by (w, ¢(v)> = ®(w, v) is an isomorphism onto if and only if
rank ® = dim V.

(iv) Every bilinear form ® may be written uniquely as the sum of a
symmetric and a skew-symmetric bilinear form, namely,

O(v, w) = [D(v. w) + O(w, v)] + H{D(v, w) — O(w, v)}).

(v) If a skew-symmetric form ® has a rank equal to dim ¥, thendim V
is an even number.
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Exercises

1. Verify (i)-(v).

Suppose that ® assigns a bilinear form @, to each pe M. Prove that ® is

C* ifand only if for each X, Y € (M), ®(X, Y)is a C*-bilinear function

on M, that is, ®: ¥(M) x X¥(M) - C* (M) is C*(M)-bilinear.

3. Show that the rank of the rank of the matrix of components (d(e;, e;)) of
a bilinear form ® on ¥ is independent of the basis e, ..., e, and is equal
to the rank of @.

4. Show that a symmetric, positive definite form (inner product) on ¥ has
rank equal to dim V. Give a condition for a basis of ¥ to correspond to
its dual basis under the isomorphism ¢: ¥V — V* defined in (iii).

5. Show that the sum of two bilinear forms on V is a bilinear form. More
generally, show that the bilinear forms on ¥ form a vector space 4(V).
What is its dimension?

6. Show that if F,: ¥V — W is linear, then the mapping taking ® € #(W)to
F*@e 4(V) is linear.

7. Taking ¥ = W and using Exercise 6, show that Gl(n, R),n = dim V, acts
on #(F) in a natural way. Choose a basis of ¥ and use it to compute the
action explicitly in terms of components.

8. Let®bea ¢~ field of bilinear forms and X a vector field on a manifold
M. Using the one-parameter group action 0, on M and the induced
mapping (¥ on @, define a * Lie derivative ” of ® with respect to X, Ly ®.

9. Show that ®(A4, B) = tr ‘4B, the trace of the transpose of 4 times B,
defines a symmetric bilinear form on .#(R), the n x n matrices over R.
Is it positive definite?

2

3 Riemannian Manifolds as Metric Spaces

The importance of the Riemannian manifold derives from the fact that it
makes the tangent space at each point into a Euclidean space, with inner
product defined by ®(X,, Y,) (= ®,(X,. Y,)). This enables us to define
angles between curves, that is, the angle between their tangent vectors X,
and Y, at their point of intersection, and lengths of curves on M, as we shall
see. Thus we may study many guestions concerning the geometry of these
manifolds; this is a large part of the classical differential geometry of surfaces
in R>.

As an example we consider the question of defining the length of a curve.
Let t — p{t).a < t < b, be a curve of class C' on a Riemannian manifold M.
Then its length L is defined to be the value of the integral

b 1/2
L= (m("” A )) dt.
4 dt dt
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We make several comments here: first, the integrand is a function of ¢
alone, so a more precise notation is to denote its value at each t by @, (dp/dt,
dp/dt), where dp/dt € T,,,(M) denotes the tangent vector to the curve at

p(t). This function is continuous by the continuity of dp/dt and ®. Secondly,
the value of the integral is independent of the parametrization. In
Equation IV.(3.7), we gave the following formula for change of parameter:
dp/ds = (dp/dt)(dt/ds), where t = f(s), ¢ < s < d is the new parametrization.

Thus
dp dp (. (dp dp\(dt\}\'? ds
L ((D(ds ds )) dS_L (d’(d_:’E (ds ar

(=)

In particular, we note that the arclength along the curve from p(a) to p(t),
which we may denote by s = L(t), gives a new parameter by the formula

_ dp dp
Lt J ( (dt dt)) dt
which implies

ds dp dp\\'/? ds\? dp dp
dt ((b(dt’ dt)) o Na) T ®(7t’ dt)'

Within a single coordinate neighborhood U, ¢ with coordinate frames
Eyp,..., E,p, we have ®(E;,, E ;) = gu( ) where ¢(p) = x = (x!, ..., x");
and the curve is given by (p(p(t)) (x*(t), ..., x"(t)), so that L(t) becomes

dx® dxf\1/?
S = L(l J. (Z gu(x )dE dt) dt

This leads to the frequently used abbreviation
Z x) dx' dx’

for the Riemannian metric in local coordinates. [This formula can be in-
terpreted (later) in terms of multiplication of tensors.]

We note that in the case of a curve in R" (with its standard inner pro-
duct), say p(t) = (x'(t). ..., x"(t)) with a < t < b, then we have the familiar
formula for arclength

L[ (S o)

We have used ®(0/0x’,0/0x') = 8;; and dp/dt = Y7, X'(t) /0x' in our
definition to obtain this.
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Of course, it is not necessary to assume the curve of class C!; weaker
assumptions will do. In particular, we may suppose it is piecewise of class
C', which we will denote D'. We will prove the following rather useful
theorem concerning Riemannian manifolds:

(3.1) Theorem A connected Riemannian manifold is a metric space with the
metric d(p, q) = infimum of the lengths of curves of class D' from p to q. Its
metric space topology and manifold topology agree.

Proof Since M is arcwise connected, d(p, q) is defined; and from the
definition it is immediate that d(p, q) is symmetric and nonnegative. It is also
very easy to check that the triangle inequality is satisfied if we use the fact
that a curve from p, to p, and a curve from p, to p; may be joined to give a
curve from p, to p; whose length is the sum of the lengths of the two curves
which are thus joined.

In order to complete the proof we obtain some inequalities. In all that
follows let p be an arbitrary point of M, U, ¢ a coordinate neighborhood
which has the property that ¢(p) = (0, ..., 0),and a > 0 a fixed real number
with the property that ¢(U) > B,(0), the closure of the open ball of radius a
and center at the origin of R". We let x!, ..., x" denote the local coordinates
and g;;(x) the components of the metric tensor ® as functions of these
coordinates. Since these n? functions are C* in their dependence on the
coordinates and are the coefficients of a positive definite, symmetric matrix
for each value of x in @(U), then on the compact set defined by x| <r
(r<a) and (2!, ..., o") with Y7,_,(d)>=1, the expression
(X1 ;-1 gif(x)'e’)/? assumes a maximum value M, and a minimum value
m, > 0. In fact if m, M denote the minimum and maximum corresponding to
r = a, we have the inequalities

n 1/2
O<m<m < ( Y y,-j(.x)aiaj) <M, <M.
J=
Moreover, if (', ..., ") are any n real numbers such that (Y-, (8)*)!/? =
b # 0, then replacing each «' above by f/b and multiplying the inequalities
by b yields:

i 1

12
0<mh<mb< ( g,-j(x)ﬂ'ﬂj) < M,b < Mb

)
j=
for every x e B,(0). Now we shall make the assumption that if x, y are any
points of R" with its standard Riemannian metric (as defined above), then
the infimum of the lengths of all D' curves in R" from x to y is exactly the
length of the line segment Xy, in other words, it is |y — x| the Euclidean
distance from x to y as defined in Section 1.1 (see Exercises 5 and 6 for the

i 1
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method of proof). Let p(t).a < t < b,bea D' curve lying in ¢~ '(B,(0)) ¢ U
which runs from p = p(a) to ¢ = p(b) and let

b n . . 1/2
= ( Y g,.j(x(t)))‘c'(t)xf(t)] dr

Ya i, j=1

denote its length. The last set of inequalities above and the assumption on R"
imply that for p # g

b n 1/2
0 <mlotol <mlotai << M, | | £er| a

<M‘

We first use these mequalxties to complete the proof that d(p, gq) is a
metric on M. Let ¢’ be any point of M distinct from p. Then for some r,
0 < r < a., ¢ lies outside of ¢~ '(B,(0)) = U. Let p(t),0 < t < ¢, be a curve
of class D' which goes from p = p(0) to ¢’ = p(c) and let L be its length.
There is a first point g = p(b) on the curve which is outside ¢~ ‘(B,(O)),
that is, such that p(t) lies inside the neighborhood ¢~ 1(B,(O)) for0<t<b,
but g = p(b) does not; g is the first point of the curve with |o(q)|| =r.
If L denotes the length of the curve p(t), 0 <t < b, then L < L. From this
it follows that L. > L > mr and, since the curve was arbitrarily chosen, that
d(p. q) > mr. This means that if ¢’ # p, then d(p, q') # 0, so that d(p, q) is
a metric as claimed.

In order to show the equivalence of the metric and the manifold topolo-
gies on M, it is enough to compare the neighborhood systems at an arbitrary
point p of M; in fact for the manifold topology we need only consider the
neighborhoods lying inside a single coordinate neighborhood U, ¢ (we
continue the notation above). Thus we must show that each neighborhood
V,=¢ '(B(0)) = U of the point p contains an e-ball, S,(p)=
{ge M |d(p, q) < ¢}, of the metric topology, and conversely. But this will
follow from the inequalities we have obtained. For, given r < a, suppose that
we choose ¢ > 0 to satisfy ¢/m < r. Then if g is any point of M such that
d(p, q) < mr, we see that g € V,—otherwise d(p, q) > mr as we have seen.
Since we have chosen ¢ < mr, S,(p) = V,, as was to be shown.

Conversely, suppose we consider some metric ball S,(p) about p, that is, a
neighborhood of p in the metric topology. Then choose r > 0 so thatr < a
and r < ¢/M. Let ge V, = ¢~ '(B,(0)) and let p(r), 0 < t < b, be the curve
from p to g in V,, defined by the coordinate functions x(t) = B't, where
(B, ..., B") denote the coordinates of . The length L of this curve is given by
an integral which yields the inequalities

1/2 n
- ' y qU [ﬁ)ﬂ ﬁ1:| ‘h < Mr[Zl(ﬂ )2

i.j=1

1/2
< Mr <.
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Thus d(p. q) < & and ge S,(p). It follows that ¢~ !(B,(0)) = S,(p), that is,
each metric neighborhood of p contains a manifold neighborhood of p (lying
inside U). This completes the proof of the theorem except for the unproved
assertion about R" (essentially this theorem itself in R"), which is left to the
exercises. |

As we have mentioned, the existence of a Riemannian metric on a mani-
fold provides an important ingredient to the study of manifolds from a
geometric point of view, allowing us to introduce on such spaces many
concepts of Euclidean geometry such as distances, angles between curves,
areas, volumes, and—less obviously—straight lines, or geodesics. For one
way of characterizing a straight line in Euclidean space is that the length of
any segment pq on it is exactly the distance d(p, q) between its end points—
which implies that it is also the shortest curve between any two of its points
(by Exercises 5 and 6 again). We can, using the metric just introduced, ask
whether there exist curves on a Riemannian manifold which have this
property. The answer, with some qualifications, is yes; and the class of
curves (geodesics) thus isolated has both similarities to and fascinating dif-
ferences from straight lines in Euclidean geometry. For example, if $? is the
unit sphere in R?, with the induced Riemannian metric, then great circles are
the geodesics: they indeed realize the distance (and are the shortest curves)
between any two of their points which lie on the same semicircle. Note that
these geodesics are closed curves in marked contrast to straight lines in
Euclidean space.

Two Riemannian manifolds M, and M, (with Riemannian metrics @,
and ®,) are said to be isometric if there exists a diffeomorphism
F: M, » M, such that F*®, = ®,. Clearly such an isometry is also an
isometry of M, and M, as metric spaces, that is, d, (F(p), F(g)) = d,(p, q) in
the metrics defined above. It is true, but not easy to prove, that a converse to
this statement holds (see Kobayashi and Nomizu [1, Theorem 3.10, p. 169]).

The geometry, including geodesics, lengths of curves, areas, and so forth,
depends very much on the Riemannian metric of M. For example, the sphere
§2 as an abstract manifold is diffeomorphic to many surfaces in R*, of which
the unit sphere is only one possibility, another being a standard ellipsoid E
in R*:

xl 2 x2 2 x3 2
= xer ) 0, 0

Here the geodesics of the induced Riemannian metric, unlike great circles on
the unit sphere S?, are not closed curves in general (see Hilbert and Cohn-
Vossen [1, p. 222-4]). Thus E and S? are diffeomorphic but not isometric,
that is, they are equivalent as differentiable manifolds but not as Riemannian
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manifolds. An important question is to decide whether or not two given
Riemannian manifolds are, in fact, isometric; and if so, in how many ways. A
question which led Gauss to some of his great discoveries seems to have
been a very practical one: Is there any isometry possible between a portion
of the surface of a sphere (the earth) with the metric mentioned above and a
portion of the Euclidean plane with its standard metric? Or equivalently,
can we construct a map of some part of the earth’s surface which does not
distort distances and/or angles? We shall come back to this question in a
later chapter.

Exercises

1. Using spherical coordinates (6, ¢) on the unit sphere p = 1 in R, deter-
mine the components (g;;) of the Riemannian metric on the domain of
the coordinates (U = S? minus the north and south poles).

2. Similarly, find g;; for T? = §' x S' using coordinates (6, ¢) and the
imbedding

(6, 9) » ((a + bcos @) cos 0, (a + b cos @) sin 6, b sin ¢)

in R? given by rotating a circle of radius b, center at (a,0,0), a > b,
around the x*-axis.

3. Show that to each vector field X on a Riemannian manifold there corre-
sponds a uniquely determined covector field o, by (iii) of the previous
section. Show that this is actually an R-linear map. Is it C*°(M)-linear?
(See Exercise 6, Section 1.)

4, Using the results of Exercise 8 of Section 2, show that 6, is a 1-parameter
group of isometries of a Riemannian manifold M if and only if the Lie
derivative of the Riemannian metric ® with respect to the infinitesimal
generator of 8, is zero, Ly ® = 0.

5. Let x(t),0 <t < 1, be a curve of class D' in R" from x(0) = (0,0,...,0)
to x(1) = (a', ..., a"). Assume, for simplicity, that || x(t)| > 0 for t > 0
and write x(t) = A(t)u(t), where A(t) = ||x(¢)|| and u(t) is a unit vector.
Show that ||x(£)|2 = (A())* + (A(t))?|la()||, and use this to prove that
the length of the curve is at least || x(1) — x(0)||, the distance from the
origin to a = (a', ..., a").

6. Show that the simplifying assumption that |x(t)| > 0 for ¢t >0 in
Exercise 5 may be removed by considering only the portion of the curve
outside a small sphere around the origin, whose radius we then let tend
to zero. Use these results to establish that in R” the infimum of the length
of curves of class D' joining two points x and y is ||x — y| so that the
metric defined on R" by Theorem 3.1 and the standard Riemannian
structure is the usual one.
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4 Partitions of Unity

We have mentioned, but not proved, that there is no nonvanishing
C>-vector field on S2. It follows from the exercises at the end of the last
section that the same is true for covector fields on §2. In view of this non-
existence, it might occur to ask whether on an arbitrary manifold M it is
possible to define a C™ positive definite, bilinear form, that is, is every
manifold Riemannian? This question and a number of others may be
answered using the notion of a partition of unity. Before discussing this
concept we need some preliminary definitions and lemmas.

A covering {4,} of a manifold M by subsets is said to be locally finite if
each pe M has a neighborhood U which intersects only a finite number of
sets A,. If {4,} and {Bg} are coverings of M, then {B,} is called a refinement of
{A,} if each B; — A, for some a. In these definitions we do not suppose the
sets to be open. Any manifold M is locally compact since it is locally
Euclidean; it is also a-compact, which means that it is the union of a count-
able number of compact sets. This follows from the local compactness and
the existence of a countable basis P,, P, ... such that each P, is compact. A
space with the property that every open covering has a locally finite
refinement is called paracompact; it is a standard result of general topology
that a locally compact Hausdorff space with a countable basis is paracom-
pact. We will prove a version of this adapted to our needs.

(4.1) Lemma Let {A4,} be any covering of a manifold M of dimension n by
open sets. Then there exists a countable, locally finite refinement {U;, @}
consisting of coordinate neighborhoods with @J{U;) = B3(0) for all
i=1,2,3,... and such that V; = ¢ '(B}(0)) < U; also cover M.

Proof We begin with the countable basis of open sets {P;}, P, compact,
which we mentioned above. Define a sequence of compact sets K, K, ...as
follows: K, = P, and, assuming K, ..., K; defined, let r be the first integer
such that K; < ( )5, P;. Define K;,, by

Kiv,=P,uP,u "'U/P, =P, u--uUP,.

Denote by K,,, the interior of K;,,; it contains K;. For each
i=1,2,..., we consider the open set (K;,, — K;_,)n A,. Around each p
in this set choose a coordinate neighborhood U, ,, ¢, , lying inside the set
and such that ¢, ,(p) = Oand ¢, ,(U, ,) = B3(0). Take V, , = ¢, +(B}(0)
and note that these are also interior to (K;,, — K;-{)n 4,. Moreover
allowing p,o to vary, a finite number of the collection of V,, covers
K., — K,, a closed compact set. Denote these by V; , with k labeling the
sets in this finite collection. For each i = 1, 2, ... the index k takes on just a
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finite number of values; thus the collection V, , is denumerable. We renum-
ber them as V|, V,, ..., and denote by U,, ¢,, U,, ¢@,, ..., the corres-
ponding coordinate neighborhoods containing them. These satisfy the
requirements of the conclusion; in fact for each pe M there is an index i such
that pe K,_, but from the definition of U;, V; it is clear that only a finite
number of these neighborhoods meet K;_,. Therefore {U;} and also {V} are
locally finite coverings refining the covering {A4,}.

(42) Remark It is clear that it would be possible to replace the spherical
neighborhoods B?(0) by cubical neighborhoods C7(0) in the lemma.

We shall call the refinement U;, V;, ¢; obtained in this lemma a regular
covering by spherical (or, when appropriate, cubical) coordinate neighbor-
hoods subordinate to the open covering {4,}.

Recall that the support of a function f on a manifold M is the set
supp(f) = {xe M| f(x) = 0}, the closure of the set on which f vanishes.

(4.3) Definition A C™ partition of unity on M is a collection of C* func-
tions { f,} defined on M with the following properties:

(1) f,=00n M,

(2) {supp(f,)} form a locally finite covering of M, and

(3) 3, fi{x)=1for every xe M.

Note that by virtue of (2) the sum is a well-defined C* function on M
since each point has a neighborhood on which only a finite number of the f’s
are different from zero. A partition of unity is said to be subordinate to an
open covering {4,} of M if for each y, there is an 4, such that supp(f,) c 4,.

(4.4) Theorem Associated to each regular covering {U;, V;, @;} of M there
is a partition of unity { f;} such that f; > 0 on V; = ¢; '(B,(0)) and supp f; =
@i '(B,(0)). In particular, every open covering {A,} has a partition of unity
which is subordinate to it.

Proof Exactly as in part (a) of the proof of Theorem II.5.1, we see that
there is, for each i, a nonnegative C* function g(x) on R" which is identically
one on B}(0) and zero outside B%(0). Clearly g;, defined by g, = § < ¢; 0n U;
and g; =0on M — U, is C* on M. It has its support in ¢; '(B3(0)), is +1
on V;, and is never negative. From these facts and the fact that {V}} is a
locally finite covering of M we see that

g; .
i = s l=1,2,...,
S Zig.‘

are functions witlr the desired properties. |
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Some Applications of the Partition of Unity

We shall give several applications which illustrate the utility of this
concept. The first answers the question raised at the beginning of the first
paragraph in this section.

(4.5) Theorem [t is possible to define a C” Riemannian metric on every C*
Riemannian manifold.

Proof Let {U,,V;, ¢; be a regular covering of M and f; an associated
C™ partition of unity as defined above. Then ¢,: U; —» B%(0) being a diffeo-
morphism, the bilinear form ®; = ¢*\P, ¥ the usual Euclidean inner product
on R", defines a Riemannian metric on U; (Corollary 2.5). Since f; > 0 on
V.. f; @, is a Riemannian metric tensor on V;, is symmetric on U,, and is zero
outside ¢; '(B%(0)). Hence it may be extended to a C*-symmetric bilinear
form on all of M which vanishes outside ¢; '(B3(0)) but is positive definite
at every point of V;. It is easy to check that the sum of symmetric forms is
symmetric, therefore ® = ) f;®;, defined precisely by

O)(X,. ¥, = LAPOAX, V) peM,

is symmetric. We have denoted by f; ®; its extension to all of M, and we must
remember that the summation makes sense since in a neighborhood of each
pe M all but a finite number of terms are zero. However, @ is also positive
definite. For every i, f; > 0 and each pe M is contained in at least one V.
Then fi(p) > 0, and therefore

0 = (Dp(xp ’ Xp) = Z f,(p)(D,(Xp ’ Xp)
implies that ®,(X . X,) = 0. This means
0 =@F¥(X,. X,) = ¥(0;u(X,). 04l X))

But since ¥ is positive definite and ¢ is a diffeomorphism, this implies
X, = 0. This completes the proof. |

As a second application we consider the following question. Let M be a
C” manifold. Then is M diffeomorphic to a submanifold of Euclidean space
R" of some sufficiently high dimension N? This is a rather difficult question,
particularly if we modify it slightly so as to leave the choice of N less
arbitrary. For example, is every surface, that is, every two-dimensional mani-
fold M, imbeddable as a submanifold of R*? [The answer is noj; it is known
that this is not always possible even if the surface is compact.] We shall give
a partial answer to the question as first posed.
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(4.6) Theorem Any compact C* manifold M admits a C* imbedding as a
submanifold of RN for sufficiently large N.

Proof We let {U,, V,, @;} be a finite regular covering of M ; there exists
such because of the compactness. We have defined the associated partition
of unity {f;} using functions {g;}, where g; = 1 on V,, and we shall use here
these C* functions {g;} on M rather than the (normalized) {f;}. Let ¢;: U; —

%(0) be the coordinate map. Then the mapping g, ¢;: U; — Bj (0)—mapp1ng
pe U, to gip)eip) = (9:p) 1(p) ., gi(p)x"(p)) in R"—is a C* map on U,
takmg everything outside ¢; '(B%(0)) onto the origin, but agreeing with ¢,
on V;. It may be extended to a C* mapping of M into Bj(0) by letting it map
all of M — U, onto the origin. When we write g;¢;, we will mean this
extension; on V; it is a diffeomorphism to B}(0) so its Jacobian matrix has
rank n = dim M there.

We suppose that i = 1,..., k is the range of indices in our finite regular
covering and let N = (n + 1)k. Define

FMo>R SR 'x- xR'XRx xR
N e’
k k

by

F(p) = (9:(P)e1(p): .. : gulP)0u(P): 1 (). - .. 94(P)).

Then F is clearly C* on M, and in any local coordinates on M the N x n
Jacobian of F breaks up into k blocks of size n x n followed by a k x n
matrix so its rank is at most n. However, pe M implies p € V; for some i, and,
on V., g, = 1,50 g;p; = ¢, and the matrix has rank n. Thus F: M —» RV isa
C® immersion. If it is one-to-one the proof is finished since M is compact
and Theorem IILS5.7 applies. Suppose F(p)= F(q). Then g,(p)= gi(q),
i = 1,..., k. This implies that g,(p)e:(p) = g:(q)®:(q); but since g;(p) + O for
some i, this means ¢,(p) = @,(q) for that i and since g; is one-to-one, we see
that p = q. Thus F is one-to-one, completing the proof. |

We remark that it is an obvious disadvantage of this theorem that N may
be much larger than we would like it; in fact we have no way of giving an
effective bound on it from this proof. For example, we know that it takes at
least two coordinate neighborhoods to cover S? (using stereographic projec-
tions from the north and south poles)and hence k = 2,n = 2sothat N = 6,
implying that S may be imbedded in R®. This is obviously not the best
possible! Since a sphere with handles (compare Section 1.4) may require
more than two coordinate neighborhoods to cover it, the value of N would
increase accordingly.

Another defect of the theorem is that it only applies to a compact mani-
fold and although such manifolds are important, it would be very nice to



4 PARTITIONS OF UNITY 195

know that every manifold may be considered as a submanifold of R" for
some N. Then our intuitive geometric concepts derived from the classical
study of curves and surfaces in R* could be seen to carry over to arbitrary
manifolds; in particular, the concept of tangent space T,(M) is given intui-
tive content just as in Example 1V.1.10. Clearly this question has great inter-
est in manifold theory. The following theorem was proved by Whitney [1] in
1936 in a paper which is one of the landmarks in the study of differentiable
manifolds. It is known as the Whitney imbedding theorem.

(4.7) Theorem Any differentiable manifold M may be imbedded differen-
tiably in RY with N < 2dim M + 1.

The proof has since been simplified and appears in many recent texts, for
example, Milnor [2], Sternberg [1], and Auslander and MacKenzie [1].

Our final example of the way in which the ideas of this section may be
used will be to prove the following *“smoothing” theorem:

(4.8) Theorem Let M be a C® manifold and A a compact subset of M,
possibly empty. If g is a continuous function on M which is C* on Aand ¢ isa
positive continuous function on M, then there exists a C* function hon M such
that g(p) = h(p) for every pe A and |g(p) — h{p)| < &(p) on all of M.

In order to prove this we shall need a similar theorem for the case of a
closed n-ball in R". For convenience we choose the following one (see
Dieudonné [1] for a proof).

(49) Lemma (Weierstrass approximation theorem) Let f be a contin-
uous function on a closed n-ball B" of R" and let € > 0. Then there is a
polynomial function p on R" such that | f(x) — p(x)| < ¢ on B".

Another similar but easier approximation lemma for R" which would
serve equally well here is given in Section V.8 (Exercise 2). We now proceed
with the proof of the theorem.

Proof Since g is C* in A, there is a C* extension g* of g | 4 toan open
set U which contains A—by definition of C* function on an arbitrary subset
of M. Unfortunately, there is no reason to believe that g(p) = g*(p) on
points of U not in A. However, we may replace g by a continuous function §
on M with the following properties: (i) | g(p) — g(p)| < 2&(p), (i) § = g on
A, and (iii} g is C™ on an open subset W of M which contains 4. The
procedure is as follows: Taking any U and g* as above, we use the com-
pactness of A to choose an open set W containing A and such that two
further requirements are met: W is compact and lies in U and |g*(p) —
g(p)| < 3e(p) on W. Since g* is C* on U, hence continuous, there is no



196 V TENSORS AND TENSOR FIELDS ON MANIFOLDS

problem in finding such a set W. Now, using Theorem I11.3.4, we define a
nonnegative, C* function ¢ which is + 1 everywhere on W and vanishes
outside U. Finally, we define § = og* + (1 — ¢)g and note that it satisfies
(i)-(iii).

This being done, we choose a regular covering by spherical neighbor-
hoods {U;, V,, ¢;} subordinate to the open covering W, M — 4 of M and
denote by { f;} the corresponding C* partition of unity. For every U; on W
the function f; g is C* on U, and vanishes outside ¢; '(B3(0)). Thus it can be
extended to a C™ function on M. If we denote the extended function f; § also,
then we have Y f;g =g on M. If U;c M — A, then on B}(0) < B3(0) =
@,(U;) we use the Weierstrass approximation theorem to obtain a polyno-
mial function p; with

|pix) = g @i '(x)] <z&. & =infe(p) on @ (B3(0)).

Each ¢, is defined since B%(0) is compact. Let g; = p; © ¢;, and for each i let
fiq; be extended to a C* function on all of M, which vanishes outside U,.
Now let the indices such that U, is in M — A be denoted i’ and all others by
i". We define h(p) by

=T foar + ¥ fob

Thus h is well defined and C* on M since each point has a neighborhood on
which all but a finite number of summands vanish identically. If pe A, then

=Y. fulp)g(p) = g(p) since g =g on A, each fi(p) =0 on 4, and
Z f =1 everywhere on M. On the other hand we have for pé 4

| h(p) — a(p) |

Z Silp)ailp) + ;ﬁ”(p)é(p Z Ji{p)alp)
|Y filpXaidp) — 3(p)) |

Using this, and remembering that f; > 0 for all i, we have
[h(p) — alp)| < X £ilp)|ailp) — G(p)| < 3e(p) Y. filp).
Since Y. filp) < Y. filp) = 1, we deduce that
|1(p) — g(p)| < |h(p) — 3p)| + |a(p) — g(p)| < 3e(p) + 3¢(p) = &(p)

as was to be proved. |

(4.10) Remark Techniques of this type are very important in bridging the
gap between the applications to manifolds of topology—where the data are
usually continuous—and of calculus concepts such as rank of a mapping. By
using the fact that a manifold is g-compact, for example, and reverting to the
use of local coordinates, it is possible to prove by methods of this section
such statements as the following (compare Steenrod [1, p. 25]):
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Let X be a vector field which is continuous on all of M and C* on the closed
subset A. Then X may be approximated arbitrarily closely by a C*-vector field
Y on M such that X = Y on A.

Exercises

1. Iffisa C” function on a closed regular submanifold N of a manifold M,
then show that fis the restriction of a C* function on M.

2. Show that if N is a closed regular submanifold of M, then a C™-vector
field X on N can be extended toa C*-vector field on M.[Hint: Takea
covering of N by preferred coordinate neighborhoods of M and use a
partition of unity subordinate to this covering and to the open set
M — N:; X can be extended easily within a preferred coordinate
neighborhood.]

3. Show that on a Riemannian manifold every point p lies in an open set
U, over which we may define a C* field of frames which is orthonormal
at each point.

4. Let M be a manifold of dimension k and F: M — R" a C* imbedding of
M in R". Further, let G(n, k} be the Grassman manifold of k-planes
through the origin of R". Show that the map H: M — G(n, k), obtained
by mapping p to the k-plane through the origin parallel to F (T,(M)), is
C*. [This generalizes the Gauss mapping for surfaces in R*.]

5. Show that if F, and F, are disjoint closed subsets of a C* manifold M,
then there exists a C* function fon M thatis 0 on Fy, and +1 on F,
(compare Theorem 111.3.4).

5 Tensor Fields

Tensors on a Vector Space

It is our purpose in this section to define and study some properties of
tensor fields on a manifold, especially covariant tensor fields. As in the case
of covectors and bilinear forms, which are examples of such tensors, we
begin with a vector space V over a field, in fact over R.

(5.1) Definition A ensor ® on V is by definition a multilinear map
D:Vx---xV'xV¥x:xV
N—— e’ ———— e —

r r
V* denoting the dual space to V, r its covariant order, and s its contravariant
order.
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Thus ® assigns to each r-tuple of elements of ¥ and s-tuple of elements of
V* a real number and if for each k, 1 < k < r + s, we hold every variable
except the kth fixed, then ® satisfies the linearity condition

OV, ..o + oV, ) =a®(vy, ..., v, ) + 0Dy, v, )

for all a, o’ € R, and v,, v,€ V (or V*, respectively). (This equation defines
precisely the meaning of multilinearity.) As examples we have: (i) for r = 1,
s =0,any g€ V*, (ii) for r = 2, s = 0, any bilinear form @ on ¥, and finally
(iii) the natural pairing of ¥ and V*, that is, (v, @) — (g, v) for the case
r = 1,s = 1. We have also noted that ¥ and (¥*)* are naturally isomorphic
and thus may be identified so then each ve ¥ may be considered as a linear
map of V* to R, that is, as a tensor with r =0 and s = 1.

For a fixed (r, s) we let 7 (¥) be the collection of all tensors on V of
covariant order r and contravariant order s. We know that as functions from
Vx o xVxVrx- - xV*to R they may be added and multiplied by
scalars (elements of R). (Indeed linear combinations of functions from any
set to R are defined and are again functions from that set to R, a circum-
stance that we have used on several occasions.) With this addition and scalar
multiplication .7 (V) is a vector space, so that if ®,, ®,e.7(¥) and
oy, 0, € R, then o, @, + o, ®,, defined in the way alluded to above, that is,
by

(0 @y + 03 @)V, ¥y s ) = 2y @y (Vy, Vo u ) + o Dy(vy, Vo, .00),

is multilinear, and therefore is in 7 (V). Thus .7 (V) has a natural vector
space structure. In this connection we have the following theorem:

(5.2) Theorem With the natural definitions of addition and multiplication
by elements of R the set 7 (V) of all tensors of order (r, s) on V forms a vector
space of dimension n"**.

Proof We consider the case s = 0 only, that is, covariant tensors of
fixed order r, and we let 7 "(V), rather than .7 {(¥), denote the collection of

all such tensors. If e, ..., e, is a basis of V¥, then ®e .7 "(V) is completely
determined by its n" values on the basis vectors. Indeed by multilinearity if
we write v, = Z ol e;,i = 1,..., r, then the value of ® is given by the formula

(5.2) O(vy,...,v,) = ) oflai2--afde;,....e;)
J1e s

the sum being over all 1 < jy, ..., j, < n. The n" numbers {®(e;, ..., e;)} are
called the components of @ in the basis e, ..., e,. We shall justify the termin-
ology by showing that there is in fact a basis of .7"(V). determined by

e;...., e,, with respect to which these are components of @. It is defined as
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follows: Let Q' "/ be that element of .7 "(¥) whose values on the basis
vectors are given by
o +1 if ji=k for i=1..r,
Qe ... 0,) = .
0 if j,# k; forsome i,
and whose values on an arbitrary r-tuple v,, ..., v,€ V is defined by (5.2');
whence

Qn “'Jr(vl, ey Vr) - ajllajzz a:r.

This does define a tensor: multilinearity is a consequence of this formula,
which is linear in the components of each v;. It is immediate that the n"
tensors so chosen are linearly independent: If

2o =0,

then it follows that
Z 7’11 LY vy, L) =0

for any choice of the varlab]es v, ..., V,. But from the definition of the
Q1 i we see, by substituting in turn each combination e, , ..., ¢, of basis
elements as variables, that every coefficient y,,..,, = 0.

However, we also find that every @ is a linear combination of these
tensors. Let ¢; ..; = ®(e;,....,e;) and consider the element
Y @, Y of T (V) Applying again the definition of Q/* "'/, we see
that this tensor and @ take the same values on every set of basis elements
hence must be equal. This completes the proof for .7 (V). ]

We remark that an easy extension of the argument using bothe,..., e,
and its dual basis w?, ..., ®" of ¥* gives the general case 7 (V). Since we use
covariant tensors in most of what follows, we will leave the more general
treatment to the exercises and to the imagination of the reader.

Tensor Fields

It is easy to extend these ideas to manifolds following the pattern we
established earlier.

(5.3) Definition A C*®-covariant tensor field of order r on a C* manifold
M is a function ® which assigns to each pe M an element @, of .7 '(T,(M))
and which has the additional property that given any Xy, ..., X,, C*-vector
fields on an open subset U of M, then ®(X,, ..., X,) is a C* function on U.
We denote by F (M) the set of all C*-covariant tensor fields of order r
on M.
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We have already considered in some detail the case of covector fields,
r = 1, and that of fields of bilinear forms, r = 2. Just as in these cases, it is an
immediate consequence of the definition that a covariant tensor field of
order r is not only R-linear but also C*(M)-linear in each variable. For
example, if fe C*(M),

OX oo fXs o X)) =Xy X,y s X),

This is true because it holds at each point p by the R-linearity of @,;and the
two sides of the equation are equal if equality holds for each pe M. In the
same way, if fe C*(U), U open in M, the equation holds for @, the restric-
tion of ® to U. (Compare Remark 1.3 and Exercise 2.2.)

In precisely the same fashion as Section 2 we see that if U, ¢ is a coordin-
ate neighborhood and E,, ..., E, are the coordinate frames, then ® € .7 "(M)
has components ®(E;,, ..., E r) that is, functions on U whose values at each
pe U are the components of ®, relative to the basis of T,(M) determined by
E,, ..., E,. Once more, just as before, the differentiability of @ is implied by
the differentiability of all the components as functions on the coordinate
neighborhoods of some covering of M. Finally, it is easy to see that .7 "(M) is
a vector space over R [in fact it is a C*(M) module] since linear combina-
tions of covariant tensors of order r (even with C™ functions as coefficients)
are again covariant tensor fields,

Mappings and Covariant Tensors

A further basic fact which carries over to arbitrary r > 0 from covectors
and forms is that any linear map of vector spaces F,: ¥ — W induces a
linear map F*: 7'(W) — .7'(V) by the formula

F*®(vy, ..., v,) = O(F (v, ) ... F(v,).

In exact analogy with the case r = 2, we find that a C*-map F: M - N
induces a mapping F*: .7 "(N) — .7 "(M), defined for ® on N by

F*O(X . .... X,,) = Opy (F X1 p)h o Fi(X,,)

As we have seen, this is a special leature of covariant tensor fields; its analog
does not hold for contravariant fields even for 7 (M) = X(M) (vector
fields); see Definition IV.2.6. Not only does F* map .7 "(N) to .7 "(M) but it
maps it linearly; this is an immediate consequence of the definitions (com-
pare Exercise V.2.6).

(54) Definition We shall say that ® € 7"(V), V a vector space, is sym-
metric if for each 1 < i, j < r, we have

DV, oo VsV, ) =PV, VL Y, L Y
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Similarly, if interchanging the ith and jth variables, 1 < i, j < r, changes the
sign,

DV Vi Ve V) = = OV, ¥, L YL ,),

then we say @ is skew or antisymmerric or alternating; alternating covariant
tensors are often called exterior forms. A tensor field is symmetric (respec-
tively, alternating) if it has this property at each point.

The following generalization of Theorems 1.6 and 2.3 summarizes these
remarks:

(5.5) Theorem Let F: M — N be a C* map of C* manifolds. Then each
C* -covariant tensor field ® on N determines a C*-covariant tensor field F*®
on M by the formula

(55) (F¥®)(X 1 evvs X,p) = DL (Fu(X 1,0 FolX,,)).

The map F*: 7" (N)— .7 (M) so defined is linear and takes symmetric (alter-
nating) tensors to symmetric (alternating) tensors.

We leave the proof as an exercise. Note that (5.5') is the same as
formula (2.2).

It is also clear how to extend to the case of arbitrary order r the formula
(2.4) for components of F*® in terms of those of ® and the Jacobian of F in
local coordinates. The same method can also be used to derive formulas for
change of components relative to a change of local coordinates (for r = 1
see Corollary 1.7). Basically, these formulas are all consequences of the mul-
tilinearity at each point of M.

The Symmetrizing and Alternating Transformations

In order to pursue some of these questions somewhat further, we return
to the case of a covariant tensor on a vector space V. First note that if &, and
®, e .7 (V) are symmetric (respectively, alternating) covariant tensors of
order r on ¥, then a linear combination a®, + i®,, a, f€ R, is also sym-
metric (respectively, alternating). Thus the symmetric tensors in .7 (V) form
a subspace which we denote by X7(¥) and the alternating tensors (exterior
forms) also form a subspace /\"(¥). These subspaces have only the O-tensor
in common.

Next let ¢ denote a permutation of (1,...,r) with (1,...,r)—
(a(1). ..., o(r)). We know that any such permutation is a product of permu-
tations interchanging just two elements (transpositions). Although this
representation is not unique the parity (evenness or oddness) of the number
of factors is. We let sgna = + 1 if ¢ is representable as the product of an
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even number of transpositions and sgn ¢ = —1 otherwise. Then, ¢ = sgn o
is a well-defined map from the group of permutations of r letters &, to the
multiplicative group of two elements + 1. It is even a homomorphism as we
check at once from the definition. The only statement not obvious is the one
concerning the independence of the parity of the particular decomposition of
o into a product of transpositions (for a proof see Zassenhaus [1]).

In the light of these facts we see that our original definitions may be
restated in the following equivalent form: ®e J (V) is symmetric if
D(vy,..., V,) = OV, ..., Yoqn) fOr every vy, ..., v, and permutation g, and
is alternating if ®(v,, ..., v,) = sgn o®(v,), ..., V) for every v,, ..., v, and
permutation 6.

(5.6) Definition We define two linear transformations on the vector space
T'(V),

symmeltrizing mapping S T(V)y->T(V),
alternating mapping A T (VY- T(V),

by the formulas:
l
(LOYvyy ooy V)= < Y D(Voqys - oos Vo)

rt <
and

1
(A DY vy, ..., V,) = y Y sgn a®(V,q1ys -+ s Yok
ta
the summation being over all o€ S,, the group of all permutations of r
letters.

It is immediate that these maps are linear transformations on .7 "(V), in
fact ® — @°, defined by

D7(Vy, oy V) = B(Ve01) s -5 Vo)

is such a linear transformation; and any linear combination of linear trans-
formations of a vector space is again a linear transformation. We have the
following properties.

(5.7) Properties of .o/ and ¥:

(i) o and ¥ are projections, that is, «/* = o/ and ¥* = &
(i) (7" (V)= N(V)and #(77(V)) = E(V);
(ii) @ is alternating if and only if /O = ©;
& is symmetric if and only if Y& = ©;
(iv) if Fo: VoW is a linear map, then o/ and & commute with
F*. T"(W) > T"(V).
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All of these statements are easy consequences of the definitions. We shall
check them only for .o¢, the verification for & being similar. They are also
interrelated so we will not take them in order. First note that if @ is alter-
nating, then the definition implies

D(vy, ..., V,) = sgn oD(V,) 5 ..y Vo)

Since there are r! elements of &,, summing both sides over all 6 € S, gives
@ = o/®. On the other hand if we apply a permutation 7 to the variables of
AD(vy, ..., v,) for an arbitrary ® e 7 "(V), we obtain

1
DV (1) s ey Vo) = i Y sgn o®(Vr(yy s ooy Varin)-
. a

Now sgn is a homomorphism and sgn 12 = 1 so that sgn ¢ = sgn o7 sgn .
From this equation we see that the right side is

1
. 580t ; SgN 6TD(Vor(1) s -+ s Vory) = SN THD(v, ..., V,),

and ./® is alternating. This shows that &/(77(V)) = A"(V). If ® is alter-
nating, every term in the summation defining &/ ® is equal, so &/® = ®. Thus
o/ is the identity on /\"(V) and &/(7'(¥)) > /\"(¥). From these facts (i)-(iii)
all follow for «/. Statement (iv) is immediate from the definition of F*, for we
have

F*O(V,1) 5 s Vo) = O(F (Vo) - o5 FulVarny))-

Multiplying both sides by sgn ¢ and summing over all o gives—if we use the
linearity of F*—/(F*®)(v,, ..., v,) on the left and F*(«/®)(v,, ..., v,) on the
right.

Both of these maps .o¢ and . can be immediately extended to mappings
of tensor fields on manifolds—with the same properties—by merely apply-
ing them at each point and then verifying that both sides of each relation
(i)-(iv) give C* functions which agree pointwise on every r-tuple of
C=-vector fields. We summarize (without proof):

(5.8) Theorem The maps .o/ and ¥ are defined on 7'(M) (M a C* mani-
fold and .7"(M) the C*-covariant tensor fields of order r) and they satisfy
properties (5.7), (1}-(iv), there. In the case of (iv), F*: 7'(N) —» T (M) is the
linear map induced by a C* mapping F: M — N.

Exercises

1. Show that when r = 2 we have 7" (V) = /\"(V) @ Z'(V) but that this is
false if r > 2.
2. Show that /A\"(V) contains only the tensor O when r > dim V.
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3. Let &(¥) denote the space of all linear transformations on V. Show that
it is a vector space over R of dimension equal to (dim ¥)? and that it is
naturally isomorphic to the space of all bilinear maps of ¥ x ¥* to R.
[Hint: To a linear transformation A: ¥V — ¥V we associate the bi-
linear map (v, @) = <Av, > on ¥ x ¥* to R/]

4. Give a definition of a C™* field of linear transformations on M and check
that its property of being C* can be defined in terms of local coordinates
or in terms of ¥(M).

5. If ¥ is a vector space with an inner product, then there is a natural
isomorphism of ¥ to ¥* (compare (iii) of Section 2). Show that this
determines an isomorphism of .7 {(¥)and 7" *(V) and extend to tensor
fields on C* manifolds.

6. If®is a C*-covariant tensor field of order r on a C* manifold M, show
that ®(X,,..., X,) is a C*(M) R-linear function from ¥(M) x -+ x
X(M) to C*(M). Conversely, show that each such function determines
an element of .7 "(M) as we have defined it.

7. LetT:V x --- x ¥ > V be an R-linear function of r vectors with values
in V, that is, T(v,,...,v,) is in ¥ and linear in each variable. Define
components in this case and extend this object to a field on a manifold in
the manner of Exercises 3 and 4.

8. As in the case of vector fields on manifolds, a tenser field, say
®e 7 '(M), is a function assigning to each pe M a covariant tensor @,
on T,(M), that is, a function from M to the set W = | J,.u -7 "(T,(M)).
Try to define the structure of a C* manifold on W such that (1) the
natural mapping n: W - M taking @, to p for each ®,e .7 (T (M)) is
C* and (2) covariant tensor fields on M are exactly the C* mappings
®: M - W satisfying n - @ = identity (on M).

6 Multiplication of Tensors

Except for a few of the exercises, we will continue to restrict our attention
to covariant tensors in the remainder of this chapter and in the next. Thus ¥
will denote a vector space and M a C* manifold, as before. We have seen
that both .7 "(V) and .7 "(M) are vector spaces over R. In the case of tensor
fields, .7 '(M) has also the structure of a C*(M)-module. We agree by
definition that .7 °(¥) = R and 7 °(M) = C*(M). Having made these con-
ventions, recall that our viewpoint is to define tensors as functions to R, a
field, in the case of 7 '(¥) and functions to C*(M), an algebra, in the case of
J'(M). In either case it is appropriate to discuss products of such functions.
Just as functions from a set to an algebra can be multiplied in a natural
way—using the algebra product of their values—to give new functions of the
same type, so can we hope to multiply tensors. As usual we begin with the
vector space case.
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Multiplication of Tensors on a Vector Space

Suppose V is a vector space and ¢ € .7 "(V), Y € .7 (V) are tensors. Their
product is easily seen to be linear in each of its r + s variables so we make
the following definition:

(6.1) Definition The product of ¢ and ., denoted ¢ ® ¥ is a tensor of
order r + s defined by

CROYNVL oY Ve Vi ) = 0V, o VW (Ve ge ool Vet ).

The right-hand side is the product of the values of ¢ and . The product
defines a mapping (¢, ¥) > @ @ Y of T7(V) x T(V)—> .7 (V).

(6.2) Theorem The mapping 7' (V) x T*V)— T (V) just defined is
bilinear and associative. If w',...,w" is a basis of V* = 7 V), then
0" @ ® "} over all 1 < iy, ...,i, < nis a basis of Z"(V). Finally, if
F,: W > Vs linear, then F*(¢ x y) = (F*@) x (F*y).

Proof Each statement is proved by straightforward computation. To
say that ® is bilinear means that if o, f8, are numbers ¢,, ¢, € .7 (V) and
ye.7 (V). then (e, + BY2) ® ¥ = a(p; @ ¥) + flo, ® ). Similarly for
the second variable. This is checked by evaluating each side on r + s vectors
of V: in fact basis vectors suffice because of linearity. Associativity,
(pR®Y)®0 =09 ® (Y ®0), is similarly verified—the products on both
sides being defined in the natural way. This allows us to drop the paren-
theses. To see that ' ® -+ ® o™ form a basis it is sufficient to note that if
e,,....e, is the basis of ¥ dual to w',..., ", then the tensor Q"' """
previously defined is exactly o' ® --- ® w'. This follows from the two
definitions:

’0 if (inw---Jr)#(jx "'j,),

il.“"' . . =
D @)= e i) = G )

g
and
O ® @ we, ..., e;) = wie;,)we;,) - wP(e;) = 8 62 - 8F,

which show that both tensors have the same values on any (ordered) set of
basis vectors and are thus equal.
Finally, given F: W -V, ifw,..., w,, ;e W, then

(FHo @ U)W W) = @ @ Y(Fy(Wy). .. Fy(W,))
= Q(F (W) oo Fu(Wo)(Fulw ), Fylw,s )
= (F*@) @ (F*y)(Wi...., W, ),

which proves F*(¢ ® y) = (F*¢) ® (F*{) and completes the proof. |
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A more sophisticated but no more general way to state this theorem is
derived from the following observations. First we take the direct sum over R
of all of the tensor spaces, beginning with 7 °(¥) = R. We denote it by
F(V),

TW =T Ve T'N® T (ND-.

We identify each 7 "(¥) with its (natural) isomorphic image in 7 (V). An
element ¢ of 7 (V) is said to be of order r if it is in 7 "(¥), and every element
@ of 7 (V) is the sum of a finite number of such ¢, which we call its
components. Thus &€ 7 (V) may be written uniquely @ = @it + - + @,
where @lie (V) and i, < i, < --- < i,. If , e T (V), then they may be
added componentwise, that is, by adding in 7 "(¥) any terms in 7 "(¥). They
may be multiplied by using ®, extending it to be distributive on all of .7 (¥).
This makes .7 (¥) into an associative algebra over R called the tensor alge-
bra. It contains R = .7 °(¥), has 1 as its unit, and is infinite-dimensional. The
contents of Theorem 6.2 (even a little more) can be written:

62) F (V) =)o T (V) (direct) is an associative algebra (with unit) over
R = FOV). It is generated by T °(V) and 7 *(V) = V*, the dual space to V.
Any linear mapping F,: W — V of vector spaces induces a homomorphism
F*: T(V) > 7 (W) which is (i) the identity on R and (ii) the dual mapping
F*: V* > W* on 9 (V). Together (i) and (ii) determine F* uniquely on all of
T (V).

Multiplication of Tensor Fields

Now we turn briefly to the case of tensor fields on a manifold M. If
pe 7 "(M)and y € .7 °(M), then we may define ¢ ®  on M by defining it at
each point using the definition for tensors on a vector space, that is, (¢ ® ¥),
is defined to be the tensor ¢, ® ¥, of order r + s on the vector space T,(M).
Since this defines a covariant tensor of order r + s on the tangent space at
each point of M, it will define a tensor field—if it is C*. Now in local
coordinates the components of ¢ ® i, according to the definition just given,
are the functions of the coordinate frame vectors

OOY(E,,....E)=0E,...,EWE,,. . E,.)

over the coordinate neighborhood. The right-hand side is the product of two
C* functions, components in local coordinates of ¢ and , and thus the left
side is C™ as hoped. We have an appropriate version of Theorem 6.2 for this
case.

(6.3) Theorem The mapping -7 "(M) x .7 5(M) — .7 "*5(M) just defined is
hilinear and associative. If @*, ..., @" is a basis of 7 (M), then every element
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of .7(M) is a linear combination with C* coefficients of {v'' ® -+ ® w™|
1<iy...i,<n}. If FXN—>M is a C* mapping, o€ .7 (M) and
Yy e 7 (M), then F*(o ® y) = (F*¢@) ® (F*y), tensor fields on N.

Proof Since two tensor fields are equal if and only if they are equal at
each point, it is only necessary to see that these equations hold at each point,
which follows at once from the definitions and the preceding Theorem 6.2.

In general we do not have a globally defined basis of 7 '(M), that is,
covector fields w', ..., ®" which are a basis at each point. However, we do in
R", from which the following corollary is obtained by applying the theorem
to a coordinate neighborhood V, 8 of M. Let E,, ..., E, denote the coordin-
ate frames and w',...," their duals, that is, E; =6, '(/0x’) and
o' = O*(dx’).

(6.4) Corollary Each ¢ € 7 '(U), including the restriction to U of any cov-
ariant tensor field on M, has a unique expression of the form

(p = Z...Za“ 'l'l_rwil®...®w|‘r’
i ir

where at each point of U, a;, ...; = @(E;,. ..., E, ) are the components of ¢ in
the basis {0" ® - ® w"} and are C* functions on U.

Exterior Multiplication of Alternating Tensors

For each r > 0 we have defined the subspace /\"(V) « 7'(¥) consisting
of alternating covariant tensors of order r; it is the image of 7 "(¥) under the
linear mapping <7, the alternating mapping. We define /\°(¥) to be R, the
field. Then A°(¥V) = Z°(V) = Rand A\'(V) = F'(¥) = V* but \"(V) is
properly contained in .7"(V) for r > | (Exercise 5.2). We see, therefore, that
the direct sum A(V) of all the spaces A\"(¥) is contained in F (V) as a
subspace:

A =N NN K)o -
cFWesie e =7V

Although (V) is a subspace of 7 (¥), it is not a subalgebra. For even if
pe \'(V) and Y e /\*(V), it may be shown by example (Exercise 1) that
@ ® ¥ may very well fail to be an element of A\"**(V); thus the tensor
product of alternating tensors on V is not, in general, an alternating tensor
on V. We know, however, that each tensor determines an alternating tensor,
its image under .«/. This fact enables us to define another multiplication for
alternating tensors that is extraordinarily useful.
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(6.5) Definition The mapping from A"(V) x AS(V) - /\"**(V), defined
by

i) ="V oo,

is called the exterior product (or wedge product) of ¢ and ¢ and is
denoted ¢ A Y.

(6.6) Lemma The exterior product is bilinear and associative.

Proof Bilinearity is a consequence of the fact that the product is defined
by composing the tensor product, a bilinear mapping from /\"(¥) x /\*(V)
to .7 "*5(¥) with a linear mapping ((r + s)!/r!s!)s/.

To show that the product is associative we first prove a property of the
alternating mapping <. Suppose g€ .7 '(V), ye€ 7(V), and Oe.7"'(V).
Then we show that

APR®Y®0) = A(A @ Y)®0) = (¢ ® (Y ® 0)).

For this purpose let € = &,,,,, denote the permutations of
(1,2,....r + s + t) and &' the subgroup which leaves the last ¢ integers
fixed; € is isomorphic to the permutation group €,,, of (1, 2,...,r + s).
We have

,9(/(.0/((/1 R®Y)® 0)(\’1, s Verysr)

1
(r+s +7tj! Zesgn ol (p ® lp)(va(l) sores Voras)

'O(V”(r+s+]) 3y va(r+s+l))

1 1

T4 01 G N O e Y

' lp(vrm"tr+ 1)ys-ern vaa'(r+s))0(vtm’(r+s+ 1) 2 cve> vtm"(r+s+l))}’

using the fact that sgn ¢ sgn ¢’ = sgn g¢’ and that ¢’ is the identity on the
last t numbers of (1, ..., r + s + t). For each ¢’, as ¢ runs through & and we
sum over the outer summation symbol, this expression is equal to
AP @Y ®0)(vy, ..., V,4s+,) Thus we have the expression above reducing
to 1/(r + s)! Y, ce (¢ ® Y @ 0) evaluated on v, ..., v,, . Since there
are (r + s)! terms in the summation this gives

Ao @Y ®0)=o(4(p®Y))®0).
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The second equality is proved in the same way. If ¢, ¥, 0 are in the subspaces
AN V). A(V), A'(V). respectively, then by definition

="t e

and
(r+s+ 1)

(@AP)nl =" 0

A((ery)®9).

From this and a similar expression in the other order of associating terms we
obtain the associativity of the exterior product

(PryY)rl = @n(yn0) I

The following relation is an immediate consequence of the proof, which
allows us to write exterior products without parentheses.

(6.7) Corollary Let ;e \"(V),i=1,...,k. Then

(ry +ra+ 41!
ryteytend

PIANPIA AP = AP R P, @ ® @)

Lemma 6.6 makes it possible for us to give /\(¥) the structure of an
associative algebra over R; we define the product /\(¥) x A\(¥) > A(V)
simply by extending the exterior product to be bilinear, so that the distribu-
tive law holds. This is possible in only one way: Suppose that ¢, Y € /\(¥).
Then

=@+ + @, @./\"(V), Y=y, + -+, ye A\%V)

and we define

oAy = Z Y oiny;.

i=1j=1

(6.8) Corollary A(V)= A°(V)® N\'(V)® N\2(V) @ -+ with the exter-

ior product as defined above is an (associative) algebra over R = N\°(V).

The algebra A\(¥) is called the exterior algebra or Grassman algebra over
V. Unlike the tensor algebra .7 (¥), of which it is a subspace (but not a
subalgebra), it is finite-dimensional. To see this we determine a basis of
/\(¥) as a vector space. For this we need the following lemma, which is
important in its own right.
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(69) Lemma Ifpe A"(V)and y e N\*(V), then
pAy = (=1)Ynreo.
Proof This is equivalent to showing that
A ®Y) = (-1’4} ® ¢).

To prove this equality we note that

‘ﬂ((p ® lp)(vl’ AR vr+s)

1
= (7 +s)‘ Z sgn O'(P(Va(l) s eees va(r))w(va(r+l) 3 e Va(r+s))
. a

1
= (F:i_ ?)7, Z Sgn U¢(Va(r+ 1) 9+ va(r+s))(p(va(l) 3 ey va(r))‘

If 7 is the permutation taking (1,...,s,s + 1,...,r+s)to(r+ 1, ..., r + s,
I,....r), then we may write

L@@ Y)Vis--os V)

1
=707 Z Sgn o sgn Tw(var(l) PERRR} vm(s))(p(va!(s+ 1)9°» var(r+s))
(r+ ) %

= sgn 1 (Y ® @)V, -y Vras)

Since it is easily checked that sgn T = (— 1), this gives the relation p A Y =

(—=1)*¢ no. |

(6.10) Theorem If r > n=dimV, then \'(V)={0}. For 0<r <n,
dim A"(V) = (?). Let o', ..., 0" be a basis of /\'(V). Then the set

{wil/\.../\wir

1Si1<l’2<“'<l‘,Sn}
is a basis of /\"(V) and dim A\(V) = 2"

Proof Lete,,...,e, be any basis of V. If ¢ is an alternating covariant
tensor of order r > dim ¥, then on any set of basis elements
¢le;, ..., e,) = 0. For some variable e, is repeated and interchanging two
equal variables both changes the sign of ¢ on the set and leaves it
unchanged—the same argument one uses to show that a determinant with
two equal rows is zero. Since all components of ¢ are zero, ¢ =0 so
A'P) = (0

Suppose that 0 < r < n and that w,, ..., w, is the basis of ¥* = A'(V)
dual to ey, ..., e,. Since &/ maps J"(V) onto /\"(V), the image of the basis
(0" ® - ® "} of 7'(V) spans /\"(¥). We have

o' ® @)= o' A Aot
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Permuting the order of i, ..., i, leaves the right side unchanged, except for a
possible change of sign according to Lemma 6.9. It follows that the set of (7)
elements of the form w''A--Aw™ with 1 <i, <i, <--- <i, < n span
/\"(¥). On the other hand, they are independent. For if we suppose that
some linear combination of them is zero, say

Y @A A0 =0,
i< <ir

then its value on each set of r basis vectors must be zero. In particular, given
k, < <k,, we have

0 = (Z a,'l ,'rwil AN wi')(ekl, ey ekr),

which becomes a,,.., =0 by virtue of the formula of Corollary 6.7
combined with the fact that w'(e,) = 6} for 1 < i, k < n. By suitable choice
of ky <+ <k,, we see that each coefficient must be zero; therefore the
given set of elements of A"(¥) is linearly independent and a basis.

To compilete the proof we note that

dim A = % dim A = § (1) = ’

r=0 \F

The following theorem is an immediate consequence of Theorem 6.2, the
fact that o7 o« F* = F* o of, and the definition of exterior multiplication.

(6.11) Theorem Let V and W be finite-dimensional vector spaces and
F,: W >V a linear mapping. Then F*: 7 (V) > 7 (W) takes \(V) into
/\(W) and is a homomorphism of these (exterior) algebras.

The Exterior Algebra on Manifolds

It is evident from what we have seen above that all of these ideas extend
to alternating tensor fields on a C* manifold M. We introduce the following
terminology:

(6.12) Definition An alternating covariant tensor field of order r on M
will be called an exterior differential form of degree r (or sometimes simply
r-form).

The set /\"(M) of all such forms is a subspace of 7 "(M). The following
two theorems are immediate consequences of what has been done above and
their proofs will be left to the reader. We let M, N be manifolds and
F:M — N be a C* mapping.
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(6.13) Theorem Let /\(M) denote the vector space over R of all exterior
differential forms. Then for ¢@e /\"(M) and e \*(M) the formula
(@AY), = @AY, defines an associative product satisfying @Ay =
(= 1)y A @. With this product, /\(M) is an algebra over R. Iffe C*(M), we
also have (fo) Ay = f(oAY) = o A(W). If 0!, ..., w" is a field of coframes
on M (or an open set U of M), then the set {@''A - Ao|
1 <iy <iy < <, < n}isa basis of \"(M) (or \"(U), respectively).

(6.14) Theorem If F:M > N is a C* mapping of manifolds, then
F*: A(N)— A(M) is an algebra homomorphism.

We shall call /\(M) the algebra of differential forms or exterior algebra
on M.

Exercises

1. By constructing an example show that tensor products are not commu-
tative and that ¢, ¥ symmetric (respectively alternating) does not imply
¢ ®  is symmetric (respectively, alternating).

2. Let Z(¥) denote the subspace of .7 (V) consisting of all ¢ € .7 (V) whose
constituents are symmetric: Z(¥) is the image of Z°(V) @ Z!'(V) ®
@ Z(V)® - in F (V) under the natural injection defined by inclu-
sion of X'(¥) in .7 (V). Define an associative multiplication in Z(¥) by
analogy with that for () and prove analogs of the theorems proved
for A\ (V) where possible.

3. SHow that /\(¥) is isomorphic to the quotient of the algebra .7 (V)
modulo the ideal .7 generated by all elements{u ® v + v® u|u, ve V}.

4. Show that the C® exterior forms of order r on M are exactly the func-
tions ®: ¥(M) x - x ¥(M) —> C*(M) which are multilinear, in the
sense of C*(M) modules, and alternating. Find an example of such a
function which is R-linear but not a tensor field. (Hint: Use [X, Y])

5. Let ¢y, ..., @, be elements of ¥* = A'(¥). Show that they are linearly
dependent if and only if ¢, A+ A @, # 0.

6. Assume g€ /\"(¥) and ve V. Define an element i(v)p of /\"~'(¥) by

(V@) Vyyoes Vo) = @V, Vs ooy Vo)

Show that i(v) thus defined determines a linear mapping of A"(¥) into
/N "H(V) and that if o A\"(¥), Yy € A*(V), then i(v)(@ AY) = (i(v)p) A
Y + (— 1)@ A (i(v)y). Extend this definition and these properties to ex-
terior forms on a manifold (with v replaced by a vector field).

7. A Riemannian metric ® on a manifold is often denoted by ds? in local
coordinates x',..., x" on M with ds* = Y7 ,_, g,,(x) dx' dx. Interpret
this by the use of tensor multiplication and Theorem 6.3. Show that



7 ORIENTATION OF MANIFOLDS AND VOLUME ELEMENT 213

from this expression for @ and the formulas dx’ = Y"_, (9x'/8y’) dy’ we
may derive the formula for change of components of @ relative to a
change of local coordinates.

7 Orientation of Manifolds and the Volume Element

We shall make one application of differential forms in this paragraph.
others in subsequent chapters. To do this we shall need the concept of an
oriented vector space. Let ¥ be a vector space and {e,, ..., e }, {f}, ..., f,} be
bases. The bases are said to have the same orientation if the determinant of
the matrix of coefficients expressing one basis in terms of the other is posi-
tive, that is, if det(af) > 0, where f, = Y., «fe;, i = 1,..., n. The reader
should check that this is an equivalence relation on the set of all bases (or
frames) of V¥ and that there are exactly two equivalence classes. A choice of
one of these is said to orient ¥ so that we have the following definition:

(7.1) Definition An oriented vector space is a vector space plus an equi-
valence class of allowable bases: all those bases with the same orientation as
a chosen one; they will be called oriented or positively oriented bases or
frames.

This concept is related to the choice of a basis Q of /\"(¥). Recall that
dim /\"(V) = (}) = L. so that any nonzero element is a basis. The relation-
ship to orientation appears as a corollary to the following lemma:

(7.2) Lemma Let Q +# 0 be an alternating covariant tensor on V of order
n=dimV and let e,,...,e, be a basis of V. Then for any set of vectors
Vieeooa Vo withv, = Y 3 eJ, we have

Q(vy, ..., v,) = det(7))Qey, ..., e,).

Proof This lemma says that up to a nonvanishing scalar multiple Q is
the determinant of the components of its variables. In particular, if ¥ = V" is
the space of n-tuples and e, ..., e, is the canonical basis, then Q(vy, ..., v,)
is proportional to the determinant whose rows are vy, ..., v,. The proof is a
consequence of the definition of determinant. Given Qand v, ..., v,, we use
the linearity and antisymmetry of Q) to write

Q(v,,....v,,)= Z a“- Qe ..., ;)

Z sgn go§™V - o Q ey, ..., €,)

oeS,

det(x))Qe,, ..., €,).

The last equality is the standard definition of determinant (€, is the symme-
tric group on n letters). |
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(7.3) Corollary A nonvanishing Qe /\"(V) has the same sign (or opposite
sign) on two bases if they have the same (respectively, opposite) orientation;
thus choice of an Q + 0 determines an orientation of V. Two such forms Q,, Q,
determine the same orientation if and only if Q, = A, , where A is a positive
real number.

Proof From the formula of the lemma we see that Q has the same sign
on equivalent bases and opposite sign on inequivalent bases. If 4 > 0, then
AQ has the same sign on any basis as Q does, whereas the contrary holds if
A <0 |

(74) Remark Note thatif Q # 0, then vy, ..., v, are linearly independent
if and only if Q(v,, ..., v,) # 0. Also note that the formula of the lemma can
be construed as a formula for change of component of Q—there is just one
component since dim /\"(¥) = 1—when we change from the basis ey, ..., e,
of ¥ to the basis vy, ..., v,. These statements are immediate consequences of
the formula in the lemma.

If ¥ is a Euclidean vector space, that is, has a positive definite inner
product ®(v, w), then in orienting ¥ we may choose an orthonormal basis
€, ..., e, to determine the orientation and choose an n-form 2 whose value
oney,...,e, is + 1. If f; = Y ofe; is another orthonormal basis, then

Qf,, ..., 1) = det(@)Qe, ..., e,) = 1,

depending on whether fi, ..., f, is similarly or oppositely oriented. [We have
used the fact that the determinant of an orthogonal matrix is + 1.] Thus the
value of Q on any orthonormal basis is + 1 and Q is uniquely determined up
to its sign by this property. In this case the form Q may be given a geometric
meaning when n = 2 or 3; Q(v,, v,) or Q(v,, v,, v3) is the area or volume,
respectively, of the parallelogram or parallelepiped of which the given vec-
tors are the sides from the origin. This is a standard formula from analytical
geometry and serves as a geometric motivation for some later applications.
(See Exercise 2.)

To extend the concept of orientation to a manifold M one must try to
orient each of the tangent spaces T,(M) in such a way that orientation of
nearby tangent spaces agree. We will do this in two ways and then demon-
strate their equivalence as an application of the ideas of this chapter.

(7.5) Definition We shall say that M is orientable if it is possible to define
a C* n-form Q on M which is not zero at any point—in which case M is said
to be oriented by the choice of Q.

By virtue of Corollary 7.3 any such Q orients each tangent space. Of
course any form Q' = AQ, where 4 > 0, is a C® function would give M the
same orientation.
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Thus R" with the form Q@ = dx' A+ A dx" is an example; this is known as
the natural orientation of R" and corresponds to the orientation of the frames
d/ox!, ..., 8/0x". 1f U c R"is an open set, it is oriented by O, = (|, and we
say that a diffeomorphism F: U — V < R" is orientation preserving if
F*Q, = iQ,, A > 0a C* function on U. More generally a diffeomorphism
F: M, - M, of manifolds oriented by Q,, Q,, respectively, is orientation-
preserving if F*Q, = AQ,, where 4 > 0 is a C* function on M.

A second, perhaps more natural definition of orientability could be given
as follows: M is orientable if it can be covered with coherently oriented
coordinate neighborhoods {U,, ¢,}, that is, neighborhoods such that if
U,nU, #+ &, then ¢, ¢, ! is orientation-preserving. We shall now see
that this second definition is equivalent to Definition 7.5.

(7.6) Theorem A manifold M is orientable if and only if it has a covering
{U,, @,} of coherently oriented coordinate neighborhoods.

Proof First suppose that M is orientable and let Q2 be a nowhere vanish-
ing n-form that determines the orientation. We choose any covering {U,, ¢,}
by coordinate neighborhoods, with local coordinates x;, ..., x2 such that for
Q restricted to U, we have the expression in local coordinates

@; *Qy, = A{x)dxi A Adx] with 4, > 0.

We may easily choose coordinates so that the scalar function 4, , component
of Q, is positive on U,, since replacing coordinates (x!,...,x") by
(—x', ..., x"), that is, changing the sign of one coordinate, changes the sign
of 4. An easy computation, using Lemma 7.2 and Remark 7.4, shows that if
U,n U, # &, then on this set the formula for change of component is

ox,

16) i, det(aﬁ) =1y

Since 4, > 0 and 4; > 0, the determinant of the Jacobian is positive, so the
coordinate neighborhoods we have chosen are coherently oriented.

Now suppose that M has a covering by coherently oriented coordinate
neighborhoods {U,, ¢,}. We use a subordinate partition of unity {f;} to
construct an n-form Q on M which does not vanish at any point. For each
i=1,2,... we choose a coordinate neighborhood U,,, ¢,, of the covering
such that U,, = supp f;; these neighborhoods, which we relabel U;, ¢;, cover
M. If U;n U; # &, then by assumption the determinant of the Jacobian
matrix of ¢, - @; ! is positive on U; n U;. Define Qe A\"(M) by

Q=Y fioHdx! nndx),

extending each summand to all of M by defining it to be zero outside the
closed set supp f;. Letting pe M be arbitrary, we will show Q, # 0. By the
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local finiteness of {supp f;} we may choose a coordinate neighborhood V, ¢
of p which is coherently oriented to the U, ¢; and intersects only a finite
number of the sets supp f;, say for i = iy, ..., i,. Let y', ..., y" be the local
coordinates in ¥ and use formula (7.6’), on each summand to change
components:

k

x oxk. n
Q, = 3 foloitdsin--ond) = T fifp)der(37) W@t sy,
i=1 Y Jutm
Now each f;, > 0 on M and at least one of them is positive at p; moreover,
the Jacobian determinants are all positive. This implies Q, # 0 and since p
was arbitrary, Q is never zero on M. |

A Riemannian manifold has the special property that the tangent space
T,(M) at every point p has an inner product. Applying our remarks about
n-forms on a Euclidean vector space of dimension n, we have the following
theorem:

(7.7) Theorem Let M be an orientable Riemannian manifold with Rieman-
nian metric ®. Corresponding to an orientation of M there is a uniquely
determined n-form Q which gives the orientation and which has the value + | on
every oriented orthonormal frame.

Proof 1t is clear from our earlier discussion that at each point pe M, Q,
is determined uniquely by the requirement that on any oriented orthonor-
mal basis Fy,, ..., F,, of T,(M)we have Q,(F,,,..., F,,) = + 1. Let U, ¢ be
any coordinate neighborhood with coordinate frames E, ..., E,. The func-
tions g;(p) = ®,(E;,, E;,), pe U, define the components of ® relative to
these local coordinates and are C* by definition. We shall derive an expres-
sion for the component Q(E,, ..., E,) on U in terms of the matrix (g;;), from
which it will be apparent that Q is a C* n-form. Choose at pe U any
oriented, orthonormal basis F,,,..., F,, and let the n x n matrix (o)
denote the components of E,, ..., E,, with respect to this basis:

Eil’= Z(Z"-‘ka, i=l,...,n.
k=1
Then since ®(F,,, F;,) = d,;, we have
9i(p) = ®ylEip . Ejp) = Zk:“:"ka : Z,: “5"7:") - kz afery
=1

for | < i,j < n. This may be written as a matrix equation:

(9:(p)) = ‘44,
the product of the transpose of 4 = (af) with A itself.
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On the other hand Q/E,,...., E,,) = det(a})Q(F,,, ..., F,,) by
Lemma 7.2, and Q(F,,, ..., F,,) = +1 by our definitions. Since det('44) =
(det 4)* = det(y;;), this gives for the component of Q in local coordinates

Q,(Ey,. ... E,;) = (det(g,(p))) "2

which tells us that the component, being the square root of a positive C®
function of pe U, is itself a C* function on the local coordinate neighbor-
hood U. Since U, ¢ is arbitrary, Q is a C* n-form on M. |

This form Q is called the (natural) volume element of the oriented
Riemannian manifold. We have just seen that in local coordinates we have
the following expression for Q:

(7.8) 0 Q= Jgdx' A AdX,

where g(x) = det(g;;(x)). [We use the same notation for g;; as functions on U
and on ¢(U).] When M = R" with the usual coordinates and metric, this
becomes Q = dx' A---Adx" In this case, as we remarked earlier, the value
of Q, on a set of vectors is the volume of the parallelepiped whose edges from
p are these vectors. In particular, on the unit cube with vertex at p and sides
o/ox, ..., 0/0x", Q has the value + 1. As might be anticipated, the existence
of the form Q on a Riemannian manifold will enable us to define the volume
of suitable subsets of the manifold and to extend to these manifolds the
volume integrals defined in R" in integral calculus.

Exercises

1. Using the definition of dx' A---Adx" on R" from Corollary 6.7, show
that its value on &/ox!, ..., ¢/dx" is indeed + 1 so that this is Q for R"
with the standard Riemannian metric, as claimed above.

2. Prove that the volume of the parallelepiped of R* whose vertex is at the

origin and whose sides (from this vertex}) are the vectors

v, = (x}, x2, x?). i = 1,2, 3, is in fact the determinant of the matrix (x/).

Show that n x n determinants as functions of the n-rows v, ..., v, are

completely characterized by being alternating n-tensors on F” whose

value on the standard basis is + 1.

4. Compute the expression for Q on S? (with the induced metric of R?) in
terms of the coordinates given by: (i) stereographic projection and (ii)
spherical coordinates (p, 0, p) with p = 1.

o

8 Exterior Differentiation

Much of this chapter has been devoted to extending the concepts of
covariant tensors, and of operations on covariant tensors, on a single vector
space V to tensors and tensor operations on manifolds. This was done
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according to a very standardized procedure which consisted in viewing each
tangent space T,(M) as a copy of ¥ and thus extending the tensor or tensor
operation point-by-point, making suitable restrictions to ensure some sort of
smooth variation. By using very different ideas we now introduce an impor-
tant operator d mapping /\ (M) onto itself. It is defined in terms of differen-
tiation and is known as the exterior derivative; it has no analog on /\(¥), the
exterior algebra of a single vector space.

When U is an open subset of M we shall denote by @ the restriction of
an exterior form on M to U; of course 8y = i*8, i: U — M being the inclu-
sion map. When U, ¢ is a coordinate neighborhood with x', ..., x" as coor-
dinate functions on U, that is, ¢(g) = (x'(q), ..., x"(g)), then the differentials
of these functions dx', ..., dx" are linearly independent elements of /\ '(U)
and constitute a C® field of coframes on U. It follows that they, with 1,
generate /\(U) over C*(U), or equivalently, C*(U) = A\°(U) and A\'(U)
generate the algebra /\(U) over R. Thus locally every k-form 6 on M has a
unique representation on U of the form

Oy= Y a . dx"Acadxt  a .., eC™(U)
i1<"'<ik

the summation being over all sets of indices such that 1 <i; <i, <
<y < n. If we define b; ..;, for all values of the indices so as to change sign
whenever two indices are permuted—in particular to be zero if two indices
are equal—and to equal g, ..., if i; <'** < i,, then we also have a unique
representation

1 ; .
6y = Zk—!bil i AXT A A dX

the summation being over all values of the indices. Both representations are
used in practice. We are using dx!,...,dx" to denote the coordinate
coframes, rather than !, ..., " as in Section 1, in order to emphasize that
the dx' are differentials of functions on U = M. This is important in what
follows.

(8.1) Theorem Let M be any C® manifold and let /\(M) be the algebra of
exterior differential forms on M. Then there exists a unique R-linear map
dye: \(M) = \(M) such that :

(1) iffe \®(M) = C™(M), then dy, f = df, the differential of f:

(2) if 0e A\'(M) and ae \(M), then dy(@rc)=dybOrc+
(—1y0 Adyo:

(3) d = 0.
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Proof We give the proof in a series of steps.

(A) We remark that if d, exists and g, /!, ..., f" € C®(M), then (1)-(3)
imply that for 6 = gdf' A--- Adf” we must have

dy0 = dgndf' n---ndf".

Now suppose that M is covered by a single coordinate neighborhood
U, ¢ with coordinate functions x', ..., x". The above remark and linearity
imply that d,, must be given by the formula

(*) dy(Y ay, ..p dx" A AdX") = Y da;, o AdXT A AdXE,
where
da; ... = z":aa"‘"f".'dxj
;o ox

and the summation in (x) is over 1 < i, < i, <--- < i, < n. Therefore, if
defined at all, d), is unique in this case.

Conversely, the d,, defined by (x) is linear and trivially satisfies (1) and
(3)- To check (2) it is enough to consider forms 6 = a dx'' A+ Adx'r and
o = bdx/' A-+- Adx)s the general statement being then a consequence of
linearity. We have

dyf(adx'' A+ Adx™) A (b dxi' A<+ A dxF)]
= dy(ab)(dx"* A+~ AdxT) A (dXTV A - A dx?)
= [(dya)b + a(dyb)] A (dX"* A= AdX)A (dXIT A=+ A dxP)
= (dyandx'* A AdxXT)A (b dxit A A dXF)
+ (= 1)(@adx* A Adx*)A(db AdxI' A+ AdxE),
which completes the proof. The (—1)" is due to the fact that
dbAdx A Adx = (= 1Y dx' A+ Adx* Adb.

(B) Now suppose that dy,: (M) — /\(M) with properties (1)-(3) is
defined and that U = M is a coordinate neighborhood on M with coordin-
ate functions x, ..., x". According to (A), dy: A(U) = /A (U) is uniquely
defined by (). We will show that for any 6 e A\ (M) the restriction of dy, 6 to
U is equal to dy, applied to 6 restricted to U:

(dy 0)y = dyby .
We may suppose that 6 /\"(M) and that
, € C*(U).

Op =Y a;, ., X Ao AdX, ay
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Suppose p is an arbitrary point of U. Applying Corollary II1.3.5 to an open
set W, pe W and We U, we may find a neighborhood V of p with V ¢ W
and C* functions y', ..., y"and b;, ..., on M which vanish outside W but are
identical to x!, ..., x", respectively, on V. Define o € /\"(M) by

o= by ... dy' A ndy”.

Then ¢ is an r-form on M which vanishes outside W and is identical to # on
V. Now let g be a C* function on M which has the value + 1 at p and is zero
outside V. The r-form g(6 — o) vanishes everywhere on M as does
dg A (0 — o). Therefore, using (A),

gdy0=gdyo=gYda, . Ady' A ndy”.
On V we have
Nda, ..ondy A Aadyt =Y da, . AdX A A dXE

so that at the point p, where g(p) = 1,dy 0 = dy 0y . Since p is arbitrary, this
holds throughout U.

(C) Ifdy: A\(M) - A\(M) satisfying (1)~(3) exists, it is unique. Indeed,
let {U,, @,} be any covering of M by coordinate neighborhoods; each dy;,
exists by (A); and for any 8 e /\(M) we have (dy 0)y, = dy 0y, for any U, by
(B). Since every pe M lies in a neighborhood U,, this would determine dy,
completely.

On the other hand, we may use this formula to define dy, . To do so we
must verify that if pe U, n Uy, then d,, 8 is uniquely determined at p. This
essentially repeats the argument above: Let U = U, n Uj; applying (A) and
(B) to U, an open subset and coordinate neighborhood with coordinate map
¢g cut down to U, we have

(du.Ou,)u =dyly = (dUﬂGUg)U'

Therefore (dy, )y, is determined on every U, in such a manner that
(dm0)y, = (dp 0)y, on points common to U, and Uy. This determines dy, .

Because (1)-(3) hold on each U, and the other operations of exterior
algebra commute with restriction, that is, (6 A 6)y = 0y A6y, and so on, dy
has the required properties as an operator on /\(M). This completes the
proof. |

Since d,, is uniquely defined for every C* manifold M, we can drop the
subscript M and use d to denote all of these operators. We know from the
above proof that d commutes with restriction of differential forms to coor-
dinate neighborhoods. It is important to know how it behaves relative to a
C* mapping F: M — N. Any such mapping, as we know, induces a homo-
morphism F*: A(N) - A(M). The following theorem gives the relation of
F* and d.
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(8.2) Theorem F* and d commute, that is, F* o d = d - F*,

Proof We know that both F* and d are R-linear and that the equality
F*(dp) = d(F*p) holds on M if it holds locally. More precisely, by virtue of
the facts concerning d determined above we see that the theorem will hold if
we can establish it for any pairs V, i, U, 0 of coordinate neighborhoods on
M, N, respectively, such that F(V) < U. Let m = dim M and n = dim N
and x',..., x™ and y', ..., y" be the coordinate functions on V, U, respec-
tively, with 3 = yi(x', ..., x™), j = 1, ..., n, giving the map F in local coor-
dinates. Then it is enough to establish F*od = do F* on forms of the
following type:

@ = a(x)dx"' A+ Adx'y

any other forms being the sum of such. We proceed by induction on the
degree of the forms. For forms a(x) of degree zero, that is, C* functions, we
have

F*(da) = d(F*a),
since
F¥(da)(X,) = da(F X ,) = (FyX,)a= X,(a> F)= X (F*a) = d(F*a)(Xp).

(Nore: By definition, F*a = a - F.)

Suppose the theorem to be true for all forms of degree less than k and let
¢ be a k-form of the type above. Let ¢, = a dx'and ¢, = dx'* A+ Adx*s0
that @ = @, A ¢, with both ¢, and ¢, of degree less than k; moreover since
d* = 0, we have dg, = 0. Thus

d(F*((Pl A‘Pz)) = d[(F*(Pl)A (F*(Pz)]
= (dF*@,) A (F*@,) — (F*o ) A (dF*e,)
= F¥dg,) A Fre, = F¥(do, A ;) = F*d(e ne,). 1

An Application to Frobenius’ Theorem

The algebra of exterior differential forms /\(M) on a C* manifold M,
with the operator d just defined, is very important in the application of
calculus to manifolds. Forms are involved in integration on manifolds
(especially in extending Gauss’, Stokes’ and Green’s theorems); in the alge-
braic topology of the manifold via the theorems of de Rham and Hodge; and
in the study of partial differential equations. We will touch on the first two
topics later. As to the differential equations aspect, we will show next that
the essential data and hypothesis of Frobenius’ theorem can be stated in
terms of d and /\(M).

On a vector space ¥ of dimension n, a k-dimensional subspace D may be
determined in either of two equivalent ways: (i) by givinga basis e, ..., ¢, of
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D or (ii) by giving n — k linearly independent elements of F*, say
¢**1, ..., ¢" which are zero on D. In fact we may extend e,, ..., ¢, to a basis
e, ...,e, of Vsothat ¢**! ..., @"is part of a dual basis ¢', ..., ¢" of *.

Slmllarly, if A is a C*® distribution of dimension k on M, an n-manifold,
then locally, say in a coordinate neighborhood V, ¥, we may suppose A is
defined by n — k linearly independent 1-forms ¢**!, ..., ¢". We may restate

the condition that A be involutive—hence Frobenius’ theorem—as follows:

(8.3) Theorem Let A be a C*® distribution of dimension k on M,
dim M = n. Then A is involutive if and only in a neighborhood V of eachpe M
there exist n — k linearly independent one-forms @**', @**2, ..., @" which

vanish on A and satisfy the condition

do"= Y 6rg), r=k+1,...,n,

I=k+1
for suitable 1-forms 8.

Proof This may be considered a sort of dual statement to our earlier
condition on A in terms of the existence of a local basis X, ..., X, at each
point. (Just as in that case, we may state the conditions in a fashion which
does not depend on local bases. This will be done below (8.7), with proof left
to the exercises.)

Suppose a distribution A is given. Then in a neighborhood V of each
point a local basis X4, ..., X, of A can be completed to a field of frames
Xy oHr Xy oon X If (p’,. Lok @1, ..., @" is the uniquely determined
dual field of coframes, then ¢**!, ..., ¢" vanish on X, ..., X, and hence on
A. The distribution A is involutive by Definition 1V.8.2 if and only if in the
expressions [X;, X;] = Yi-, ci; X,, giving [X;, X|] as linear combinations
of the basis, we have ¢;; =0for 1 <i,j<kandk+1<l<n

(84) Lemma Let we /\'(M)and X,Y € X(M). Then we have
do(X, Y) = Xo(Y) — Yo(X) — o([X, Y])

Let us assume the lemma and proceed with the proof. We compute d¢’,
using the lemma and recalling that ¢(X;) is constant for 1 < i,j < n. We
have then,

n

do'(X;, X)) = =o' (X, X)) Zuwwo—

for 1 < i,j, r < n. On the other hand

’*% ,mmw, l<r<n,
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where b, are uniquely determined if we assume b, = —b{,. Hence
do'(X;, X;) = 3 Z bule(X)e'(X;) — ¢'(Xi)e*(X )]
s, !

= %(b;j - b;'i) = b?j-
From this we have b}; = —c{; and so the system is involutive if and only
if for each r > k

k n
do" = Z Z b o' + Z %b;l‘l’j A

t=k+1 li=1 j=k+1
that is, the terms involving b}; with | < i, j < k and r > k vanish. Taking the

terms in { } as 6] we have completed the proof except for Lemma 8.4. J

Proof of Lemma 8.4 1t is enough to prove that it is true locally, say ina
coordinate neighborhood of each point. In any such neighborhood with
coordinates x', ..., x",w = Y-, a; dx' and it is easy to see that the equation
of the lemma holds for all w if it holds for every w of the form f dg, where f, g
are C* functions on the neighborhood. Suppose, then, that @ = fdg and let
X, Y be C*-vector fields. Then, evaluating both sides of the equation of the
lemma separately, we obtain

do(X, Y) = dfndg(X, Y) = df (X) dg(Y) — dg(X) df (Y)
= (Xf)(Yg) — (Xg)Yf)

and

Xo{Y) - Yo(X) — oflX, Y]) = X(fdg(Y)) = ¥(fdg(X)) - fdg((X. Y]
= X(f(Yg) - Y(f(Xg)) — f(XYg — YXg)
= (Xf)Yg) — (Xg)(Yf)

after cancellation. This proves the lemma. (See Exercise 3 for a generaliza-
tion.) |

We can state Theorem 8.3 in a more elegant way if we introduce the
concept of an ideal of A\(M).

(8.5) Definition An ideal of A\ (M) is a subspace .# which has the property
that whenever ¢ € .# and ¢ \(M), then p AO€ ..

(8.6) Example Let ¢ be a subspace of /A\'(M), that is, a collection of
one-forms closed under addition and multiplication by real numbers. Then
the set A\(M) A # ={0 A ¢|@ € #} is an ideal, the ideal generated by ¢.
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Now suppose A is a distribution on M and suppose that ¢ is the collec-
tion of l-forms ¢ on M which vanish on A, that is, for each pe M,
@,(X,)=0forall X, eA,. ¢ isasubspace;in fact, il fe C*(M)and p € ¢,
then fo e #. We have:

(8.7) A is in involution if and only if d ¢ = {d@ | @ e #} is in the ideal gen-
erated by #. .

The proof is left to the exercises.

Exercises

These exercises involve differential forms on a manifold M. A differential
form ¢ on M is closed if dp = 0 and exact if ¢ = df for some form § on M.

1. Show that the closed forms are a subalgebra (over R) of /\(M), which
contains the collection of exact forms as an ideal. If F: M — N is C%,
then show that closed forms are mapped to closed forms and exact forms
to exact forms by F*,

2. Let M = R* and determine which of the following are closed and which
are exact:

(@) @ =yzdx + xzdy + xy dz;
(b) ¢ = xdx + x*y*dy + yzdz;
() 0=2xy*dxndy+ zdyndz

3. Show that the following generalization of Lemma 8.4 is true for every

pe /\'(M):
r+l

do(X ..., X, )= Y (=1 'Xio(Xy, ..., Xiy ooy X))

i=1

+ .Z(—1)"”(p([X,.,Xj],X1,...,)2,.,...,)2], D G
l(j
(where the caret means that the term is omitted).
4. Let X € ¥(M) and define iy: \"(M)— A"~ (M) by

ix(p(Xl""# Xr»l) = (p(X’Xl""’Xr—l)'

(Compare Exercise 6.6 for the vector space analog.) Show that iy is not
only R-linear, but C*(M)-linear and that the operator Ly = iyd + diy is
an R-linear mapping of /\(M) to /(M) with the following properties:
(i) Ly(A\"M)) = \"(M); (i) if o€ /\"(M) and ¢ € A\*(M), then
Ly(o A )= (LxoW + @ A Lyy;and (iii) Lyd = dLy.

5. Show that there can exist at most one R-linear operator Ly on /\(M)
with properties (i) and (ii) of Exercise 4 and the following property: If
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feC” (M), then Ly f = Xfand Ly df = d(Xf). From this deduce that
the operator L, of Exercise 5 is uniquely determined.
6. Prove (8.7).

Notes

A translation of Riemann’s famous Inaugural Address, given at Gottingen on the occasion
of his being named a Privat dozent (an instructor whose fees depended on how many students
came to his lectures) may be found in the book of Spivak [2], which particularly valuable
source material for those interested in further reading on Riemannian geometry. [The entire
second half of his book is built around an explanation of the (often obscure) meaning of
Riemann’s lecture. This material is also relevant to Chapters VII and VI below.]

The author does not know when partitions of unity were first introduced. They are some-
what out of place in this chapter, but were placed here since this is the first point at which they
were needed. Not all of the applications, as is seen, have to do with tensors. The imbedding
theorem given here is a very weak version of the Whitney imbedding theorem for which proofs
of stronger versions can be found in several of the references, for example, Auslander and
Mackenzie [1] and Sternberg [1]. These proofs are quite within the reach of the reader at this
point and would form a valuable supplement to the text, especially for those interested in
differential topology. The same is true of various approximation theorems (especially those of
Munkres {1, Sections 3 and 4], which will be very useful for readers who wish to pursue further
the consequences of differentiable structure alone (without further geometric structure such as a
Riemannian metric. Lie group structure, and so forth). This is basic to modern differentiable
topology (see Milnor [2] for example).

Readers who desire a more complete and general approach to tensors and tensor fields will
find it in many of the texts listed in the references. Both Kobayashi and Nomizu [1] and
Sternberg [1] begin with this subject and could be studied with profit at this point.

Exterior differential forms were first used extensively by Elie Cartan whose work has
enormously influenced all modern differential geometry and Lie group theory. The calculus of
A\ (M), the exterior algebra on M, is his creation and he made many applications of it, too
numerous to discuss here. Some idea of his contributions may be found in the article in his
memory by Chern and Chevalley [1].
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The chapter begins with a brief review (without proofs) of properties of multiple integrals
over domains of R". In the next section this theory is extended to C* manifolds. The extension
to manifolds involves two steps: first, we define integrals over the entire manifold M of suitable
exterior n-forms and second, for those M which have a predetermined volume element (for
example, Riemannian manifolds), integrals of functions over domains are defined. All the
standard properties of integrals follow readily from the corresponding facts in the Euclidean
case. As an illustration of the use of integration on manifolds an application is made to compact
Lie groups. It is shown that by averaging a left-invariant Riemannian metric on a compact
group one may obtain a bi-invariant Riemannian metric. With the same techniques—due to
Weyl—it is shown that any representation of a compact group as a matrix group acting on a
vector space leaves invariant some inner product on that vector space, from which it follows
that any invariant subspace has a complementary invariant subspace.

Following this, in Section 4, the concept of manifold with boundary is introduced. This
generalizes the line interval, unit disk, and similar simple manifold-like objects needed if one is
to discuss “pasting™ together of manifolds—as in Chapter [-—or differentiable homotopy.
However, our immediate interest is in a statement and proof of Stokes's theorem, using mani-
folds with boundary as domains of integration. This theorem, a generalization of the fundamen-
tal theorem of calculus, embodies Green’s theorem on the plane, the divergence theorem, and
Stokes’s theorem of advanced calculus in a unified form. If M is a manifold with boundary 6M
and w an n — | form on M, dim M = n, then the theorem asserts the equality of the integral of
w over M (with suitable orienttation) and dw over M. This theorem, proved in Section 5,
concludes our development of the basic techniques of integration on manifolds.

226
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The remainder of the chapter is devoted to various applications of the techniques accu-
mulated thus far to the (algebraic} topology of manifolds. In order to introduce these ideas the
concept of homotopy or deformation of mappings is introduced. The simplest case is the
deformation over a manifold M of a loop based at be M, that is, a continuous image of
0 <t < 1 with both endpoints at b. In general, not all loops can be deformed to one another on
M (consider M = T2 for example). The classes of those which can be deformed to one another,
with a suitable product, form a group—the Poincaré fundamental group of M. Although quite
diverse in general, these groups are isomorphic for two homeomorphic manifolds, furnishing
the simplest exampie of an algebraic object which measures topological invariants of a space.

Following this, the de Rham groups are defined. They are the groups of closed k-forms
modulo exact k-forms, and are used here, together with integration theory, to prove some
classical theorems of topology (in the spirit of Milnor [2]). In particular, a proof is given of the
Brouwer fixed point theorem and of the nonexistence of nowhere vanishing vector fields on
even-dimensional spheres. Finally these techniques are once more applied to compact Lie
groups to obtain—by way of example only—a few interesting scraps of information about their
topology.

1 Integration in R" Domains of Integration

As might be expected, we begin with integration in Euclidean space and
carry over to manifolds the basic ideas developed there, just as we have done
for differential calculus in earlier chapters. The basic facts that we will need
concerning integrals on various subsets of R" will be assumed known. We
shall enumerate them here, and they may be found, proved in detail, in the
references, for example, Apostol[1] or Spivak [1]. We need only the
Riemann integral. However, we must admit domains of integration and
functions which are slightly more complicated than those found in elemen-
tary calculus. This is natural since a diffeomorphism, or change of coordin-
ates, badly distorts even a simple region such as a cube. First, we proceed to
define the domains of integration which we allow.

We shall say that a subset 4 of R” has (n-dimensional) Jordan content
zero, ¢(A) = 0, if for any ¢ > 0, there exists a finite collection of cubes
Cy, ..., C; which cover 4 and the sum of whose volumes is less than ¢,
Yi-1 vol C; < & If A satisfies a similar condition with the less rigid require-
ment that for ¢ > O there exists a countable set of cubes covering 4 with
Y, vol C; <&, then we say that 4 has Lebesgue measure zero, m(A) = 0.
These are not equivalent concepts. It is easy to see, for example, that the
subset of rational numbers in R has measure zero but not content zero.
However, ¢(a) = 0 implies m(4) = 0 and, if A is compact, the converse also
holds. More generally m(A4) = 0 if and only if 4 is a countable union of sets
of content zero.

(1.1) Definition A bounded subset D of R" is said to be a domain of
integration if its boundary Bd D has content zero. A function fon R" is said
to be almost continuous if the set of points at which it fails to be continuous
has content zero.
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The most obvious example of a domain of integration is a cube, or an
n-ball. The usual domains of integration in R? or R*, bounded by piecewise
differentiable curves or surfaces, are also examples.

(1.2) Theorem Let D be a domain of integration in R™ and let f be a real-
valued function on D. Suppose that f is bounded and almost continuous on D.
Then the Riemann integral (p, fdv exists.

We shall refer to a function with these properties as integrable on D. To
say that the integral exists means, of course, that it is a limit of approximat-
ing sums in the usual sense. The proof is essentially the same as that which is
at least outlined in every calculus book. It is a very useful exercise to carry it
out in detail and then to verify the following properties which are relatively
easy consequences of the reasoning used in proving existence.

Basic Properties of the Riemann Integral

Let D, D,, and D, denote domains of integration in R" and f, g bounded
almost continuous functions on R". It is not too difficult to show that D, the
closure of D, and D, the interior of D, are also domains of integration as are
D,uD,, DynD,, and D, — D,. We have the following standard
properties:

(1.3) If ¢(D) = 0, then j fdv=0.

(14) [ fav= J'D fdv + J

*Dyu Dy 1 D

Sdv —J‘ Sfdv.

DynD;

(15) | (of + bg)dv=a | fdv+b J gdv  forall abeR.

“D

(1.6) Suppose f >0 on D and ¢(D)# 0. Then J Sfdv>=0. Equality
D

holds if and only if f = O at every point at which it is continuous.

Recall that the characteristic function k , of a subset A of a space X is
defined to be identically equal to + 1 on 4 and 0 outside 4, that is, on the
complement of 4. Therefore k , is bounded and its discontinuities are exactly
the set of boundary points of 4, Bd 4. In particular, if D is a domain of
integration, we have ¢(Bd D) = 0so that kj, is integrable. If D’ is a domain of
integration which contains D, then [p, kpfdv = [, fdv. Thus if f on R" is
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bounded, has compact support, and is almost continuous, then we ‘define
{ g~ f dv unambiguously by {g. fdv = [, fdv, using any domain of integra-
tion D such that D = supp f.

(1.7) Definition Let D be any domain of integration. Then we define the
volume of D, vol D, by

vol D = J kp dv = J kp dv.
D

Rn

The following property is an easy consequence of the definitions:

(1.8) (inff) vol D < J fdv < (supf) vol D.
D D D
When D is connected and [ is continuous, we obtain the mean value property
l‘ fdv=f(a)vol D
*D
Jor some point ae D.

The following theorem, a special case of Fubini’s theorem, is more
difficult to prove than the above properties, although we need only the
simplified version below. It justifies the usual evaluation of multiple integrals
by repeated single integrations of functions of one variable (iterated
integrals).

(1.9) Theorem If f is a continuous function on the domain of integration
D={xeR"ad <x'<b,i=1, ..., n} then

[ fdv=

an val
the expression on the right denoting repeated single integrations.

We shall need one further theorem from advanced calculus, the principle
which allows us to change the variable, or variables, of integration. In the

case of a function of one variable this is the standard and indispensable
technique of substitution, which allows us to write

.d b d
[ sy = slg)) ) ax

where y = g(x), a < x < b, with ¢ = g(a) and d = g(b). Unless we assume
dy/dx > 0, we encounter problems in this formula. If this condition is
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satisfied, then y = g(x) may be considered as a change of variable, or as a
diffeomorphism of [a, b] onto [¢, d]. The general multiple-integral statement
is less familiar in elementary calculus, although it occurs, for example, in the
passage from Cartesian to polar, cylindrical, or spherical coordinates. It is
proved in most advanced calculus courses for n = 2 or 3 at least, so we will
assume it without proof. This is the most difficult of the standard theorems
of integral calculus which we will expect of the reader. It will be essential to
us in extending Riemann integration to manifolds, since we clearly must
know the effect of change of coordinates on the value of an integral.

Let us denote by G: U — U’ a diffeomorphism of U = R" onto U’ = R"
and by AG the determinant of its Jacobian. We suppose G to be given by
coordinate functions y' = y!(x), i = 1, ..., n. Then AG = det(dy/ox’). A
function f” on U’ determines a function f= f' < G on U and we have the
following relation of their integrals.

(1.10) Theorem (Change of Variables) Suppose Dc U and
D’ = G(D) < U’ are domains of integration and that f' is integrable on D'. Let
f=/f"°G,that is, f(x', ..., x") = f'(g"(x), ..., g"(x)). Then fis integrable on
D and

jD,f ) dv’ = fo (G(x))|AG | dv = L £(x)|AG | do.

(1.11) Example Let
D={p,0,9)l0<a<p<b,0<0<n/2 n/4<¢<mn/2)

and D’ be the first quadrant region of xyz-space between the spheres with
center at the origin and radii a and b, and outside the inverted cone
z? = x? + y? (Fig. VL1). Let G be given by the coordinate functions

x = psin ¢ cos 6, y = psin ¢ sin 6, Z = pcos Q.

/4

(b)

Figure VL1
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Given f'(x, y,z) = x> + y* + 2% then f=f"- G is
S(p, 8, ) =f'(psin ¢ cos 0, psin ¢ sin 8, p cos @) = p?
and A = p? sin ¢ so that

J (xz+y2+22)dxdydz=Jp2|pzsin¢| dp de db.
D

D

If we are to extend these ideas to C® manifolds, we need to know what
happens to domains of integration under difffomorphisms. A cube in R", for
example, is such a domain since its boundary—the faces—have zero (n-
dimensional) content. Does it remain a domain of integration after a diffeo-
morphism? If we recall that there are continuous images of an interval,
0 <t < 1, which fill a square, this question seems less trivial; it is possible
that the image of the boundary of a cube could become very large under a
differentiable mapping. The following lemma shows that this does not
happen. Recall that a set is relatively compact if its closure is compact.

(1.12) Lemma Let A be a relatively compact subset of R" of content zero
and let F: A - R™ n < m be a C* mapping. Then F(A) has content zero.

Proof By definition F is C! on an open set U o 4 and we may choose
an open set ¥ o A4 such that V is a compact subset of U. Let K =
sup, . 7|df*/0x’|, a bound of the derivatives on V of the coordinate functions
of the map F. Choose 8,, 0 < §; < 1, so that every cube of side 4, whose
center is in A lies inside V. By the mean value theorem (Theorem I1.2.2),
we have

|IF(x) = F(a)]| < (nm)'*K|x — d|

for any x in a cube of side 4, and centerae 4.1f 4, > § > 0, then a cube C of
side & and center ae A must map into a cube C’ of center F(a) and side
length less than or equal to (nm)!/2Ké. Thus we see that F(C) lies in a cube
C’" whose volume satisfies

vol €' < ((nm)'2Ké)™ = (nm)y™2K™o™~"8" < k vol C,

where k = K™(nm)™? is independent of ae 4. (We have used 6 < 6, < 1
and vol C = §#"). From this it follows at once that given any ¢ > 0, we may
cover F(A) with a finite number of cubes Ci, ..., C. whose total volume is
less than ¢. We need only cover 4 with cubes Cy, ..., C, whose volume is less
than e/k and whose side is less than é,. This shows that the content of F(A4) is
ZEro. |

Using this lemma it is easy to extend the notions of zero content and zero
measure to subsets of any C* manifold M of dimension .
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(1.13) Definition A relatively compact subset A = M is said to have con-
tent zero, ¢(A) = 0, if it is the union of a finite number of subsets 4 = 4, U
-++u A, each of which lies in a coordinate neighborhood U;, ¢; such that
c(9{A;))=0in R", i = 1,...,s. An arbitrary subset B = M is said to have
measure zero, m(B) = 0, if B is the union of a countable collection of subsets
B =2, B; such that each B; has content zero.

In the light of this definition we may state, as a corollary to the lemma,
the following facts about sets on a manifold:

(1.14) Corollary If A = M has content (measure) zero and F: M — N isa
C' map withdim M < dim N, then F(A) has constant (measure) zero. In partic-
ular, this holds if F is a diffeomorphism.

Proof This is an obvious application of Lemma 1.12 to Definition 1.13.
]

We define domain of integration in an arbitrary manifold precisely as we
did for R": D = M is a domain of integration if D is relatively compact and
the boundary of D has content zero, ¢(Bd D) = 0. [Note that in R" “rela-
tively compact " is equivalent to “bounded.”] We have analogous properties
to those of domains of integration in R".

(1.15) Theorem If D is a domain of integration in M, so are its closure and
its interior. Finite unions and intersections of domains of integration are do-
mains of integration and the image of a domain of integration under a diffeomor-
phism is a domain of integration.

Proof These are all immediate consequences of Definition 1.13 and of
the corresponding statements for subsets of content zero and domains of
integration in R". For the last statement we must note that a diffeomorphism
takes boundary points to boundary points. |

Exercises

—

Prove that a set of measure zero cannot contain any open set.

2. Prove Theorem 1.2 for a general domain of integration in R? assuming
that the integrand f is: (a) continuous on D, and then (b) continuous
except for a set of content zero.

3. Prove that finite unions and intersections of domains of integration are
domains of integration.

4. If D is a domain of integration show that D, its closure, and D, its

interior, are domains of integration and that if f'is integrable on D, then

J' fdv = | fdv = | fdv.
D *D )]
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L

Verify properties (1.3)-(1.6) of the Riemann integral.

6. Let D be adomain of integration in R"and @ < t < b an open interval of
R. Suppose f(x, t) is continuous on D x (a, b) and is of class C! in t.
Then prove that g(t) = {, f{(x,f)dv is of class C' on (a, b) and
dg/dt = [, (f/dt) dv.

7. Suppose £, g are both integrable on a domain of integration D and that

f > g. Then show that |, fdv > [, g dv.

Prove the change of variables theorem for a linear mapping G: R? — R2.

9. M {f(x)} is a sequence of continuous functions on D (a domain of

integration in R") converging uniformly to g(x), show that

lim, ... {p fo(x)dv = [, g(x)dv.

oo

2 A Generalization to Manifolds

In this section we carry over to arbitrary oriented manifolds the concept
of integral reviewed in the previous section. We first define the integral of an
n-form w on the oriented manifold M of dimension n, denoting it by {,, w. It
is only when we specialize to a more restricted class of manifolds, say
Riemannian manifolds, that we are able to give meaning to the integral of a
function on M over a domain D of integration in M and thus obtain a
complete generalization of integrals on R". This is not surprising since
definition of the Riemann integral in R" makes important use of volume,
a metric concept, which is not defined on a general differentiable manifold.

Suppose that M is an oriented manifold and dim M =n. By
Definition V.7.5 this means that there is a €™ n~form Q on M which is not
zero at any point of M. It is a basis of /\"(M), any other n-form w is given by
m = {Q, where f'is a function on M. Since Q is C*, @ will have the differen-
tiability class of . We use this to make the following definitions.

(2.1) Definition A function fon M is integrable if it is bounded, has com-
pact support (vanishes outside a compact set), and is almost continuous
(that is, continuous except possibly on a set of content zero). An n-form  on
M, in the very general sense of a function assigning to each pe M an element
w, of A"(T,(M)), is said to be integrable il » = fQ, where f'is an integrable
function. [Note: We are not requiring @ to be C* or even C'.]

We remark that the definition of integrable n-form does not depend on
the particular Q we use. Any other Q giving the orientation is of the form
Q) = ¢, where g is a positive C” function on M ; thus fQ = f/gQ. If f has
compact support, is bounded, and is almost continuous, then the same will
be true of f/g. We will denote by /\§(M) the set of integrable n-forms. Like
/\"(M), it is a vector space over R; moreover, it is closed under multiplica-
tion by continuous or integrable functions on M.
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We shall refer to a subset Q = M as a cube of M if it lies in the domain of
an associated, oriented, coordinate neighborhood U, ¢ and ¢(Q)=C =
{xeR"|0 < x' < 1,i=1,..., n}, the unit cube of R". Thus a cube is a com-
pact set and is coordinatized in a definite way. We first define the integral
over M of any we /\t(M) whose support lies interior to some cube Q. Let
U, ¢ be the coordinate neighborhood associated with Q and suppose

o *(w) = f(x)dx' A+ A dX"

represents w in the local coordinates. Then fis bounded and almost contin-
uous on C so that [ fdv is defined. We define

'[Mw = Lfdv.

We must show that the value of this integral is independent of the partic-
ular cube we have used. Suppose Q' is another cube containing supp w and
let U, ¢’ be the associated coordinate neighborhood. We denote the local
coordinates for this neighborhood by y!, ..., y" and suppose that

¢ " Hw) =f'(y)dy' Ao Ady

represents w on ¢'(U’). According to the rules for change of components of
an n-form, we have

f(x) = f(G(x)) AG,

where G = ¢’ 0 ¢~ ': (U n U’) = ¢'(U n U’) and AG is the determinant of
the Jacobian matrix of this difffomorphism; AG is positive since these are
oriented neighborhoods (see Section V.7). On the other hand, since Q, Q' are
domains of integration, so are Q N Q' and its images D = ¢(Q n Q') and
D' = ¢'(Q n Q') which lie in the unit cube of the x-coordinate space and the
y-coordinate space, respectively. Moreover, suppw < QnQ’, so
supp f « D and supp f* = D’. Therefore

[ fdo=[ f)do  and [ O =] fi(y)dv.
C D c D’

According to the change of variable theorem 1.10, and since D' = G(C), we

have

fD fy)do = ij'(G(x)) |AG | do.

However, AG > 0 so that |AG| = AG and the integral on the right must
then be equal to ([, f(x) dv by the above formula for change of components.
This shows that ) w is uniquely determined for every integrable w which
vanishes outside of some cube. We note, in particular, the following linearity
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property: If w,, w, vanish outside a cube @ and qa,, a, are real numbers, then

J’ a,w, + a,w, = a, ‘. w1+a2J’ w; .
M M M

Now suppose that w is an arbitrary integrable n-form. We will define
{m o in this case by representing w as the sum of a finite number of forms of
the special type above and adding their integrals to obtain [ w. More
precisely, let K = supp w and choose a finite covering of K by the interiors
8., .... 0, of cubes Q,, ..., Q, associated with coordinate neighborhoods
Ui, oy, ..., U, @, respectively. The open sets M — K, Ql, cees QS cover M,
and by taking a suitable partition of unity { f;} subordinate to this covering
we may assume that forj > s,f; = Oon K,and forj = 1,..., s,supp f; = Qj,
the interior of the cube Q;. Since ) f; = 1, we have then

w=fio+ "+ fo
and we define

J‘Mw=J’Mf1w + o +JMLw.

Each of the integrals on the right is defined since the integrand has its
support on the interior Qj of the cube Q.

The value of this integral does not depend on the choice of covering or
the functions {f}. Let Q1,..., Q. be another set of cubes whose interiors
cover K and choose again a partmon of unity {g,} such that supp g, =
k=1,...,rand g, =0 on K for k> r. Then Y, , fig, = Zfz,,gk_l
and for ﬁxed k, 1 < k < r, we have supp f;g, = Q. Therefore

_[Mgkw = J.Mfl g+ + “.Mfsgkw

by the linearity of the integral with respect to forms with support in the same
cube. Therefore, if we compute (), w using this second covering by cubes, we
have

r

Z J. gy @ —kzl :ZJ Jigo.

@ =
M k=1

However, by a symmetric argument the sum on the right is also equal to
Yi-1 [m fiw, hence both choices assign the same value to [, w. This com-
pletes the definition of the integral over M of integrable n-forms, we now list

some of its properties.

(2.2) Theorem The process just defined assigns to each integrable n-form w
on an oriented manifold M a real number _[M w. We have the following
properties:
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(i) If —M denotes the same underlying manifold with opposite orienta-
tion, then [_y w = — [y w.
(iiy The mapping w — (y w is an R-linear mapping on \3(M), that is:

‘ alwl +a2w2=aljw1 +azjw2,
M

a,a,eR and w,, w e /\5(M).

(iii) If Q is a nowhere vanishing n-form giving the orientation of M and
w = gQ with g > 0, then [y gQ > 0 and equality holds if and only if g = 0
wherever it is continuous.

(iv) If F: M, > M, is a diffeomorphism and we \(M,), then

J. F*w=iJ. w,

M, M)

with sign depending on whether F preserves or reverses orientation.

Proof Because of the definition of the integral, we need to verify these
properties only for forms w whose support lies in a cube Q associated with
the oriented coordinate neighborhood U, ¢ and coordinates x!,..., x".
Then by definition, [y w = [¢ f(x)dv, where @~ '*(w) = f(x)dx'A
-+ adx" If orientation of M is reversed, then the map ¢ assigning coordin-
ates in U must be replaced by a map ¢’ such that the Jacobian of ¢’ o ¢!
has negative determinant, for example, by interchanging the first and second
variables. This changes the sign of fsince fis the component of @ in the local
coordinates, hence it changes the sign of the integral. Property (ii) was
previously noted; it is a consequence of the corresponding property for the
Riemann integral on R". Property (iii) is clear once we note that in (oriented)
local coordinates @~ '*Q = p(x) dx' A+ A dx", p(x) > 0, so that [, gQ =
fc g(x)p(x) dv. Since g(x)p(x) > 0, and vanishes exactly where g(x) vanishes,
the assertion follows from the corresponding property in R". Finally, sup-
pose F: M; - M, is a diffeomorphism which preserves orientation. If w on
M, has support in a cube Q associated with the coordinate neighborhood
U, o, then Q' = F~!(Q) is a cube on M, associated with U’ = F~}(U) and
@' = @ o F~'. Using this cube, which contains the support of F*w, we have
precisely the same expression f (x) dx' A --- A dx" for both @ and F*w in local
coordinates, hence the same integral [ fdv gives the value of both {y, w
and [y, F*o. If F does not preserve orientation, the equation
{m, F*w = — [y, w follows from the orientation-preserving case and

property (i). ]
(23) Remark We note that a special case of the definition above, namely
M = R", defines .

‘ flxt, oo x")ydxt A Adx”

g
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for any bounded function f on R™ which has compact support and is almost
continuous. It is left as an exercise to show that if supp f = D, a domain of
integration, then

I‘ f(x)dx' A Adx" = J'Df(X) dv,

the usual Riemann integral.

Integration on Riemannian Manifolds

Thus far we have not defined integrals of functions, but rather integrals of
n-forms. Even a cursory examination of the definition of integrals of func-
tions over domains of R" used in advanced calculus shows that it assumes
that we are able to assign a volume to certain classes of subsets of R", say,
cubes and rectangular parallelepipeds. In fact only this one ingredient is
lacking; if M has a well-determined volume element, then we are able to pass
from the definition above to integrals of functions on an oriented manifold
M. A volume element is, by definition, a nowhere vanishing n-form Q on M
which is in that class which determines the orientation. On an arbitrary
oriented manifold there is such a form Q but it is determined only to within a
multiple by a positive C* function. This is not enough to define volumes; we
must have a unique Q given, say, by the structure of M. One case in which
this occurs, according to Theorem V.7.7, is on an oriented Riemannian man-
ifold M. In this case there is a unique Q whose value on any orthonormal
frame is + |. We shall always use this Q on the Riemannian manifold and in
the remainder of this section we shall discuss only the Riemannian case.
Then, using Q and the characteristic function k, of a domain of integration
D we are able to parallel the theory for R™.

(24) Definition If D is a domain of integration on an oriented Rieman-
nian manifold M and kj is the characteristic function of D, we define the
volume of D, denoted by vol D, by vol D = |y, kp Q. If fis any integrable
furction on M, we define the integral of f over D, denoted |, f. by
{p/ = fu fkpQ. When M is compact, we may take D= M and obtain
vol M = [y, Qand [y, f = [, /1Q.

These integrals are defined since kj, is continuous except on Bd D which
has content zero.

(25) Lemma With these definitions the integral of f on a domain of integra-
tion on M satisfies properties (1.3)-(1.6) of the Riemann integral on R". It is
equal to the Riemann integral when M = R" (with its standard metric).
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This is a consequence of the definitions and of the corresponding proper-
ties (1.3)-(1.6) of the Riemann integral. One merely needs to demonstrate—
by choosing a covering of D by the interiors of cubes and taking a
corresponding partition of unity as in the definition of [, w—that it is
possible to reduce the proof to verifying each property for the special case in
which w = fQ has its support in a single cube. In this case the properties
coincide with the properties of the integral on R". For the last statement we
use Remark 2.3.

We recall that in local coordinates U, ¢ with coordinate frames
E,, ..., E, and Riemannian metric tensor ®(X, Y), the matrix components
®(E;, E;) on U are customarily denoted by g;;, i,j = 1,..., n, with the same
symbols g;; frequently used to denote g;(p) = <D Ei,, Ej;) and
gif(x*, ..., x") = g;{(¢(p)), that is, the components considered as functions
on U « M or as the corresponding functions on ¢(U) < R". In Section V.7
we found that the local expression for Q on an oriented neighborhood was

e *Q = \/a dx! A+ A dx", g = det(g;;).
We use this in the example below.

(26) Example Let M be a surface in R® with the Riemannian metric
induced by the standard metric of R* and let U, ¢ be a coordinate neighbor-
hood with coordinates (u, v). Suppose @(U) = W an open subset of the
uv- plane Let F = ¢! sothat F: W - M has image U, and let F(u v) =

(/f (4, v), g(u, v), h(u, v)) be the C*-coordinate functions for the mapping (see
Fig. VL 2) As in Example 1V.1.10 the coordinate frames E,, E, on U are

[0\ oo o oho
El_F*(@u) ouox Voudy ¥ oudz’
o\ ofo dgd oho
=F (av) dvax | avox | avoz’

{a) (b)
Figure V1.2
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and hence

B R e

( ofof 0909 ohoh
1) = - — —— =
912(, v) udv oOudv Oudv

S I e

These are denoted E, F, G, respectively, in the literature of classical differen-
tial geometry and we have then

© "*Q = F*XQ = (9,192, — g%;)"* dundv = (EG — F?)V? du n dv.

Wy

du

(El’ EZ) = (EZ H El) = ng(us U),

If D is a domain of integration on M such that D < U, and h is an integrable
function on D, then

[h:jhn=[ h(u, v)(EG — F2)'2 dun dv
L e

o(D)

=J h(u, v)(EG — F*)'2 du dv.
(D)

Suppose, for example, that ¢ is the (difftomorphic) projection of an open
set U of M onto an open set W of the xy-plane, which we identify with the
parameter plane. In this case F: W — U is given by F(x, y) = (x, y, f(x, y)).
The graph of z = f(x, y) lying over W is the subset U of M, Fig. VL.3. The
coordinate frames are E, = 0/0x + f,0/0z and E, = /0y + f,0/0z, so
E=1+4+f3F={/,,G=1+fL Hence

F*Q = (EG — F)" 2 dxndy = (1 + f?2 + )2 dx A dy.

Figure V1.3
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If D c U is a domain of integration and 4 = W its projection to the xy-
plane, then for any integrable function h on M we have

|‘ h= ' h(x, y, z)(1 + f2 + f2)2 dx dy.
L

When h = 1, the value of this integral is the area of D [ = vol D}.

If, for example M = S2, the unit sphere, let U be the upper hemisphere
and D=U. Then A=W={xy)|x*+y*<1} and F(x,y)=
(x. 3. (1 — x* — y?)"/*). The area of U is

“ Q= ’ (1 — x2—y¥) "2 dxady
Jy 1,

L+l -yt
= ‘ (1= x* —y}) 2dxdy = 2m.
S L)L)

(2.7) Remark In practice (or for theoretical purposes) one might hope
that a compact manifold M could be covered by a finite number of domains
of integration D,, ..., D, with the properties: (i) ¢(D; D;) =0, i#j,
i,j=1,...,s and (ii) each D, lies in a coordinate neighborhood U;, ¢;.
Then, using the fact that

=l e

Dy

it would be possible to evaluate each integral on the right separately as an
integral on ¢(D;) = R",

J‘le= ‘ f(x)\/g dx! A A dX" = ‘ f(x)\ﬂ] dv,

“eilDi) “@iD))

where f(x) denotes the expression for fin local coordinates and g = det(y;;)
as in the remark preceding Example 2.6.

In fact, it can be shown that any differentiable manifold M (compact or
not) can be covered with a collection of domains of integration D,, D,, ...,
each the diffeomorphic image of a simplex (for n = 2 a triangle, forn = 3 a
tetrahedron, and so on). Moreover these domains intersect in sets of content
zero. [This is part of a theorem which asserts that any C* manifold is
triangulable. An example is illustrated in Fig. VI.4.] When M is compact the
number of D; is finite. This is not a complete description of a triangulation;
for more details see Singer and Thorpe [1]. However, it shows that for both
practical and theoretical purposes a technique of evaluation of [, for [y Q
is available.
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Figure V1.4

Triangulated manifolds.

Exercises

Show that if D is a domain of integration on a manifold, then
| 1= 1= 1
D D "D

Find Q (for the induced Riemannian metric) on the torus 72 in R?
obtained by rotating a circle of radius ¢ and center at (b, 0,0),
h > a > 0, around the x3-axis. Use this to determine vol(T?). (See
Exercise 5.)

Interpret Q and volume for a curve in R?, that is, a one-dimensional
manifold.

Using Remark 2.7 integrate on M = S, the unit sphere of R?, the func-
tion f giving the distance of a point on M from the plane x3 = —1.
Argue that we may use as D, and D, the upper and lower hemispheres.
[Hint: Use Exercise 1.]

Let D be a domain of integration in R" and F: D - M a C™ mapping
into an n-manifold M. Suppose F is a diffeomorphism on D the interior
of D and that w is an integrable n-form on M. Then show that F(D) is a
domain of integration and that {,, w = [, F*w. [We do not require F
to be one-to-one on the boundary of D.] Show that Exercise 2 gives an
example.

Integration on Lie Groups

One striking illustration of the uses to which integration on manifolds

can be put arises when the manifold considered is a Lie group G. Although
the most interesting case is a compact Lie group, for the present we allow G
to be an arbitrary Lie group of dimension n. We shall need some simple
observations concerning left and right translations and inner automor-
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phisms of G. Givena, be G, wedenoteby L,,R,,and I, = L, - R,-, leftand
right translation and the inner automorphism, I,(x) = axa™', of G, respec-
tively. These are C* mappings with inverses L; ' = L,_,, R; ! = R,_,, and
17! =1,-,. Hence they are diffeomorphisms and as such induce R-linear
mappings of ¥(G)—the C*-vector fields on G—onto itself which preserve
the bracket operation (Corollary 1V.7.10). However, on G our main interest
is in the subspace g of ¥(G) consisting of all left-invariant vector fields on G.
As we have seen g is a Lie algebra, the Lie algebra of G, with respect to the
product [X, Y). Given a, be G, we note the fact that the left and right trans-
lations L, and R, commute—this is just the associative law a(xb) = (ax)b.
From this we deduce that if X € g, then R, X € g. Also

Lg*(‘Rb* X) = Rb*(Lg* X) = Rb* X

Similarly, I,, X = L,,R,-1, X = R,-,, X eg; thus I,,: g — g. Because I,
is both a linear mapping and preserves the product, that is, I,,[X, Y] =
[1,. X, 1, Y), it is an automorphism of the Lie algebra g. Finally, note that
I = 1401y so that I, = I, - I, by the chain rule. Putting these facts
together and adopting the notation Ad g for I, , g any element of G, we have
proved most of the following statement.

(3.1) The mapping of G into the group of all automorphisms of g defined by
g — Ad g is a homomorphism. Let Gl(g) denote the group of all nonsingular
linear transformations of g as a vector space. Then Ad: G — Gl(g) is C*.

It is only the last statement which requires proof and interpretation. In
general, if ¥ is a finite-dimensional vector space over R, then the group GI(V)
of all nonsingular linear transformations of ¥ onto V is isomorphic to
Gl(n, R), n = dim V. The isomorphism depends on the choice of a basis
e, ..., e, of ¥andis given by letting 4 € GI(¥) correspond to the matrix («;;)
defined by A(e;) = Y7_, o;;€;, j = 1,..., n. We take the topology and C*
structure on GI(¥) obtained by identifying it with the Lie group Gi(n, R). It
may be shown (Exercise 3) that this C® structure is independent of the
choice of basis. Therefore, if we choose a basis X, ..., X, of g and let (2;;(9))
denote the matrix corresponding in this way to Ad g, the last statement
asserts that g (x;(g)) is a C* mapping. Note that I (e) = e, hence
I,.: T(G) -» T(G). Because g may be naturally identified with T,(G) by
identifying each X e g with its value X, at ¢, we may think of Ad g as a linear
transformation on g—the left-invariant vector fields—or on T,(G) where, of
course, it coincides with that induced by I, according to the definition. In
particular, if we use the latter point of view, the matrix (;;(g)) is a submatrix
of the Jacobian matrix evaluated at (g, e) of the C* mappingof G x G - G
defined by (g, x)+— gxg ™' = I,(x). Hence g — (a;;(g)) is C*. More generally,
we make the following definitions.
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(3.2) Definition A representation of a Lie group G on a vector space Vis a
Lie group homomorphism of G into the group GI(¥) of nonsingular linear
transformations of ¥ onto V. Its degree (dimension) is the dimension of V. A
matrix representation of G of degree n is a Lie group homomorphism of G
into Gl(n, R). The representation g— Ad g is called the adjoint representa-
tion of G.

We remark again that we interpret Ad g both as a linear mapping on g,
the space of invariant vector fields, and on T,(G), the tangent space at the
identity. This is by virtue of the identification of g with T,(G). In either case
Ad g is induced by the diffeomorphism I (x) = gxg~! of G onto G.

Many questions about Lie groups may be reduced to questions about the
adjoint representation of the group. Some examples are given in the exer-
cises; we give another below. First we shall need a definition and a lemma.

(33) Definition A covariant tensor field @ of order r on G is left- (right-)
invariant if L}®,, = ®, (or R¥®,, = @, respectively). It is bi-invariant if it is
both left- and right-invariant.

We remark that any left- (or right-) invariant covariant tensor field
® e 7(G) is necessarily C*. If X, ..., X, is a basis of C® left- (or right-)
invariant vector fields, then ®(X;, ..., X ) is constant—hence C*—on G for
any 1 <i,,...,i, < n. Therefore the components of ® with respect to a
C*-frame field are C*, and @ is thus C*.

(34) Lemma Let ®, be a covariant tensor of order r on the tangent space
T.(G) at the identity. Then there is a unique left-invariant tensor field and a
unique right-invariant tensor field coinciding at e with ®,. These two agree
everywhere on G, that is, ®, determines a bi-invariant tensor field, if and only if
Ad g*®, =D, for all ge G.

Proof Let @, be given on T,(G). For each g e G we have a unique left
translation L,:G — G which takes e to g. Define ®e Z7'(G) by
®,= L} :®,. Then L}®,, = L}(L}.,-1®,) =L L} o LJ-1®, = L}, D,.
However, this is just @,, so we see that @ is left-invariant. Similar arguments
show that R¥ @, is a right-invariant tensor field.

If @ is bi-invariant, then Ad(g)*®, = L} - R}-,®, = ®,. Conversely, if
this relation holds, then

L; gq)e = Lg*': o Lg*o R;—‘q)e = R* (De

a- i
so that the left- and right-invariant tensor fields determined by @, agree at

every g € G. It is immediate that an invariant field must be determined by its
value at any one element, say e, of G. |
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(3.5) Corollary Every Lie group has a left-invariant Riemannian metric and
a left-invariant volume element. In particular every Lie group is orientable.

Proof We take any inner product @, (a positive definite, symmetric
covariant tensor of order 2) on T,(G) and apply Lemma 3.4 to ®, and to the
volume element Q, that ®@,, with a choice of orientation of T(G), determines
in order to obtain a left-invariant Riemannian metric ® and volume element
Q. |

In case G is compact we are able to say even more, as the next theorem
and its corollary show. The corollary will make use of integration; to sim-
plify the treatment we shall suppose G is connected (see Exercise 5).

(3.6) Theorem An oriented, compact, connected Lie group G has a unique
bi-invariant volume element QQ such that vol G = 1.

Proof Let Q be a left-invariant volume element on G. We claim that Q
is necessarily right-invariant also. In order to prove this it is enough to show
that Ad(g)*Q, = Q, for all ge G. Let X, ..., X, be a basis of g and X,,,
i=1,...,n be the corresponding basis of T,(G). We have seen that
Ad(g)X; = Y-, a;;(9)X, and that g (a;;(g)) defines a C* homomorphism
of G — Gl(n, R). The linear transformation Ad(g)* on A"(T,(G)) determined
by Ad(g) acts as follows on Q,:

Ad(g)*Q, = det(a;;(g))Q. .

However, since G is compact and connected, the same applies to its
image under the C*-homomorphism g — det(a;;(g)) of G to R*, the multipli-
cative group of nonzero real numbers. However, the only compact con-
nected subgroup of R* is {+ 1}, the trivial group consisting of the identity,
hence det(x;;(9)) = 1 and Ad(g)*Q, = Q, for all geG. By the preceding
lemma this proves that Q is bi-invariant.

Any other bi-invariant Q must be of the form AQ, where 4 is a positive
constant; but then vol G = 3 AQ = 1 [ Q. Hence it is possible to choose
just one A # 0 such that vol G = + 1. For the opposite orientation on G, we
would have —Q as the corresponding unique bi-invariant volume element.

From the existence of such a bi-invariant volume element one is able to
deduce many important properties of Lie groups, of which the next two
corollaries give examples. Further implications will appear later.

(3.7) Corollary On a compact connected Lie group G it is possible to define
a bi-invariant Riemannian metric ®.
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Proof Let @, be a symmetric, positive definite, bilinear form on T,(G)
and let Q be the bi-invariant volume element. Given X,, Y, e T,(G), we
define a function on G by

= (Ad(g)*®@.)(X., Y.) = ®,(Ad(g)X. , Ad(9)Y.),

the last equality being just the usual definition of Ad(g)*. Then define the
bilinear form @, on T,(G) by

X, Y) = [ flgh
According to Lemma 3.4, ®, determines a bi-invariant form if for every a e G
Ad(@)*®.(X,, Y.) = B(X., Y.)

The left-hand term may be written ®,(Ad(a)X.., Ad(a)Y,). Applying the
definition of ®, to this expression, we find that

(Ad((l))*a)‘,(xg‘- s X) = J'G (Ad(g))*q)‘. (Ad(a)Xe ’ Ad(a)Y(,)Q
= J' Ad(g)* Ad(a)*. (X, , Y.)Q

=_|' Ad(ag)® (X, , Y.)Q

G

This shows that
Ad(ayd(X, . Y) = | f(Rfe)Q:
G

On the other hand, I,: G — G is a difftomorphism and Theorem 2.2 (iv)
asserts that

| f@e=] SRR

“1(G)
Since 1,(G) = G and RXQ = Q, we see that

Ad(ap®(X,. Y) = | flg)2 = B(X,. Y,)
G
It follows that ® is a bi-invariant bilinear form on G. It is obviously sym-
metric and it is easy to check that it is positive definite. Since we do so in a

more general case below, we will omit this verification here. |

(3.8) Remark When we use this Riemannian metric on G, we see that
both right and left translations are isometries, that is, they preserve the
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Riemannian metric (and also its associated distance function). We shall see
later that as Riemannian manifolds compact Lie groups have rather inter-
esting properties.

In closing this section we shall give another application, not too different
from the above, which in fact actually includes it. Let (p, ¥), p: G = GI(V),
be a representation of G on a finite-dimensional real vector space V. As we
have noted, if a basis is chosen in V, this determines a C* homomorphism of
G into Gl(n, R), n = dim V, a special case is p = Ad with ¥ = g.

(3.9) Theorem If G is compact and connected and p is a representation of G
on V, then there is an inner product (u, v) on V such that every p(g) leaves the
inner product invariant :

(o(g)u, p(g)v) = (u, v).

Proof Let ®(u, v) be an arbitrary inner product on ¥ and, given a fixed
u ve ¥, let f(g) = ®(p(g)u, p(g)v), thus defining a C* function on G. Then
we define

V=] fQ

with Q denoting the bi-invariant volume element. The linearity of the inte-
gral implies at once that (u, v) is bilinear, and it is clearly symmetric in u, v
since the integrand is. Moreover (u, v) > 0, and equality implies u = 0, by
virtue of the fact that f(g) > 0 on G with equality holding if and only if the
integral vanishes. Finally, for ae G we have

(o(a), p(a)) = [ plg)p(a. plgo(an)e

= jctb(p(ga)u, plgayv)Q = fc flga)2.

But by the same argument as in the previous proof, this is equal to
f¢ £(@)Q = (u, v). This completes the proof. If we let p = Ad and V = g, we
obtain Corollary 3.7 as a special case. [ ]

We could state this result as follows: Each p(g) is an isometry of the
vector space ¥ with the inner product (u, v). Since the matrix of an isometry
of ¥ relative to an orthonormal basis is an orthogonal matrix, we have the
following corollary concerning the representations of a compact group.

(3.10) Corollary Relative to a suitable basis of V, the matrices representing
every p(g) are orthogonal.
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Theorem 3.9 is very important in the representation theory of compact
Lie groups. We shall say that W < V is invariant if it is invariant for every
linear transformation p(g). The representation is irreducible if ¥ contains no
nontrivial invariant subspaces; if each invariant subspace W has a com-
plementary invariant subspace W', such that ¥ = W @® W', then the re-
presentation is said to be semisimple. In this case it is easily verified that
V=W ® @ W, where the W, are invariant irreducible subspaces.
Applying Theorem 3.9 gives an important result.

(3.11) Corollary If p is a representation of a compact connected Lie group
G on a finite-dimensional vector space V, then it is semisimple. Moreover
V=W, ® - ®W,, where for i # j the subspaces are mutually orthogonal
and each is a nontrivial irreducible subspace.

Proof If V is irreducible, there is nothing to prove. If ¥ contains a
nontrivial invariant subspace W, then its orthogonal complement W is also
invariant: Let we W* and let ve W. Then (p(g)v, p(g)w) = (v, w) = 0. Thus
p(g)w is orthogonal to p(g)v for every ve W. Since p(g) is nonsingular, this
means that p(g)w is orthogonal to every element of W and must then be in
W*. Hence V = W @ W*, a direct sum of complementary invariant sub-
spaces. Repeated application of this argument gives the final statement of the
corollary. |

(3.12) Example It is easy to see that there are representations of noncom-
pact connected groups which do not have the property of complete reducibi-
lity, hence cannot leave an inner product invariant. For a simple example
consider p: R — Gl(2, R) acting on ¥? defined by

p(t) = ((1) tl)

Then p(t) acts on V2, the space of all (¥), x, ye R,
y

f)- 0037}

The subspace (§) is invariant but has no complementary invariant subspace.

Exercises

1. Show that a Lie group G has a bi-invariant volume element Q if and only
if it is possible to choose a basis Xy, ..., X, of T,(G) such that the matrix
representation g — (a;;(g)) corresponding to Ad(g) lies in Si(n, R), that
is, det(a;;(g)) = + 1 for all ge G. Give an example of such a G which is
not compact.
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Show that if the adjoint representation of G is irreducible, that is, there is
no nontrivial subspace V < T,(G) which is invariant under Ad(y) for all
g, then any normal subgroup H = G has dimension O or n (= dim G).
If V is a finite-dimensional vector space over R and GI(¥) denotes the
group of all nonsingular linear transformations of ¥ onto ¥, then GI(¥)
is a group, isomorphic to Gl(n, R), n = dim ¥, with the isomorphism
resulting from a choice of basis. Show that the C* structure on GI(V)
obtained from such an isomorphism is independent of this choice.

In Exercise 3 let ¥ = g, the Lie algebra of a Lie group. Prove that the
subgroup Aut g, consisting of all elements of Gl(g) which are isomor-
phisms of g, is closed in Gl(g) and that Ad(G) is a normal subgroup of
Aut g.

Show that the connected component of the identity G, in any Lie group
G is an open and closed set and a normal (Lie) subgroup. Show also that
if G, has a bi-invariant volume element or Riemannian metric, then the
same is true of G.

In the following two exercises let G be a connected Lie group and H a

closed (Lie) subgroup of G and use the notation and ideas of Section I1V.9. In
particular, we denote by n: G — G/H the natural projection and by 4: G x
G/H — G the natural, transitive, left action of G on G/H.

Let o denote the coset H as a point of G/H and let 2’ denote the action of
H on G/H, obtained by restriction of 4 to H. Show that for each he H,
A, G/H — G/H leaves o fixed and that the correspondence h — 4;, is a
representation of H on Ty(G/H).

Using =n,: T,(G) — To(G/H), show that Ty(G/H) is naturally isomorphic
to g/h and that if these spaces are identified by this isomorphism, then
the adjoint representation of G on g, when restricted to H, induces on
a/h the same representation as the one above.

Show that M = G/H has a G-invariant Riemannian metric if and only if
H is compact.

Manifolds with Boundary

The problems we wish to consider when we deal with integration make it

useful to introduce the notion of manifold with boundary, which we shall
define presently. Examples are a line segment or ray, a circular disk or
half-plane, a closed n-ball, a surface with an open disk removed, and so on.
Manifolds with boundary are important for other reasons too, for example,
to study differentiable deformations of differentiable maps from a manifold
M to a manifold N, we will need to define C* mappings from M x [into N.



4 MANIFOLDS WITH BOUNDARY 249

However, M x [ is a manifold with boundary, for example, if M = S', then
M x I is a cylinder. What we must do, then, is extend our notions of differ-
entiable functions and mappings, of tangent space and tensor field, and so
on, to these slightly more general objects. In the definition of manifold with
boundary the half-planes H" play a role analogous to that of R" for ordinary
manifolds.

Let H* = {x = (x',..., x")e R"| x" > 0} with the relative topology of R",
and denote by dH" the subspace defined by dH" = {xe H" | x" = 0}. Then
dH" is the same space whether considered as a subspace of R" or H"; it is
called the boundary of H". Of course all of these spaces carry the metric
topology derived from the metric of R", and ?H" is obviously homeomorphic
to R"™! by the map (x',...,x" ') > (x!, ..., x"" 1, 0).

Remembering now that differentiability has been defined for functions
and mappings to R™ of arbitrary subsets of R", we see that the notion of
difftfomorphism applies at once to (relatively) open subsets U, V of H";
namely, U, V are diffeomorphic if there exists a one-to-one map F: U - V
(onto) such that F and F~! are both C” maps. Although this sounds
precisely like the earlier definition, it is broader since U, V are not neces-
sarily open subsets of R”, but are in fact the intersections of such sets with H".
If U,V c R"— ¢H", then U and V are actually open in R" so that this
definition of diffeomorphism coincides with our previous one. On the other
hand, if U~ ¢H" + &, then we claim that V nJH" #+ ¢ and that
F(UNJCH™) < V n¢H™ Similarly, F7Y(V n¢H") < U~ ¢éH"; in other
words, diffeomorphisms on open sets of H" take boundary points to bound-
ary points and interior points to interior points. This follows at once from
the inverse function theorem: U — ¢éH" is open in R" and hence F must map
it diffeomorphically onto an open subset of R", but no open subset of H"
which contains a boundary point, that is, a point of ¢H", can be open in R”".
Thus F(U — ¢H") < V — éH"and F~'(V — ¢H") < U — ¢H". Since F and
F~! are one-to-one on U and V, the result follows.

We also notice the following two facts: First U nédH"and V n ¢H" are
open subsets of ?H", a submanifold of R" diffecomorphic to R"';and F, F~*
restricted to these open sets in ¢H" are diffeomorphisms. Second both F and
F ! can be extended to open sets U’, V' of R" having the property that
U=UnH"and V = V' n H". These extensions will not be unique nor are
the extensions in general inverses throughout these larger domains.
However, the derivatives of F and F~! on U and V are independent of the
extensions chosen and we may suppose that even on the extended domains
the Jacobians are of rank n. These statements are immediate consequences
of the definition of differentiability for arbitrary subsets of R" and the fact
that the Jacobian of a C* mapping has its maximum rank on an open subset
of its domain. Some further amplification of this situation is given in the
problems.
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(4.1) Definition A C® manifold with boundary is a Hausdorff space M with
a countable basis of open sets and a differentiable structure % in the follow-
ing (generalized) sense (compare Definition III.1.2): % = {U,, ¢,} consists
of a family of open subsets U, of M each with a homeomorphism ¢, onto an
open subset of H" (topologized as a subspace of R") such that:

(1) the U, cover M;

(2) ifU,, @, and Uy, @, are elements of %, then gz o ¢, ' and @, © ¢!
are difftomorphisms of ¢,(U n V) and ¢4(U n V), open subsets of H";

(3) % is maximal with respect to properties (1) and (2).

Examples are shown in Fig. VLS.

{a)

A
(c)
Figure V1.5

The U, ¢ are coordinate neighborhoods on M. From the remarks above
we see that if ¢(p)e dH" in one coordinate system, then this holds for all
coordinate systems. The collection of such points is called the boundary of
M, denoted M, and M — dM is a manifold (in the ordinary sense), which
we denote by Int M. If 6M = ¢, then M is a manifold of the familiar type;
we call it a manifold without boundary when it is necessary to make the
distinction. The following theorem follows from the first of the two facts
remarked upon above.

(4.2) Theorem If M is a C* manifold (of dimension n) with boundary, then
the differentiable structure of M determines a C*®-differentiable structure of
dimension n — 1 on the subspace 0M of M. The inclusion i: M — M is an
imbedding.
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The differentiable structure # on oM is determined by the coordinate
neighborhoods U, p, where U = U n oM, ¢ = @ |unom for any coordinate
neighborhood U, ¢ of M which contains points of éM.

Differentiable functions, differentiable mappings, rank, and so on, may
now be defined on M exactly as before by using local coordinates. By virtue
of the C* compatibility of such coordinate systems these concepts are
independent of the choice of coordinates. We leave the verification to the
reader. We also define T,(M) at boundary points of M. This could be done
using derivations on C*(p) as before, but to avoid some slight complications
we use an alternative definition. First note that in the case of H" < R", upon
which manifolds with boundary are modeled, we identify T,(H") with T,(R");
we may think of this identification as being given by the inclusion mapping.
For xe dH", this defines what we mean by T,(H"). In the case of a general
manifold M, for pe 0M we define a vector X ,€ T,(M) to be an assignment to
each coordinate neighborhood U, ¢ of an n-tuple of numbers (o', ..., a"),
the U, ¢ components of X , satisfying the following condition: If (x', ..., x")
and (y', ..., y") are coordinates around p in neighborhoods U, ¢ and V, ¥,
then the components (a’, ..., «") and (B, ..., B") relative to U and V are
related by

. n 8yi .
g = (~) o, i=1,...,n
j; 0%’ | iy

(as in Corollary IV.1.8). What this does is attach to each pe M a T,(M}) such
that each coordinate system U, ¢ determines an isomorphism ¢, taking X,
with components (a',...,a") to the vector ) a'(9/0x')e T, (H"). As
previously E,, ..., E, will denote the basis determined by ¢,(E;) = J/0x,
i=1,...,n Having defined T,(M) on dM [it is already known on Int M,
which is an ordinary manifold}, we may extend all of our definitions and
theorems to manifolds with boundary. In particular, exterior differential
forms and the exterior calculus is still valid on manifolds with boundary.
There is no essential change in the definitions or proofs.

For many purposes, in particular for our discussion of Stokes’s theorem
in the next section, we could use an (apparently) weaker, but closely related
notion.

(4.3) Definition A regular domain D on a manifold M is a closed subset of
M with nonempty interior D such that if pe 3D = D — D, then p has a
cubical coordinate neighborhood U, ¢ with ¢(p) = (0, ..., 0), (U) = C2(0),
and @(U n D) = {xe C}{0)|x" = 0} on dD.

We remark that if D is compact, then it is a domain of integration on M.
It is a straightforward matter to check that D, with the topology and differ-
entiable structure induced by M is a manifold with boundary. All of our
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examples can be seen to be of this type: H" and the closed unit ball B are
regular domains of M = R", N x [ is a regular domain of N x R, and the
set D obtained by removing from a manifold M a diffeomorphic image of an
open ball is a regular domain. Further examples are given in the exercises.

It is a fact—somewhat too difficult to prove here—that any manifold M
with boundary can be realized as a regular domain of a larger manifold M'.
The basic idea is simple enough: one simply takes two copies of M, say M,
and M,, and “glues” them together along their boundaries, identifying
corresponding boundary points. The resulting manifold, called the double of
M, contains M as a regular domain. Figure V1.6 shows the doubles of the
examples of Fig. VI.5 (which are shaded in Fig. VL.6). For details the reader

(c)
Figure V1.6

should consult Munkres [1, Section 6]. For regular domains it is simpler or
at least more intuitive to define the tangent space at boundary points and to
define the calculus of exterior differential forms, since we may do so by
restriction of the corresponding objects on M. This could be taken as further
evidence that the reader who wishes to carefully check the details of the
extension to manifolds with boundary of the concepts and operations we
have used for manifolds without boundary, will encounter no serious obsta-
cle. In fact, by definition M is locally diffeomorphic to H”, which is a regular
domain of R".

We consider next the question of orientability. A manifold M with non-
empty boundary is orientable provided that it has a covering of coordinate
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neighborhoods {U,, ¢,} which are coherently oriented, that is,
U, n Uy # & implies ¢, - ¢, ' has positive Jacobian determinant (or equiv-
alently, preserves the natural orientation of H"). This is equivalent to the
existence of a nowhere vanishing n-form Q on M. The proof is the same
except that when we speak of a partition of unity on M associated to a
regular covering {U;, V,, ¢;} we limit ourselves to a regular covering by
cubical coordinate neighborhoods concerning which we impose the follow-
ing slight restriction: if U;~0M # &, then ¢,(U;) = C3(0)~ H" and
(V) = C1(0) n H". With this modified definition of regular covering we
still have a regular covering (by definition locally finite) refining any open
covering {A,} of M and an associated C* partition of unity {f;} on M. We
remark that those U;, V,, ¢, of the regular covering that intersect 6M deter-
mine a regular covering U, = U;néM, V; = V,n oM, and §; = ¢, |, of
0M and the associated partition of unity restricts to an associated partition
of unity {f; = fi |} on oM.

(4.4) Theorem Let M be an oriented manifold and suppose OM is not empty.
Then ¢M is orientable and the orientation of M determines an orientation of
5

oM.

Proof Since °M is an (n — 1)-dimensional submanifold of M, its tan-
gent space at each point may be identified with an (n — 1)-dimensional
subspace of T,(M); we denote this subspace by T,(0M). We shall show that
there is a distinction between the two half-spaces into which T,(0M)divides
T,(M) which is independent of coordinates. Suppose that U, ¢ and V, y are
coordinate neighborhoods of pe M with local coordinates (x', ..., x") and
(v', ..., y"). respectively. By our definitions of coordinates of boundary
points, the last coordinate x", or y" is equal to zero if the point in U or V,
respectively, is on M, and positive otherwise. Writing y' = y(x!, ..., x"),

i=1, ..., n for the change of coordinate functions, we have
0 =y"(x",....x""",0) so that (0)"/0x ), =+ = (Y"/0x"" ')y = O for
every g€ U n @M. 1t follows that the Jacobian matrix then has the form
av! Oy}
T R
0x Ox
~ 0_)"1 (';yn- 1
D(‘/’ P l)= (‘;xn—l (‘1;‘"—1 0
(wyl ‘qyn—l ayn
(‘1}11 Z{XT (X;' @l(q)

Since the Jacobian is nonsingular, dy"/dx" # 0 at ¢(q); in fact, it must be
positive. For let o(q) = (a', a% ..., a" ', 0) and consider f(t), defined by
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f(t) = y"(a',...,a"" ', t). Then '(0) = (0y"/0x"),, can certainly not be neg-
ative since f(0) = 0 and f(t) > 0 in some interval 0 <t < &; therefore
0y"/0x" > 0 at ¢(q) as claimed.

If U, ¢ and V, ¢ are oriented neighborhoods of M, then this matrix has
positive determinant so dy"/dx" and the (n — 1) x (n — 1) minor determin-
ant obtained by striking out the last row and column has the same sign. This
minor determinant is exactly the determinant of D( - '), the change of
coordinates from 00 = U n oM, p = ¢lgto V =V n M, J = y|, on the
submanifold dM. Thus the neighborhoods on M determined by oriented
neighborhoods on M are coherent and determine an orientation on oM.

(4.5) Remark Using the notation of the proof, let g€ U n V be a bound-
ary point of M and let X, e T (M). Because (3y"/0x™),, > 0, it follows that
when we express X, in the coordinate frames of either U, ¢ or V, y,

X,=o'Ey+ + o 'E,_, + "E, = B'F, + - + p"F,_, + p'F,,

then o" and B" have the same sign. (This fact does not depend on the coordin-
ates being oriented.) It follows that the vectors of T,(M) — T,(0M) fall into
two classes, those whose last component is positive—which we call inward

Figure V1.7

pointing vectors at pe dM—and those for which the last component is
negative—which we call outward pointing vectors (see Fig. VI.7). Those for
which the last component vanishes are tangent to M, and this classification
is independent of the orientation of M.

(46) Remark We have noted that there are difficulties in gluing two
manifolds with identical boundaries together along their boundaries. We
can, however, describe a special case which will give some idea of the impor-



4 MANIFOLDS WITH BOUNDARY 255

tance of such operations. Let M, M, be two manifolds (without boundary)
of dimension n and let U,, ¢, be coordinate neighborhoods of points p;e M;,
i = 1, 2. We suppose that ¢,(p;) = (0, ..., 0) and that ¢,(U,) = Bj(0) in each
case and we set V; = ¢; '(B(0)). Then M; = M; — V;,i = 1, 2, is a manifold
with boundary, indeed ¢,(dM;) = $"~!. The manifold obtained by gluing
Mj to M along the boundaries is called the connected sum of M, and M,,
denoted M, # M, (see Fig. VL.8). In order to define it without loss of

Figure VL8

differentiability, we will actually remove only ¢~ (B, ,(0)) from each M; to
obtain M}, and we will then identify points g;e U; — ¢ '(By,2(0)), i = 1, 2,
whenever ¢,(q,) = 92(q2)/|@2(p2)|% that is, g,e M| and g,e M3 are
identified if their images ¢,(p;) and ¢,(p,) in R" are “reflections” of one
another in the unit sphere (lie on the same ray and have reciprocal distance
from the origin).

Any closed surface (compact 2-manifold) can be obtained as the con-
nected sum of copies of $? and T2 if orientable, P2 and T2 if nonorientable
(see Wallace [1]).

This whole procedure and ones similar to it have become very important
in the recent years and are intimately related to the attempt to classify or list
all simply connected n-dimensional compact C® manifolds—a problem
which was solved long ago for closed surfaces but is still unsettled in dimen-
sion three. Oddly enough there has been more success in higher dimensions!
It is not yet known whether there exist simply connected, compact, orient-
able manifolds of dimension three other than S3; that there are none is the
famous Poincaré conjecture. Similar questions in dimension > 5 were
answered by Smale [1]. Milnor [3] has shown that every compact 3-manifold
can be represented uniquely as a connected sum of 3-manifolds which
cannot be further decomposed into connected sums.
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Exercises

1. Let M be a manifold without boundary and f: M - R a C* function.
Suppose that df # 0 on f ~'(0) and show that M* = {pe M| f(p) > O}
is a regular domain of M. What is its boundary?

2. Let C be an imbedded image of S! in R*. Show that there is an ¢ > 0
such that N = {J,.¢ B,(x) is a manifold with boundary. Show that it is
difffomorphic to the solid torus. What can be said about the comple-
ment in R> of N (the interior of N)?

3. Show that if M has a Riemannian metric, then there is a uniquely
determined vector field X defined at each point of M such that X, is
inward pointing, is orthogonal to T,(0M) for each pe dM, and has unit
length.

4. Show that if M is a manifold with boundary, then it is always possible to
choose a vector field X defined at each point of dM such that X is
inward pointing. Given such X and an Q on M which is an n-form
determining the orientation, then show that the form w = (— 1)"(X)Q
determines the orientation of dM. [i(X)Q is defined as in the Exercise
of Section V.8.4].

5. Let M be a 2-manifold in R® such that M — R? has two components.
Show that it is possible to define a continuous field of unit normal
vectors to M.

6. Let U, V be open subsets of R" and F: U - V, G: V - U diffeomor-
phisms which are inverse to each other. Discuss the possibility of finding
extensions F’, G’ to open subsets U’, V' of R" containing U, V, respec-
tively, such that G’ o F’' = idy,, and F' - G’ = id,,,.

5 Stokes’s Theorem for Manifolds with Boundary

We consider an oriented manifold M with possibly nonempty boundary
OM, oriented by the orientation of M. We shall consider only oriented coor-
dinate neighborhoods U, ¢ in what follows. If U n dM # (&, then we denote
by U,  the corresponding neighborhood U = U n oM, § = ¢ |0 on oM.
All of the concepts used in defining the integral extend to M; namely the
definitions of content zero, domain of integration, and so on. In particular
oM has measure zero and, if compact, has content zero. This follows from
corresponding properties of 0H" (and Corollary 1.14). A cube Q associated
with U, ¢ is as in Section 2 unless U n dM # &, in which case we assume
that Q has a “face” on oM, that is,

p(@NnoM)={xeR"|0<x'<1 and x"=0}

In this case we note two facts: (a) § = Q n @M is a cube of @M associated
with U, gand b) =@ '((xeR|0O< X <L, I1<i<n—-1;0<x < 1}),
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that is, the interior of Q has a different image in R" than it has when
UclIntM.

Taking these minor modifications into account, the definition of {,, Q is
exactly as in Section 2 and the integral of an integrable n-form has the same
properties as before. Indeed, if M is a compact regular domain in a manifold
N, then it is necessarily a domain of integration in N and [y, Q = |y ky Q50
there is nothing new to define in this case! The same comments apply to the
integral over a Riemannian manifold with boundary and to the definition of
vol M when M is compact.

Now suppose M is both oriented and compact and that w is an (n — 1)
form of class C' at least on M. We have an important relation between the
integral of dw over M and i*w, the restriction of @ to M (i: OM — M is the
inclusion mapping). To simplify the statement of the theorem we let M
denote M, the boundary with the orientation induced by M, when n is even
and — @M, the boundary with the opposite orientation when n is odd; thus
M = (= 1) oM.

(5.1) Theorem (Stokes’s theorem) Let M be an oriented compact mani-
fold of dimension n and let M have the induced orientation. Then we have

When M = (3, the integral over M vanishes.

Proof According to our definitions it is enough to establish the theorem
for an o whose support is contained in the interior @ ofa cube Q associated
to a coordinate neighborhood U, ¢. Suppose w has its support in Q and
x!, ..., x" are the local coordinates. We may suppose that in these coordin-
ates w is expressed as

e M) = Y (1Y W dx A AdIT AAXIT A A dX
i=1

Then we have

“ix(y )__d—l*( ) = i(‘?lj dx' Ao A dx"
0 "*dw) = dp™ "*(w) = Loy X X
so that
- o3 oy
JM do = ’ ( ) dv = Z ’ 5/); dx! - dx"

This follows from the definition of integration on M and the iterated integral
theorem. The expression on the right may be rewritten; consider the jth
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summand only and integrate first with respect to the variable x’. This gives
an (n — 1)-fold iterated integral

1

1
(*) jo jo [AH(xt, ..., X701 Xt xm)
—M(xt, L xITL0, X X)) dx? --'d/x?---dx",

where we indicate by ax that this differential is to be omitted. The sum of
these (n — 1)-fold iterated integrals for j=1,...,n gives [y dow if
supp(w) = §. Two cases can occur: either Q N OM = (¥, in which case
eQ)={x|0<x'< 1, i=1,...,n; or QNndM + &, in which case
e(Q)={x|0<x' <1,i=1,...,n—1;0 < x" < 1}. In the first case, using
supp w = Q, we see that A = 0 if any x/ = 0, 1. Hence each of the inte-
grands in () vanish and fy dw = 0. On the other hand w restricted to dM is
the zero (n — 1)-form since supp w = @ which has no points on ¢M. Thus
fm dw =0 = [, i*w and Stokes’s theorem holds for this case.

In the second case we again have all of the integrands in (x) equal to zero
except the one corresponding to j = n; therefore

1 1

[ do=—f o] et X1 0)dxt e dx,
M (4] 0

On the other hand we may evaluate [, i*w using the fact that i*w has its

support in Q = Q N 0M so that its expression in the local coordinates U, ¢

(obtained by restriction of U, ¢) collapses to

P Hi*w) = (1) A (xY, . x"TL0)dx A AdxT L
[We may obtain this from the expression for w by applying the correspond-

ing inclusion i: (x!,..., x"" ') > (x!,..., "1, 0) in the local coordinates
and noting that i* dx" = 0.] This will give

I *o = (_l)"_l.[l ---’[1}."(x‘,...,x"'l,O)dx1 s dx™ L
0

oM 0
Thus, in the case where supp w = Q and 0 N OM #+ &, we find that

'[ do = (—l)"j i*o = I i*w,
M oM oM
with the right-hand integral over 0M when n is even and —JM when n is

odd, that is, over oM. |

We shall consider several examples in which M is a regular domain of R?
or R*. In these cases this theorem corresponds to standard theorems of
calculus known by various names.

(5.2) Example (Green's theorem) Let M be a bounded regular domain
of R?, that is, the closure of a bounded open subset of the plane bounded by
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simple closed curves of class C*; for example, let M be a circular disk or
annulus. Then dM is the union of these curves (in the cases mentioned a
circle or a pair of concentric circles). If w is a one-form of class C! on M,
then, using the natural Cartesian coordinates, we have w = a dx + b dy. We
may suppose, by definition of differentiability on arbitrary sets, that a, b are
restrictions of C' functions on some open set containing M. We have
dw = ((0b/ox) — (0a/dy)) dx A dy and by Stokes’s theorem

ob  Oa
— — — d = R
JM (6x 6y) dxndy LMadx+bdy

According to Remark 2.3, the left-hand side is the ordinary Riemann integral
over the domain of integration M = R2. On the other hand, if we think of
OM as a one-dimensional manifold and cover it with (oriented) neighbor-
hoods, it is clear that its value is that of the usual line integral along a curve
C (or curves C;) oriented so that as we traverse the curve the region is on the
left. (This is further discussed below.) Thus the equality above may be
written
ob da
L[ (ax—a—y) dxdy=2[ adx + bdy,

i °Ci
which is the usual statement of Green’s theorem.

(5.3) Example Let M be a regular domain of R?, that is, the closure of a
bounded open set bounded by closed C* surfaces. Examples are the ball of
radius 1, which is bounded by the sphere S2, or the region interior to a torus
T2, obtained by rotating a circle around a line exterior to it. Consider the
two-form w = Pdyadz + Qdzadx + Rdxady, where P, Q, R are C'
functions on some open set of R? containing M. We have

0P 0Q OR
S I - d
d (6 + 6y+ 62) dxrndynd:z

and Stokes’s theorem asserts that

OR
[ 0P 00, dx ndy A dz =j Pdyndz + Qdzndx + R dxndy.
Iu\0x  dy oz oM
If we use Remark 2.3 and our definitions to translate this into a Riemann
integral over a domain and a surface integral over the boundary, respec-
tively, then we obtain the usual divergence theorem of advanced calculus.

(5.4) Example A third example is obtained if we consider M to be a piece
of surface imbedded in R* and bounded by smooth simple closed curves, for
example, a sphere with one or more open circular disks removed, thus
leaving boundary circles, which are M. Since dx, dy, and dz may be con-
sidered, by restriction, as one-forms on M or on éM, any one-form w on M
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may be written: w = Adx + Bdy + C dz, where A, B, and C are C' func-
tions on M. In this case Stokes’s theorem asserts that

éC OB 4 oC dB 44
I, (5 = o) drme (5 = ) demt s (G- 55) asnar

=j Adx + Bdy + C dz.

M

The integral on the left-hand side may be converted by the procedure used in
defining integrals of forms on manifolds to an ordinary surface integral over
the surface M in R? and that on the right to a line integral. When this is done
one obtains the usual Stokes theorem of advanced calculus.

Often these examples of special cases of the general Stokes theorem are
stated in terms of vector calculus and vector operations such as gradient,
divergence, and curl. To establish the equivalence would require use of the
duality between vectors and covectors and other such relations on R" which
use the fact that R" is a Riemannian manifold. Basically these stem from the
natural isomorphism of a Euclidean vector space and its dual (and its exten-
sion to a duality between covariant and contravariant tensors). We do not
need these operations in what follows so they will not be taken up here;
some indications are given in the exercises.

It is important to note that the version of Stokes’s theorem proved above
is deficient in the following sense: it holds only for smooth manifolds with
smooth boundary. Thus, for example, our proof does not even include the
case of a square in R? or an open set of R* bounded by a polyhedron. The
difficulty in these cases is not so much with the analysis and integration
theory, as with describing the regions of integration to be admitted and with
giving precise definitions of orientability and induced orientation of
the boundary. The search for reasonable domains of integration to validate
Stokes’s theorem usually leads to the concept of a simplicial or polyhedral
complex, that is, a space made up by fastening together along their faces a
number of simplices (line segments, triangles, tetrahedra, and their generali-
zations) (Fig. V1.4) or more general polyhedra (cubes, for example). Since it
can be shown (see Munkres [1]) that any C* manifold M may be “ trian-
gulated,” which means that it is homeomorphic (even with considerable
smoothness) to such a complex, the integral over M becomes the sum of the
integrals over the pieces, which are images of simplices, cubes, or other
polyhedra as the case may be (compare Remark 2.7). The strategy is then to
reduce the theory (including Stokes’s theorem) to the case of polyhedral
domains of R". This approach is particularly important for those interested
in algebraic topology and de Rham’s theorem. It is very clearly set forth, for
example, by Singer and Thorpe [1] or Warner [1].

For many purposes, integration of forms over C' (but not one-to-one or
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diffeomorphic) images of simplices and polyhedra in a manifold is very
useful. Some idea of how this works is given in the following example.

(5.5) Example (Line integrals in a manifold) Let [a, b]=1€R)|
a <t < b}andlet F:[a, b] = M be a C' mapping whose image is, then, a C*
curve S on M. If w is a one-form on M, we define Is w by

! w = l. F*o.

) *[a, b)
This is called the line integral of w along S. In general § is not a submanifold
of M, it can be very complicated. However, the right-hand side is the integral
of a one-form, F*w = f{t) dt, on a one-dimensional manifold with bound-
ary; thus

J'sm = ".bf(t) dr.

Exactly as for line integ}als in R", we may prove that the value of the integral
does not depend on the parameter as long as the orientation of S is preserved
(Exercise 5). Thus the integral of w over an oriented C' curve S of M is
defined. When we reverse the orientation, traversing S in the opposite sense,

it changes the sign of the integral. We write [_s 0 = —{; w.
More generally, let S be an oriented continuous and piecewise differen-
tiable curve, that is, we consider § to be a union of curves §,, S,, ..., S, such

that each S; is C! and the terminal point of S; is the initial point of S, ,
(terminal and initial point make sense since we are dealing with oriented
curves). Then we define the integral over S by

r

(0=3 [ o
8 £=1~Si.

thus extending to this case the definition of line integral on a manifold. This
definition reduces to the usual one when M = R”. In fact we could have used
that as a starting point by subdividing the curve § on an arbitrary manifold
into a finite union of C! curves §;, each in a single coordinate neighborhood
and evaluated the integral over each §, in local coordinates, that is in R™

(5.6) Example Consider the special case w = df, where f'is a C* function
on M. (This implies that dw = 0.) In this case the value of the line integral
along the piecewise differentiable curve S from p to q is given by

j‘s df = f(q) = /(p).

In particular, it is independent of the path chosen. The verification is
Exercise 1 at the end of the section. Note that if p is held fixed, then f'(g) is
given at each g by adding f(p) to the value of the line integral along any
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piecewise C! curve from p to g. Thus fis determined to within an additive
constant by the line integral (assuming M connected).

The fact that a (line) integral of a one-form  over an oriented piecewise
differentiable curve S has been defined enables us to state Stokes’s theorem
for a polygonal region Q of R? bounded, as it is, by an oriented piecewise
linear (simple closed) curve § = 8Q. We carry this out for the unit square.

(5.7) Theorem LetwbeaC ! one-form defined on Q = {(x, y): 0 < x < |,
0 < y< 1} and let S be the boundary of Q traversed in the counterclockwise
sense. Then [, dow = [ w.

Proof Let w = adx + bdy, where g, b vanish outside Q and are C'
functions on Q. Then dw = ((6b/0x) — (0a/dy))dxAady on Q and by
Remark 2.3,

Lot ab o
jodw=j0 jo (a—gg)dxdy

= [ 1601, 5) = (0. dy ~ [ Lats, 1) = a0}

The orientation is that given by the standard coordinate system in R%. On
the other hand the integral over the boundary is

fw=ifadx+bdy
5

i=1°8;
1 1

=j a(x, 0) dx +j b(1, y)dy + Joa(x, 1) dx + job(O, y) dy.

This is because dy = 0 on the vertical sides and dx = 0 on the horizontal
ones. (See Fig. V1.9.) Comparing the values of the integrals shows that the

theorem is true. |
d
{0, 1} Ss {1, 1)
©,0) S, , 0 x

Figure V1.9



6 HOMOTOPY OF MAPPINGS 263

We remark that this essentially mimics our earlier proof, and from the
procedure used it is clear that we could state and prove this theorem for
rectangles of any dimension and even for triangles, tetrahedra, and other
simplices although in these cases, as we mentioned, some machinery is neces-
sary to describe proper orientations on the faces.

Exercises

1. Prove the formula of Example 5.6 for Is df by first proving it for curves
of class C! which lie in a coordinate neighborhood.

2. Evaluate the line integral of w = x2y dx + x dy on M = R? along the
radial path from (0,0) to (1, 1) and along the path consisting of the
segments (0, 0) to (1,0) and (1,0) to (L, 1). Determine whether this
integral is independent of the path.

3. Show that all line integrals of w = Pdx + Qdy + Rdz in R® are
independent of the path only if the value of the integral over any closed
(piecewise C') path is zero. Use this and Stokes’s theorem to obtain a
condition on P, @, R which is sufficient to show independence of the
path. [Assume w is defined on all of R*.]

4. In Example 5.3 let M be the unit ball and éM the unit sphere. If P = x?,
0 =y, and R = z2, compute both sides of the equation giving Stokes’s
theorem.

5. Suppose that § is an (oriented) C' curve on a manifold M given paramet-
rically by a mapping F: t+— F(t), a <t < b of [a, b] into M. Suppose
t = f(s), ¢ < s < d is a change of parameter on S. Show that the value of
the line integral over S of any one-form w is unchanged if /'(s) > 0, that
is, if the orientation of G = F o f'is the same.

6. Prove Stokes’s theorem for a triangle in R and a cube in R3.

6 Homotopy of Mappings. The Fundamental Group

One of the most basic ideas used in the study of mappings from one
space to another is that of homotopy. Two mappings are said to be homo-
topic if one can be “deformed™ into the other through a one-parameter
family of mappings between the same spaces. Sometimes further conditions
are imposed on the family of mappings as we shall see. The basic definition
can be stated as follows.

(6.1) Definition Let F, G be continuous mappings from a topological
space X to a topological space Y and let I = [0, 1], the unit interval. Then F
is homotopic to G if there is a continuous mapping (the homotopy)

HXxI1-Y
which satisfies the conditions: F(x) = H(x, 0) and G(x) = H(x, 1) for all
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xe X.If X and Y are manifolds and F, G are C*, we define a C* or smooth
homotopy by requiring that H be C* in addition to the conditions above.

We remark that H,(x) = H(x, t) does indeed define a one-parameter
family of mappings H;: X - Y,0 < ¢ < |, with F= Hyand G = H,. The
formulation of the definition emphasizes the simultaneous continuity in
both variables ¢ and x.

Some brief comments on the C* case: If X = &, then X x I is a
regualr domain of X x R and is a manifold with boundary. Indeed,
X x I)=X x {0} u X x {1}, so C™ is perfectly well defined. If 60X # ¢,
then X x I is not a manifold with boundary [consider X = B}(0), the closed
unit disk, for example]. However, it is a reasonably nice domain of X x R
which is a manifold (with nonempty boundary), so only minor technical
problems arise. We remark however, that when both X and Y have non-
empty boundaries, there are cases in which it is natural to require that
H,(X) = dY for 0 <t < 1, which is closely related to the generalization
below.

When the class of continuous maps from a space X to a space Y is
considered in its entirety, then homotopy of maps forms an equivalence
relation, and for many purposes it is the equivalence class of the map that is
important and not the particular representative. We shall illustrate this in
great detail in a special case, namely X = I, the unit interval. Before doing
this we mention a useful generalization of our definition: Suppose (X, 4)
and (Y, B) are pairs consisting of spaces X and Y and closed subspaces
Ac X and Bc Y. Consider F,G: X —» Y continuous maps such that
F(A) € B and G(A4) = B; F and G map the pair (X, A) into the pair (Y, B)
continuously. We say that F and G are relatively homotopic if there exists a
continuous map H: X x I - Y such that H(4 x I) < B, H(x,0) = F(x),
and H(x, 1) = G(x). We have added to Definition 6.1 the requirement that
H(A)c Bfor 0 <t < 1. When 4 = & = B, the definition reduces to the
original one. We will write F ~ G to indicate that F and G are (relatively)
homotopic; we justify this notation as follows.

(6.2) Theorem Relative homotopy is an equivalence relation on the contin-
uous maps of (X, A) into (Y, B) for any topological spaces X and Y and closed
subspaces A and B, respectively.

Proof The relation is reflexive since H(x, t) = F(x) is a homotopy of
F(x) with F(x). It is symmetric as well; given a homotopy H(x, t) of F to G,
then H(x,t) = H(x,1 —t) is a homotopy of G to F. Finally, suppose
F, ~ F, and F, ~ F; by homotopies H, and H,, respectively. Then we
define H(x, t) a homotopy of F, and F; by

_[Hy(x, 2t), 0<

Hix. 1) = Hyx,2t —1), i<
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It is easily verified that H(x, t) is continuous, and that all these maps take 4
into B for every t between 0 and 1 inclusive. We leave the C* case to the
exercises. |

Homotopy of Paths and Loops. The Fundamental Group

As a first application of the concept of homotopy we will consider homo-
topy classes of continuous maps of the unit interval I = [0, 1] into a mani-
fold M. A map f: I — M of this type is called a path, f(0) its initial point, and
(1) its terminal point. We shall consider homotopy classes of paths under
the additional restriction that the homotopy keep initial and terminal points
fixed, that is, H(t, 0) and H(t, 1) are constant functions. This is exactly rela-
tive homotopy for (I, {0, 1}) and (X, {b, d}).b = f(0).d = f(1). Given a mani-
fold M, tix a basepoint b on M and consider the paths with b as initial point.
If b is also the terminal point, then the path is called a loop; thus a loop is a
continuous map f: I — M such that f(0) = b = f(1). We denote its homo-
topy class by [ f], meaning always relative homotopy. Among these classes is
that of the constant loop e,(s) = b, 0 < s < 1. If this is the only homotopy
class and M is connected, then we say M is simply connected; this means that
every loop at b can be deformed over M to the constant loop. It is rather
easy to see (Exercise 1) that this property does not depend on the choice of b
and is equivalent to the statement that any closed curve (continuous image
of S') may be continuously deformed to a point on M.

Paths, loops, and their homotopy classes are very useful in the study of
spaces from the point of view of algebraic topology, for an important objec-
tive is to assign algebraic objects, such as groups, to spaces in such a way
that they depend only on the topology of the space, that is, are invariant
under homeomorphism, and thus * measure ” topological features. We shall
illustrate this process in this chapter for the case where our spaces are
manifolds. The restriction to manifolds is not essential but is for convenience
only.

If M is a connected manifold and f, g are paths on M with the terminal
point f(1) coinciding with the initial point g(0), we may clearly combine
these to a single path h after readjusting the parametrization; in fact,

125, 0<s

h(s) = ==
(s) = g(2s — 1), l<s<

is obviously a continuous map h: I — M traversing the image of f followed
by that of g. We shall call this the product of f and g, denoted f* g. This
product has the following properties with respect to (relative) homotopy:

(i) fxlgxh)~(f*g)*h
(i) Let f(1)=b = g(0) and suppose f=e,. Then e,*g ~ g. Si-
milarly, if g = e, , then fx ¢, ~ f.
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(i) Iffy ~frand g, ~ g,, thenfy x g, ~ f2% g,.

(iv) If g(s) =f(1 — s), and s =f(0), b = f(1), then f*xg ~ ¢, and
grf~e,.

(v) If F:M > N is continuous and f'=Fof, g =fog, then
(frg)=S"+g.

The verification of most of these properties is left as an exercise. In each
case a homotopy H(t, s) having the given properties must be constructed; as
a sample we verify (ii). By definition e, * g(s) = b for [0, §] and e, * g(s) =
g(2s — 1) for [4, 1]. We define H(s, t) in the following way:

b, 0<s<#l—1t) and 0<t< 1,

H(s, t) = 25-1+1t
1 +¢

), il—f<s<l

It is useful to see how this map H: I x I — M maps various portions of the
unit square in Fig. VI.10. The shaded portion is mapped onto b = g(0) and
each horizontal segment in the unshaded part, as for example the dotted line,
is mapped onto the image of g with the parametrization modified propor-
tionately. For property (iv) we have a diagram as in Fig. VI.11 with the

/

(M) (1,0

g 1,0 s (0,0) (1,00 s
Figure VI.10 Figure V111

shaded portion mapping on b and the dotted segments mapping on the
images of f, g, respectively, by a linear change in parameter. In verifying
properties (i), (ii), and (iv) (Exercise 7) such diagrams are useful.

We are now ready to give an example of a group “assigned ” to a mani-
fold M, the fundamental group of M (at the basepoint b). It is an important
algebraic invariant of a topological space or manifold and is often called the
Poincare group after one of the founders of algebraic topology.

(6.3) Theorem Let m\(M,b) denote the homotopy classes of all loops at
be M. Then ny(M, b) is a group with product [f][g] = [f* g) If F: M - N is
continuous, then F determines a homomorphism F: n,(M, b) - n,(N, F(b))
by F[f]1=[F > f] If G is homotopic to F relative to the pairs (M, b) and
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(N. F(b)), then F, = G,. Finally, when F is the identity mapping on M, F,
is the identity isomorphism, and (F - G), = F, o G, for compositions of con-
tinuous mappings.

Proof The product is well defined since (iii) above assures us that
[f* g] is independent of the representatives f and g chosen from [ /] and [g].
By (i) it is associative; and (ii) and (iv) give the existence of an identity [e,]
and inverse. Thus =n,(M, b) is a group. It follows from (v) that F: M - N
induces a homomorphism F_, and the last statement of the theorem is
immediate from the definitions. Finally if H: M x I - N is a homotopy of F
and G, then H(f(x),t) is a homotopy of the loop F,f= Fof and

G, f=Foyg [

We have some immediate corollaries, the first of which spells out the
meaning of the statement that the fundamental group is a topological
“invariant.”

(6.4) Corollary If M, and M, are homeomorphic and b,, b, correspond
under the homeomorphism, then the mapping F, is an isomorphism of the
corresponding fundamental groups n (M, b,) = n,(M,, b,).

Proof 1If F: M| - M, is the homeomorphism and G: M, - M, its
inverse, then F, and G, are isomorphisms, since F, - G, and G, o F are the
identity isomorphisms by the last statement of the theorem. |

If the identity map of M to M is homotopic to the constant map of M
onto one of its points b, then M is said to be contractible (to b). For example,
any open subset of R" which is star-shaped with respect to a point b is
contractible since H(x, t) = (1 — t)x + tb is such a homotopy. For contrac-
tible spaces we have the following:

(6.5) Corollary If M is contractible to b, then n,(M, b) = {e}, the identity
element alone. It follows that M is simply connected.

Proof Iffis a loop at b, then it is homotopic to the constant loop e, by
H(f(s) ), 0 < s, t < 1. This shows that =,(M, b) = {1}. To deduce simple
connectedness from this is exactly Exercise 1. It is even simpler to prove it
directly from the definition using again the mapping H. Of course, there are
simply connected spaces which are not contractible, the sphere ", n > 1,
being the simplest example (see Corollary 7.14 below). |

An interesting application of these ideas arises when we consider line
integrals along piecewise differentiable paths on M. Let w be a one-form on
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M and suppose p, ge M. If §,, S, are two such paths of M from pto gitis
natural to ask whether or not

o= o
S2

One knows that in general they are not equal, even in very simple cases (see
Exercise 10). However, the standard theorems of advanced calculus on
independence of path may be generalized to manifolds with essentially the
same proofs. We shall state the results and sketch the proofs.

(6.6) Theorem Let w be a one-form on a manifold M such that dw = 0
everywhere, and let S, S, be homotopic piecewise differentiable paths from
peMtoqe M. Then
w=| o
=1,

Proof (in outline) 1f S, and S, are C' curves homotopic by a differ-
entiable mapping H of I x I into M, then this result is a straightforward
application of Theorem 5.7 (Stokes’s theorem for the unit square. In the
general case the (continuous) homotopy H of the piecewise differentiable
curves must be altered as follows. First I x I is subdivided by vertical and
horizontal lines (Fig. VI.12) so that it is differentiable on each boundary
segment and so that H carries each subrectangle Q;; into a single coordinate
neighborhood U. Then the techniques of Section V.4 are used to alter H
successively to a homotopy A which is differentiable on each Q,;- From this
point the proof follows the usual one of advanced calculus. The argument
is as follows:

The new homotopy H maps the edges of the square Q = I x I into the
paths S, g, —S,, p, respectively, as we go around 0Q counterclockwise. The
images of the left and right vertical edges are the constant paths p and q. (See
Fig.V1.12.) Since the line integral of w over a constant path is zero, we have

H*o=| w w=| w-— .
'.BQ JSl * ".—Sz '.Sl J.S @
On the other hand, it is easy to check that if we denote the oriented squares
of the subdivision by Q;;, then line integrals over the same path in opposite
directions cancel out, and we have

J‘ I~{*w=z ' A*o.

20 i.J " oQi;

By Theorem 5.7 and the remarks preceding it,

Joqin*w = J’QU dH*w.
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/
(0, 1) (1,1
UlJ
VY] |UlQ
M~ 40,
! N
{1,0) G

Figure VL.12

Since df*w = A* dw = 0, we see that s, w — [5, ® = 0, which was to be
proved. |

Just as in the casc of domains of & this theorem has the following
corollary:

(6.7) Corollary Let w be a C” one-form on a simply connected manifold M
and suppose that dw = 0 everywhere. Then there is a C* function fon M such
that w = df. If f and g are two such functions, then f — ¢ is constant.

Proof We choose a fixed basepoint be M and define fat any pe M by
choosing a piecewise differentiable curve S from b to p and setting
f(p) = |5 w. Theorem 6.6 assures us that this defines a function on M. The
remainder of the proof deals with purely local properties; we must show that
fis a C* function with the property that df = w. If we show the latter fact, it
will follow that fis C* because we have assumed w to be C*. Changing the
basepoint changes f by an additive constant—the integral of w along the
path between the old and new basepoints—hence does not change df at all;
therefore it is enough to show that df = w at the basepoint. Let U, ¢ be a
coordinate neighborhood of the basepoint b. We suppose that x, ..., x" are
the local coordinates and that ¢(b) = (0, ..., 0)and ¢(U) = B}(0) and we let
S x") denote the expression for fin local coordinates. Then denoting
w in local coordinates by w = a;(x)dx' + -+ + a,(x) dx", we have, by
definition

f(x)= .‘.chl(.\') dx' + - + a,(x) dx",

the line integral along any path C from (0, ..., 0) to (x', ..., x"). We must



270 VI INTEGRATION ON MANIFOLDS

show that 9f/ox! = «;, j =1, ..., n, at x = (0, ..., 0). However, this is im-
mediate from the definitions:

of R
—| = - vees by, 0) = (0, ...,0
(52), = Imi (/0. 0) = 0.....0)
I ; .
=' o H e J--- J
:T;h-[oa’(o" , X0 0)dx

= aj(O, ey 0).

This completes the proof, except for the last statement, which is obvious:
d(f - g) = o — o = 0 so that f — g = constant on the (connected) mani-
fold M. ]

We remark that in terms of the expression of w in local coordinates,
dw =0 is equivalent to (0a;/0x’) — (0a;/0x') =0, 1 < i, j < n. For one-
forms on R", this is usually stated by saying that the cur! of the vector field
a,(0/0x') + -+ + a,(0/0x") associated to w vanishes (see Apostol [1]).

The concept of fundamental group and the techniques of this section are
intimately related to the notion of covering manifold and of properly discon-
tinuous group action on a manifold and will allow us to complete the study
of these phenomena, begun at the end of Chapter III. We will do this in the
last section of this chapter.

Exercises

1. Prove that a necessary and sufficient condition that every closed curve
in a connected space M be continuously deformable to a point is that
n,(M, b) = 1 for some be M.

2. Let a, b be points of a connected manifold M and show that n,(M, a)
and n,(M, b) are isomorphic.

3. Show that =,;(M x N,(a,b)) is naturally isomorphic to
7, (M, a) x (N, b).

4. Show thatn,(S') = Zand n,(§%) = {1}. Use this to show that §? and T2
are not homeomorphic. [To show =,($2) is trivial one must show as a
first step that any loop at N, the north pole, is homotopic to one
contained in the punctured sphere $2 — {x} (where x is a point distinct
from N).]

5. Show that if G is a connected Lie group, then =, (G) is Abelian. Use e as
basepoint.

6. If F,G: M — N are continuous maps of C* manifolds, F is homotopic
to G, and F(p) = g = G(p); then F, (n,(M, p)) and G, (n,(M, p)) are
conjugate subgroups of (N, g). [Note: We do not assume that the
homotopy H of F and G is constant on p.]
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7. Verify properties (i)-(v) used in the proof of Theorem 6.3.

8. Prove that if we use only piecewise differentiable paths and piecewise
differentiable homotopies to define n,(M, b), the group obtained is the
same as when continuous paths and homotopies are used.

9. Show that C* homotopy of manifolds (without boundary) is an equiv-
alence relation.

10. Show that on R? the following integrals depend on the path chosen:
(@) the line integral of w = y dx + dy from p = (0,0) to ¢ = (1, 1),
(b) the line integral of w = (—y/r*)dx + (x/r*)dy, r* = x* + y*[in
the latter case, we exclude (0, 0)].

In either case is dow = 0?

7 Some Applications of Differential Forms.
The de Rham Groups

It is our purpose in this section to obtain a few results about manifolds
which are traditionally in the domain of algebraic topology. We do not
assume a knowledge of this subject, but we have mentioned briefly in the
Exercises to Section V.8 the following definitions, with some consequences
which follow from the results of that section.

(7.1) Definition A k-form w on a manifold M (with possibly nonempty
boundary) is said to be closed if dw = 0 everywhere and is said to be exact if
there is a (k — 1)-form # such that dn = .

We recall some facts about the operator d and apply them here. Let
Z¥(M) denote the closed k-forms on M; since Z¥(M) is the kernel of the
homomorphism d: A¥M)— A**}(M) it is a linear subspace of A*(M).
Similarly the exact k-forms B*(M) are the image of d: A*~}(M) - A\¥M)
and thus a linear subspace. Moreover d* = 0 implies that B{M) = ZX(M)
which allows us to form the quotient H*(M).

(7.2) Definition The quotient space H(M) = Z*(M)/B*(M) is called the
de Rham group of dimension k of M. If n = dim M, we denote by H*(M) the
direct sum

H*(M) = H*(M) @ --- @ H"(M).

Note that H*(M) = Z(M)/B(M), where Z(M) and B(M) are the kernel
and image of d: A\(M) — /A\(M), respectively (and the direct sums of the
Z¥(M) and B¥(M), k = 0, 1, ..., n). Although called de Rham groups, H*(M),
k=0,...,n=dim M, are actually vector spaces over R and, in fact, it is
easy to verify that H*(M) is an algebra with the multiplication being that
naturally induced by the exterior product of differential forms. This follows
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directly from the basic property of d which asserts that when ¢ e /\"(M),
¥ € /\'(M), then

dlpry)=dory + (=1fonrdy

(from which it follows that Z(M) is an algebra containing B(M) as an ideal).
The great importance of the de Rham groups and the de Rham algebra
H*(M) stems from de Rham’s theorem:

(7.3) Theorem There is a natural isomorphism of H*(M) and the cohomo-
logy ring of M under which H*(M) corresponds to the kth cohomology group.

Since we do not assume any knowledge of algebraic topology the coho-
mology groups will not be defined here, nor will any proof of this important
theorem be attempted. The reader is referred to Warner [1] and the refer-
ences found there. We do remark, however, that among the consequences are
the facts that whenever M is compact the dimension of H*(M) is finite and
that in any case H*(M) together with its structure as an algebra are topolo-
gically invariant, that is, if M, and M, are homeomorphic, then H*(M,) and
H*(M,) are isomorphic as algebras. Finally we mention that the duality
which appears in algebraic topology between homology and cohomology
groups of a space extends to a duality of homology groups and de Rham
groups via integration and Stokes’s theorem—a further motivation for the
earlier sections of this chapter. Of particular interest to us is the fact that we
can use these de Rham groups, without using algebraic topology, to obtain
interesting results about manifolds. Samples are given below and in the
following section.

It is a basic property of differential forms that a C* mapping
F:M,—> M, defines a corresponding homomorphism F*: \(M,)—
/\(M,). Since F*d =dF*, it follows that F¥Z*M,)) < Z*(M,) and
F*(B*(M,)) = BM,). Therefore F* induces a homomorphism, which we
also denote by F*, of H{(M,) into H¥(M ). Since F* is an algebra homomor-
phism on forms, F*: H*¥(M,) —» H*(M,) is also an algebra homomorphism.
In summary, with the above notation we have the following lemma:

(74) Lemma A C* mapping F: M — M, induces an algebra homomor-
phism F*: H*(M,) - H*(M,) which carries HX(M,) (linearly) into H*(M,)
for all k. If F is the identity mapping on M, then F*: H*(M) - H*(M) is the
identity  isomorphism. Under composition of mappings we have
(G- F)* = F* . G*.

Using this lemma, we can obtain a weak version of the invariance of
H*(M) under homeomorphism mentioned above.
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(7.5) Corollary If M, and M, are diffeomorphic manifolds, then H*(M )
and H*(M ) are isomorphic rings.

Proof Let F: M, » M, be a diffeomorphism and F~! its inverse. Then
F™'"* . F*=(F-F ') and F*o F~'* = (F~ ' o F)* are both the identity
isomorphism, hence F* is an isomorphism with inverse F~*. |

Although the groups H*(M) are difficult to compute using only the tools
which we have available, which do not include algebraic topology, we can
obtain information in special cases—information which we can then use in
some applications.

(7.6) Theorem Let M be a C* manifold with a finite number r of compo-
nents. Then H*(M) = V', a vector space over R of dimension r.

Proof /\°(M) consists of C*-functions on M and Z°(M) of those func-
tions f for which df'= 0. There are no forms of dimension less than zero so
B°(M) = {0} and H°(M) = Z°(M). We have seen previously that df = 0 if
and only if f is constant on each component M, ..., M,. Thus H*(M) =
{(ay,....a,): a;e R}, where (a,, ..., a,) corresponds to the function taking the
constant value g, on M, i=1,...,r. |

(7.7) Remark It follows that H°({p}) = R, {p} being a zero-dimensional
manifold; this determines the de Rham groups of a point space—since
A4(p}) = 0. H¥(p}) = 0 for k > 0.

As an immediate consequence of Corollary 6.7, we have the following
theorem:

(7.8) Theorem If a compact manifold M or manifold with boundary is
simply connected, then H'(M) = {0}.

Proof Suppose w is a closed one-form on M, that is, dw = 0. Then there
exists a function fon M such that df = w, thus w is exact. Since every closed
one-form is exact, H'(M) = {0}. 1

In addition to this information concerning H°(M) and H'(M) we may
also prove the following statement concerning the highest-dimensional
de Rham group H"(M), n = dim M.

(79) Theorem Let M be a compact orientable manifold of dimension n with
M = . Then H'(M) #+ {0}.
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Proof Let Q be a volume element; it is an n-form, which is never zero at
any point and which gives the orientation of M. Then by Theorem 2.2(iii),
{4 Q> 0. Suppose Q =dw for some (n — 1)-form w. Then by Stokes’s
theorem

jMQ=.[ dw=j =0

M oM

since M = . On the other hand dQ = 0 since all (n + 1)-forms vanish on
M. Thus Q determines a nonzero class in H"(M). |

The Homotopy Operator

In order to obtain some further results concerning de Rham groups we
will introduce a special operator .#, the homotopy operator. Let A < R" be
either an open set or the closure of an open set; in the latter case we have in
mind regular domains, cubes, simplices, and so on. Note that for either
choice of A, I x A is the closure of an open set, its own interior, in
R x R" = R"*'. When A is not open, a C* k-form w on 4 is the restriction
to 4 of a k-form @ on an open set U, A « U—by definition of differentiabi-
lity of functions (in this instance its components) on 4. Our restrictions on A
ensure that all derivatives of any C® function f on A are defined at every
pe A independently of the open set U and extension f which may be needed
to define them at boundary points. This is a consequence of the continuity of
all derivatives of fon U and of the fact that every p e 4 is either an interior
point—where the derivatives are already defined without any f—or the limit
of interior points. It follows that for a C* form w on A, dw is defined, even at
boundary points.

(7.10) Definition The homotopy operator .# is defined to be an R-linear
operator from A**'(I x A) » A*4). On monomials .# is defined as fol-
lows: If o =alt, x)dx"A---adx**, we set Sw=0; and if
w = alt, x) dt Adx"* A+ A dx™ we define fw by

1

Sfo = (J a(t, x) dt) dx't A~ A dxix

0

Having been thus defined for monomials, we extend .# to be R-linear on
A I x A) with values in A*(A).

We will denote by i,: 4 - I x A the natural injection i,(x) = (¢, x) and
then w, will denote i*w; in particular w, = i§w and w,; = fw. With these
definitions and notations we find that .# has the following basic properties.

(7.11) Lemma The homotopy operator #: \** (I x A) > N\¥(A) in addi-
tion to being R-linear has the following properties:
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(i) ir commutes with C* functions which are independent of t;
(i) for all we N\**'(I x A) it satisfies the relation

Fdo+dfow =0, —wy.

Proof If fis independent of t, we may consider it both as a function on
I x A and on A. Since it is independent of ¢ it can be moved through the
integral sign in the definition of .#, thus ffw = f.fw.

For the second property we must verify the equation directly; it is
enough to do so for monomials since d, .#, i}, and it are all R-linear. First
we consider the case where w does not involve dr, in other words
o = aft, x)dx"* A+ Adx**'. Then fw = 0 so that dfw = 0 and . do is
given by
1

) . . . .
S dow = ([ (0% dt) dxU A Adx™ = (a1, x) — a0, X)) dxTt A A dxe
o
But the right side is then exactly ifw — i§w = w, — wq, which thereby
establishes the equality for this case.
Now suppose that w = a(t, x) dt Adx"' A+~ A dx™ Computing .# dw, we
see that
SFdo =~ i J‘lﬁ.dt) dxI A dxt A Adx™,
j=1 o OxX/
On the other hand using the Leibniz rule to differentiate under the integral
sign (see Exercise 1.6), we may compute d.¢ w:
1

dfw = d(J‘ a(t, x) dt) dxit A A dx'

0

n W1 .
= Z (J aa.dt) dxIAdxV A A dx

j=1 Vo 0x/

Adding these expressions we see that .# dw + d.w = 0. On the other hand
since i* dt =0 = i% dt, we have 0 = ifw — ifw = 0, — wo. Thus in all
cases (ii) holds. |

The following consequence is usually referred to as Poincaré’s lemma.
We continue to denote by 4 a subset of R" which is either open or is the

closure of an open set.
(7.12) Lemma If A is star-shaped, then H*(A) = {0} for all k > 1. Hence
H*(A) is isomorphic to the cohomology ring of a point.

Proof We recall that A4 is star-shaped if it contains a point 0 such that
for any pe A, the segment Op lies entirely in A. By suitable choice of coordin-
ates we may suppose that 0 is the origin. We define H: I x A — A4 as

H(t,x', ..., x") = (tx', ..., tx").
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If w is a k-form on A, then H*w is a k-form on I x A. In the definition of .#
we defined iy: x = (0, x) and i,: x - (1, x); therefore H - iy: A - {0} and
H-i: A - A is the identity. Applying .# to /\*(I x A4) and using the fact
that /\*({0}), a point space, is trivial for k > 1 we have

df(H*w) + £ d(H*w) = if(H*w) — i§H*w,
so that if dw = 0, then dH*®» = 0 and
d¥H*w = (H o i))*0 ~ (Ho ig)*0 = o.

Therefore every closed k-form w on 4 is exact if k > 1. If k = 0, then we may
use the fact that 4 is connected to see that H°(4) = R. |

In fact, the homotopy operator .# can be defined and used under more
general hypotheses. We have supposed that A4 is a particular type of subset of
R", but it is possible to extend the definition to manifolds with or without
boundary. As a sample we shall prove the following theorem.

(7.13) Theorem Let M and N be compact manifolds and assume M = (.
Suppose that F and G are C* mappings of M into N which are C* homotopic.
Then the corresponding homomorphisms F* and G* of H*(M) into H*(N) are
equal.

Proof We shall use our previously defined operator .# to construct a
similar operator .#: A** (I x M) —» /A\¥M). First we note that M may be
covered by a finite collection of coordinate neighborhoods, U,, ¢; with
o{U;) = Bj(0), n=dim M and i = 1, ..., r, for which we have a subordin-
ate C* partition of unity {f;}, supp f; = U;. Then any (k + 1)-form w on
I x M can be written as a sum of forms with support in I x U,;,

r
o= o, w; = fio.
i1

We may consider f;, or any functions on M, as being also functions on
I x M which are independent of t. We define .# to be additive so that
Jw =Y Jw;, which leaves only the problem of defining .# on forms with
support in one of the neighborhoods I x U;.

When w has support in a neighborhood I x U, where U, ¢ is a coordin-
ate neighborhood with ¢(U)= B}(0), we proceed as follows. Let
¢:1 x U -1 x B}(0) be defined by ¢(t, p) = (t, ¢(p)). Then define Fw on
I x U, using our previous definition of # for I x B}(0), by fw|y=
P*(#(p~ '*w)), the .# on the right side being the operator defined earlier,
and further, let .#w = 0 on M — U. This defines a C* k-form on M, the
image ofa (k + 1)-formonI x M.By Lemma 7.11 for this form w we have the
relation £dw + dfw = w, — wy. Now since £d + df is an additive oper-
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ator, then for an arbitrary we /\¥**(I x M) we may apply the decomposi-
tion w = ) «; to obtain

Fdo+dfo=5dY w,+df Y o
=3y # do; + Ydfw; =Y ((0) ~ (@)

=(l)1~'(1)0.

Finally, 1o complete the proof we let w be any closed k-form on N and we
must show that G*w — F*w is exact. Now let H: M x [ —» M be the homo-
topy connecting F and G. Then F(p)= H(p,0) = H-i, and G(p) =
H{p, 1) = H - i}, where i(p) = (1, p) as before. Since dH*w = H* dw =0,
we have then,

dfH*w = itH*o» — itH*w = G*w — F*o,
as was to be shown. ]

Intuition tells us that we cannot contract a sphere, or torus, over itself to
a single point. This feeling is verified by the following corollary to
Theorem 7.13.

(7.14) Corollary Let M be a compact orientable C* manifold (dim M > 0)
with M = &. Then M is not contractible.

Proof By the previous theorem with M = N, if i is homotopic to the
constant map F: M — {p,}, then i* = F* as homomorphisms on the groups
H*(M). However, i* is the identity isomorphism and F* is a homomorphism
of H¥(M) into H*({p,}). which is {0} for k > 1. This contradicts Theorem 7.9
ifdim M > 0. |

Exercises

1. Let w be a closed one-form on a compact manifold M. We define a
mapping F,: n,(M, b) = R by the following method. Let f: [0, 1] - M
be a piecewise C' loop S at b and denote by [f] the corresponding
element of m, (M, b). We define F,,([f]) = |s w. Show that F,, is a homo-
morphism whose kernel contains the commutator subgroup of the fun-
damental group. [Hint: use Corollary 6.7.]

2. Compute H*(S') and H'(S' x S!).

3. Let M be a manifold, N a submanifold of M, and R: M - N a C*
mapping which leaves N pointwise fixed. Show that R*: H*(N) —
H*(M) is an injective homomorphism.

4. Let M =M, x M, and let P;: M — M; be the natural projections.
Show that P¥: H*(M;) - H*(M) is an injective homomorphism.
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S. Show that for n > 1, H*(S") = {0} by applying the Poincar¢ lemma in
turn to each of the two coordinate neighborhoods U = §" — {N} and
¥V = §" — {S}; N being the north pole, S being the south pole, and the
coordinate maps being stereographic projection onto R".

8 Some Further Applications of de Rham Groups

In this section we use the information on de Rham groups accumulated
in the previous section to obtain some very interesting facts which one
customarily demonstrates by use of algebraic topology. In particular, it is
proved here that there is no vector field on §2 which does not vanish at some
point—a fact to which we have frequently alluded. In a very beautiful little
book, Milnor [2] has shown how many purely topological results can be
obtained by differentiable methods. Using this idea and the results of
Section 7, we give a demonstration of the Brouwer fixed point theorem,
following the author’s note (Boothby [1]).

We begin our proof of this last mentioned theorem by establishing a
lemma. Let D" denote B} (0), the closed unit ball in R". Then D" is a manifold
with boundary, éD" = §"~ .

(8.1) Lemma There is no C* map F: D* — 0D" which leaves dD" pointwise
fixed.

Proof Suppose that there existed such a map F and let G denote the
identity map of D" — D". Then F o G = I, the identity map of D" — D"
This implies that G* « F* = (F o G)* induces the identity isomorphism on
H*(0D"). Therefore the homomorphism F*: H*~'(0D") —» H"~ }(D") must be
injective, that is, ker F* = {0}. Since H"~ }(D") = {0} by Poincaré’s lemma, it
follows ker F* = H"~!(dD") and therefore that H"~'(9D") = {0}. However,
because dD" = §"~ !, an orientable and compact manifold without bound-
ary, Theorem 7.9 shows that H"~'(dD") = H"~'(§"~ ') # {0}. This contra-
diction implies that no such map F exists. ]

Using this lemma we may establish (as in Milnor [2]) a very well-known
theorem of algebraic topology, the Brouwer fixed point theorem.

(8.2) Theorem (Brouwer) Let X be a topological space homeomorphic to
D". Then any continuous map F: X — X has a fixed point, that is, for each F
there is at least one xo€ X such that F(x,) = X,.

Proof As a first step we note that it is enough to prove the theorem for
D" Let H: D" — X be a homeomorphism, and let F: X — X be any contin-
uous mapping. If H 'o Fo H:D"—» D" has a fixed point y,, then
xo = H(y,) is fixed by F.
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Moreover, even in the case of D" it is enough to establish the property
for C* maps F: D" — D". To see this we suppose every such C* map has a
fixed point and assume there is some continuous map G: D" — D" which has
no fixed point. Then ||G(x) — x| is bounded away from zero on the
(compact) set D", and we may find an & > O such that ||G(x) — x|| > 3e.
Using the Weierstrass approximation theorem (Lemma V.4.9), or the
approximation theorem given in Exercise 2, we approximate G to within ¢
by a C* mapping G,; then |G(x) — G,(x)l[ < & for all xe D". However,
since the values G,(x) are not necessarily in D" for every x € D", we replace
G, by F(x) = (1 + ¢)"'G(x). Clearly F(x) is defined and C* on D" and
F(D") < D" Since ||G(x)|| <1, it follows that ||G(x)]| <1+ ¢ and
[F(x)| < 1 for all xe D". Thus F maps D" into D" and is C*. For xe D",

16(x) = Fe = 166) = (1 + )Gy (x)]
= (1 +8)6(x) + G(x) = Gy(x)]
< oG] + I6(x) - G, ()] = 2=

From these inequalities we obtain a contradiction to the assumption that
every C* map F: D" — D" leaves some point fixed. Namely, for every x € D"
we have

IF(x) = x| = (G(x) — x) = (G(x) = Fx))]
> ||G(x) — x| — [[G(x) = F(x)|
>3k —2=c¢c

This contradiction shows that if every C* map of D" to D" has a fixed point,
then so must every continuous one. The proof of the theorem is then
completed by the following lemma. ]

(83) Lemma IfF:D"— D"is a C* map, then F has a fixed point.

Proof This is again a proof by contradiction. We suppose there exists
an F:D"— D" which is C* and has no fixed point. We shall use F to
construct a C* map from F: D" — aD" which leaves D" pointwise fixed.
Namely, given x € D", let F(x) be the boundary point obtained by extending
the segment F(x)x past x to the boundary of D" (Fig. V1.13). In particuiar, if
x € D", then F(x) = x and, in any case, F(D") = dD". To see that F is C* we
express F explicitly using vector notation in R". Namely, F(x) = x + Au,
where x denotes the vector from (0, ..., 0) to x = (x',..., x"), u is the unit
vector directed from F(x) to x and lying on this segment, more precisely,

_ x—Flx)
YT x - Fe
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Flx)zx+\u

Figure V1.13

and where A = —(x, u) + [1 — (x, x) + (x, u)?]'/? denotes the length of the
vector on u with initial point x and terminal point F(x) on dD". Since F is
C™, it is easy to check that F is C*. Figure V1.13 represents the intersection
of D" with the 2-plane determined by three points: the origin 0, x, and F(x).
The scalar A is the unique nonnegative number such that ||x + Au| = L.
Since F is C*, u is C*, so wherever the expression under the radical is
positive, then F(x) is also C*. However, 1 — (x, x) > 0 with equality only if
x€ 8" '; and (x, u)? > O with equality only when u is orthogonal to x, that
is, when x — F(x) is orthogonal to x. However, (x, u) = 0 cannot occur
when (x, x) = 1, that is, on a point of $"~ ', since in this case F(x) would be
exterior to D". Thus 1 — (x, x) + (x,u)? > 0 on D" and F is C*. The exist-
ence of F contradicts Lemma 8.1, so F has a fixed point, which completes the
proof of Brouwer’s fixed point theorem. |

As another application of these ideas we prove the following theorem
concerning the antipodal map A(x) = —x on the unit sphere $"~! of R™.

(8.4) Theorem If n is odd, then there is no C* homotopy between the anti-
podal map A:S"~' — §"~ ! and the identity map of S" .

Proof The sphere is an orientable manifold, in fact we may define the
oriented orthonormal frames of T,(S"~!) at each x € "™ ! in the following
fashion. Each x € $""! determines a unit vector x = Ox, and the elements
of T(S"~ ') correspond to the vectors in the orthogonal complement of x. If
ey, ..., €,_ is an orthonormal frame of T,(S"~!) in the induced metric of R",
then x, e,,...,e,_, is an orthonormal frame of R"—we use the natural
parallelism to identify vectors at distinct points of R". Two frames,
e;,....,e,_and e}, ..., e,_,, at x will be said to have the same orientation if
the corresponding frames x, e, ..., e,_, and x, €}, ..., €,_, do. Then from
the canonical orientation of R" we obtain an orientation of §”~ ! by choosing
as oriented that class of frames for which x, e, ..., e,_, is an oriented frame
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of R". Let Q be the unique (n — 1)-form on $"~ ! which takes the value + 1
on all oriented orthonormal framese,, ..., e,_,. Since 4: S"~! — §" ! is the
restriction to $"~ ! of a linear, in fact an orthogonal, map of R" its Jacobian is
constant and just the map 4 itself. Thus under A the framee,, ..., e,_, at x
goes to the frame —e,,..., —e,_, at —x. It is clear that this will be oriented
according to our orientation of $"~! if and only if n is even so that
X,€,....,e,_, and —x, —e,, ..., —e,_, are coherently oriented frames of
R". Therefore A*Q = (—1)"Q and when n is odd, Q = — 4*Q.

If there were a C* homotopy connecting A and the identity, then
Q — A*Q must be exact by Theorem 7.13. Since the integral over $"! of an
exact form is zero by Stokes’s theorem, this means that when n is odd,

Q- 4*Q) =0.

YSn-1

But this is impossible since the integral over $"~! of the volume element is
positive. [For an alternative proof see Exercise 3.] |

We shall deduce two consequences. First, recall that although we have
discussed orientability of manifolds at some length and have shown that
some manifolds are orientable, for example, $*~! = dD", we have never
presented an example of a manifold which cannot be oriented. We shall
remedy this omission now.

(8.5) Corollary Real projective space P*(R) is not orientable when n is even.

Proof Suppose that it is; we know that §" is a (two-sheeted) covering
manifold of P*(R) which can thus be obtained from S" as the orbit space of
the group of two elements Z, acting on S”. This action is obtained by letting
the generator of Z, correspond to the antipodal map 4 (Example 111.8.2). If
Q is a nowhere vanishing n-form on P'(R) and F: §” — P"(R) is the covering
map, then F*Q = Q* is a nowhere vanishing n-form on S$". Moreover since
Fo+ A= F we see that 4*Q* = Q*, which, as we have seen above, is not
possible if n + 1 is odd. Thus P*(R) is not orientable when n is even. |1

As a second application of Theorem 8.4 we prove the following theorem:

(8.6) Theorem If nis even, then there does not exist a C*-vector field X on
S" which is not zero at some point.

Proof We suppose that such a vector field exists and show that this
implies that the antipodal map A and the identity map I on §” are C*
homotopic. Let X be a C*-vector field on §" such that X is never zero. Then
X/|X| is a C*-vector field of unit vectors (we use the induced metric of
R"* ') so we may suppose to begin with that | X|| = 1 on $".If x is a point of
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$", let X be the corresponding vector of the field. Treating R"*! as a vector
space and thinking of x as a radius vector, we have (x, X,) = 0 for every x,
and we define the homotopy H: §" x I — §" by

H(x, t) = (cos nt)x + (sin nt)X, .

Then H(x, t) is C* and, since |H(x, t)|| = 1, it defines a map of $" — §" for
each t. Thus H(x, 0) = x and H(x, 1) = — x as claimed. However, the exist-
ence of such a homotopy when 7 is even contradicts the previous proposi-
tion; therefore in this case no such vector field exists. ]

(8.7) Remark We have noted previously that when n is odd, then the
vector field X, assigning to x = (x', x%, ..., X", x"* ') e S" the unit vector
0 0 0 0
X. = 2 7yl "+1i,_x"71
ST TN et Y ox !
orthogonal to x defines a nowhere vanishing field of tangent vectors to S”. It
follows that in this case 4 is homotopic to the identity.

The de Rham Groups of Lie Groups

We shall briefly touch on a special case of considerable interest in the
theory of de Rham groups; in fact it is the case which may have led to their
discovery. We suppose that G is a compact connected Lie group, for example
SO(n), and that 6: G x M — M is an action of G on a compact manifold M.
As usual 6, denotes the diffeomorphism of M defined by 6,(p) = 0(g, p). A
covariant tensor ¢ on M, in particular an exterior differential form, is said to
be invariant if 03¢ = ¢ for each ge G. Since d{6}¢) = 0%¥(dy) for every form
¢ (Theorem V.5.2), we see that if ¢ is invariant, dg is also. Let /\"(M )denote
the subspace of AXM) which consists of all invariant k-forms. Then
d(N\(M)) = A¥*1(M) as we have just seen; and we may define Z*(M) =
{pe AH(M)| dp = 0} and BXM) = d(/\*(M)) = Z*(M), the closed invar-
iant forms and “invariantly exact” forms of degree k. We then make the
following definition.

(8.8) Definition The invariant de Rham groups of M, denoted by HY(M),
are defined by H*(M) = Z¥(M)/B*(M).

We note that the natural inclusion i of /\Y(M) in \*(M) takes Z*(M) into
Z¥M) and B*(M) into BM) and hence induces a homomorphism
i,: H(M) > H*(M). In order to study this homomorphism we define an
R-linear operator 2: A\XM) —» AKM). If pe A¥M), then let Q denote the
bi-invariant volume element for which vol(G) = 1 and define ¢ by

g’<p(x,,...,xk)=J 0rp(X 1, ..., X ).
G



8 SOME FURTHER APPLICATIONS 283

This operator has the following properties:
(89) Lemma 2 takes a k-form to an invariant k-form, that is,
P(N\"(M)) = JA(M). Moreover,

(i) if pe (M), then 2¢ = o;
(ii) d? = 2d.

Proof It is easy to check that ¢ € A\*(M) and in fact is G-invariant:

O*Pp(X1r ..., X)) = Pop(0, X 1 ..., 0,,X,) = j 02000y X 11 ..., 00y X, )2
G
= Le:[e;(p(x,,..., X Q= [ 050Xy, ..., X,)Q
‘G

- J‘G 020(X 1, ..., X )Q

The fact that 2¢ is C* and (ii) are consequences of the Leibniz rule for
differentiating under the integral sign. If ¢ is G-invariant, then 6}¢ = ¢ for
all g e G, or more precisely at each pe M,

05 Potg. (X 15 -5 Xip) = 05X 1, -, Xip)-
From this it follows that

2o(X,. ..., X)) =j 0*p(X 1, ..., X,)Q = q,(xl,...,x,,)j Q.
G G
Since [ Q = 1, 29 = ¢ and property (i) are established. |

The lemma leads to the following result for G, M and H*(M) as described
above:

(8.10) Theorem The homomorphism i,: H*(M)— HM) is an isomor-
phism into for each k =0, 1, ..., dim M.

Proof Suppose that [(] is an element of H*(M) and that & is a closed
invariant form on M belonging to the class [@]. In order to show that i, is
one-to-one we need only see that if § = do, ae A\*~'(M), then § is the
image under d of an element of /\¥™!(M), that is, that if  is exact, then it is
“invariantly exact.” This follows from Lemma 8.9 since
$ = Pp = P do = d(Ps) and Poe N\~ '(M). 1

(8.11) Remark It is also true, but somewhat harder to prove directly, that
i, is onto, that is, H{M) is isomorphic to H*(M) for all k. For details the
reader is referred to Chevalley and Eilenberg [1] or Greub et al. [1].
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This theorem, coupled with the remark, enables one to reduce to alge-
braic form many questions about the cohomology of homogeneous spaces.
In particular, computation of the de Rham groups of such a space can be
converted to a problem concerning representations of the isotropy subgroup
of a point. Consideration of these interesting questions would take us too far
afield, however we touch very briefly on one special case.

(8.12) Lemma Let @, be a covariant tensor of order r on T,(G), where G is a
connected Lie group. If Ad g*®, = ®@,, that is, if ®, determines a bi-invariant
tensor on G, then for any X, ..., X,, Z€ g, we have '

Z(D(Xl,...,[Z,Xi]’--'aXr)=0‘
i=1

Proof Let @ denote the bi-invariant covariant tensor on G determined
by ®,. Given Zeg, a left-invariant vector field on G, we have seen
(Sections IV.5 and 1V.6) that Z is complete and that the one-parameter
group action 8: R x G — G which it determines is given by right transla-
tions by the elements of a uniquely determined one-parameter subgroup
g(t) = exp tZ by theformula 8, = R ,,. We have previously (Theorem 1V.7.8)
established the following formula for C*-vector fields on a manifold (in this
case on G):

.1
[Z, X]p = lm()) ; [0—(* X{)'(p) — Xp]
t—

If we suppose that p = e and that X is a left-invariant vector field, then
[Z, X] is just the product in the Lie algebra g. If we identify g with T,(G), we
may write

.1
(2, X]= lm; ;[th—mn Xoo — X1
1=

Since @ is bi-invariant, R}_,® — ® = 0; thus for any X, ..., X, €g,
ORY-y X, .., RY_p X)) —B(X,,....X,)=0.

Adding and subtracting (X, ..., X;_y, R} _yXi, ..., Rj_yX,), i=1,
..., I, then multiplying by 1/t and letting t — 0, we obtain the formula.

(8.13) Corollary Every bi-invariant exterior form on a Lie group G is
closed.

Proof Let w be an exterior differential r-form. If w is left-invariant and
Xo, Xy, ..., X, are left-invariant, then

dw(Xo,..., X,.) = Zw(XO,...,[Xi_l, X,'],...,X').
i=1
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We previously established this formula for r =2 (Lemma V.8.4). The
method of proof in the general case is the same (compare Exercise V.8.3).
The corollary is an immediate consequence. ]

Now we suppose that G acts on itself by both left and right translations.
More formally, let G = M and let K = G x G, the direct product of Lie
groups, and define 0: K x M - M foreachxe M = Gand k = (g,,g,)e K
by

G(k, X) = gleZ (= Rgz ° Lm(x))‘

Then the K-invariant forms $ on G are exactly the bi-invariant forms.

(8.14) Corollary Each bi-invariant r-form on a compact, connected, Lie
group G determines a nonzero element of H'(G).

Proof By Corollary 8.13 each ¢ e H'(G), that is, each bi-invariant
r-form is closed. We know that if it is exact, then it must be of the form dé&
with & bi-invariant. But then it is zero, by the corollary again, since dg = 0.

(8.15) Example Consider any compact, connected, non-Abelian Lie group
G, for example, SO(n), the orthogonal matrix group (with elements of deter-
minant + 1) for n > 3. We claim that H*(G) # {0}. We consider that the
exterior three-form ¢(X, Y, Z) = ([X, Y], Z) on G; (X, Y) denotes the bi-
invariant inner product. Since X, Y € g implies that [X, Y] is left-invariant
and since Ad(g) is an automorphism of g, it follows readily that ¢ is bi-
invariant. The alternating property of ¢ follows from [X, Y] = —[Y, X]
together with the symmetry of (X, Y). By Corollary 8.14, ¢ is closed and if it
is not zero, it determines an element of H*(G). Suppose that ¢ = 0. Then for
all X,Y,Zeqg, we have o(X,Y,Z)=(X,Y],Z)=0. In particular,
([Xx, Y], [X, Y]) = Oso that [X, Y] = O forall X, Y € g. This means, accord-
ing to Section 1V.7, that the one-parameter groups of G commute. It follows
that there is a neighborhood U of ¢ which consists of commuting elements.
By the connectedness of G it follows that the elements of U generate G,
which is therefore commutative, contrary to assumption. This means that ¢
determines a nonvanishing element [¢] of H*(G).

Exercises
1. Let A be a closed subset of the metric space R" and f: 4 —» R a contin-
uous bounded function. Show that there is a continuous extension of f to
all of R" (Tietze-Urysohn extension theorem).
2. Given J > 0, let g;(x) be a nonnegative C* function on R" such that
supp g; < Bi(0) and [gn g5(x) dx' -+ dx" = 1. Let fbe a continuous func-
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tion defined on an open subset U and let K be compact with K < U.
Given & > 0, choose § > 0 so that: (i) J is less than the distance from K
to R" — U and (ii)for ||y| <d and xeK, | f(y + x) — f(x)| <&
Show that

g(x) = [ S+ x)gsly) dy* -+ dy"

is a C* function and that |g(x) — f(x)| <& on K.

3. Prove Theorem 8.4 by using on $"~! the form Q obtained by restricting
Y (1 Ixdxt A AdXI T AdXI T A AdX 10 S"T

4. Show that if n is odd, then P*(R) is orientable.

5. Show that there exists no continuous vector field on S", n even, which is
nowhere zero.

6. Using Remark 8.11, prove that if G is a connected compact Lie group of
dimension n, then H(G) = R.

7. Using Remark 8.11 compute H¥(T"), k = 0, 1, ..., n. Give a formula for
dim H*(T") (as a vector space over R).

8. Define the center ¢ of the Lie algebra g of the compact connected Lie
group Gby ¢ = {Zeg|[Z, X] = 0 VX e g}. Prove that it is a subalgebra
and that if Z e ¢, then exp tZ is in the center of G. Show that if ¢ = {0},
then H'(G) = {0}.

9 Covering Spaces and the Fundamental Group

The ideas involved in paths, loops, their homotopies, and the fundamen-
tal group of a manifold M, which were discussed in Section 6 have an inti-
mate connection with the covering spaces of M and with properly
discontinuous groups, which were considered much earlier (Sections II1.8
and I11.9). Clarifying this relationship will enable us to complete the discus-
sion of Chapter I1I in several important respects.

Suppose in what follows that M is a manifold, M a covering manifold,
and F: M - M the (C*) covering mapping. If X is a topological space and
G: X = M a continuous mapping, then a continuous mapping G: X — M is
said to cover G if Fo G = G; we also say G is a lift of G. For example, if
fi1 - M is a path or loop, then f: I - M is a path which covers it if
Fof(t)=f(t)for0 < t < 1.Ifa covering fof a given path fexists at all, then
it is uniquely determined by its value on a single point, say by f(0). More
generally, with the notation above we have the following lemma.

(91) Lemma IfF:M->Misa covering and X is a connected space, then
two (continuous) mappings G,, G,: X = M covering a continuous mapping
G: X = M agree if they have the same value at a single point x,€ X.
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Proof Let A = {xe X:G,(x) = G,(x)}. Then 4 is closed by continuity
of G, and G,. A is also open, for if xe 4 and if U is a neighborhood of
G,(x) = G,(x) such that F | U is a diffeomorphism of U to M, then it follows
that G, and G, must agree on the openset V = G; (U) n G5 '(U). In fact if
yeV, then F - G,(y) = F - G,(y) by hypothesis; but since G,(y) and G,(y)
are in U, on which F is one-to-one, they must be equal. Finally since 4 is not
empty and X is connected, 4 = X. ]

(92) Theorem Letf: I M be a path in M with initial point b = f(0). If
F:M — M is acoveringandbe F~ 1(b), then there is a unique path f'in M with
initial point f(0) = b.

Proof Uniqueness is a consequence of the previous proposition. To
prove existence we suppose 0 = f, < t; < -+ < t, = 1 is any partition of [
such that for each i, f([t;, t;+,]) lies in an admissible neighborhood V; with
respect to the covering. The existence of such a partition follows from the
compactness of I and the continuity of . We let f(0) = b and let be M
denote a point over b, that is, F(b) = b. If U, is the unique connected
component of F~!(V,) containing b, then we define f(r), 0 <t < ¢,, by
()= (F|U,) (S (t)). Thenf(t,)e U, A U,, where U, is the unique com-
ponent of F~!(V,) containing f(t,). This allows us to define f(r) =
(Fl|Uy)"'(f(e)) for t; <t < t, and thus determine fon [t,, t,]. Clearly we
can continue in this fashion to define f on all of I. (See Fig. VL.14.) |

Figure VI1.14

Lifting a path from T2 (o its covering R,
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It is important to realize that not only a path but even a homotopy of
paths can be lifted to a covering M of M by this procedure.

(9.3) Theorem Let f,g:1 > M be paths and H: 1 x I - M a (relative)
homotopy of f to g leaving endpoints fixed. Suppose f, §: I = M cover f, g and
have the same initial point. T hen they have the same endpoint and there exists a
unique homotopy H: I x I - M of f to § covering H. Endpoints remain fixed
for H also.

Proof We define H = I x I - M using the previous theorem. For each
fixed 1, H(s) = H(s, t),0 < s < 1, is a path on M and lifts to a unique path
H(s) on M with H,(0) = (0) = §(0), the common initial point of fand §; we
let (s, t) = ,(s) This defines a mapping A: I x I - M with the property
that H = F o H; but it is necessary to show that A is continuous. Let t, e
be chosen and going back to the idea of the previous proof, we take a
partition of the line I x {to} in I x Iby0 =35y <5y < <5, =1such
that each interval {(s, to) |s; < s < s;,,} is carried by H into an admlsSlble
neighborhood ¥, on M. Then, H(s;, t,) having been defined at some stage,
this point of M determines unambiguously a component U; of F~'(V)
covering V; and necessarily H(s, to) = (F |U,)"*(H(s, to)) for s; < s < ;4.
However, by the continuity of H, there exists é > 0 such that for each
i=0,1,2,...,n—1, the image H(Q)< M of the cube Q;={(s,t)]
5; < S<Sip1,lo— 0 <t <ty+ 0 liesin V, also. Hence H,(s) = H(s, t) =
(=|U)"Y(H(s. 1) on all on,, which shows that  is continuous on Q; . This
holds for each i = ,n — 1, which means that H is continuous on a
-strip {(s, 1)| |t — to| < 0} around the segment I x {to} = I x I. But t,
was arbitrarily chosen; hence H is continuous on I x I. To complete the
proof we notice that H, being continuous, takes {1} x I into a connected
set—the set of terminal points of H,(1), 0<t<1 Since
F(H(1,1)) = H(1, t) f(1) = g(1), a single point, this connected set lies in
the discrete set =~ '(f(1)) and is therefore a single point as claimed. We
constructed H so that the initial points A,(0),0 < t < 1, are all]'(O but the
existence (as constructed) and uniqueness (by Lemma 9.1) of H show that
this was the only possibility. |

(94) Corollary If be M lies over be M, then F,: n,(M, b) - n,(M, b) is
an injective isomorphism.

Proof We know F, is a homomorphism and, using the previous
theorem with f, § loops at b, we see that F o f'~ F o § implies f ~ §. This is
equivalent to F, being injective. |

We conclude this section by proving two theorems which give a much
more precise picture of the relation between coverings of a manifold M and
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the fundamental group. They will also enable us to complete our discussion
of the relation between covering spaces and orbit spaces of a properly
discontinuous action of a group I" on a manifold, which was considered in
Section I11.9. If M, and M, are coverings of a manifold M with covering
maps F, and F,, then a homeomorphism G: M, - M, such that
F,=F,-Gand F, = F, - G~ ! is called an isomorphism of the coverings. In
particular, an automorphlsm that is, isomorphism, G: M — M is exactly a
covering transformation, as given in Definition I11.9.2. Using admissible
neighborhoods, it is apparent that the differentiability of F, and F, implies
that of G and G™'. We now show that in a sense isomorphism classes of
coverings of M are in one-to-one correspondence with subgroups of the
fundamental group.

(9.5) Theorem Let F,:M, > M and F,: M, > M be coverings of the
same manifold M. Suppose that for be M, b, e M, and 5261\7!2 such that
F\(b)) = b = F,y(b;) we have F, m,(M,, b)) = F,,n,(M,,b,) las sub-
groups of m(M, b)]. Then there is exactly one isomorphism G: M, - M,
taking b, to b, .

Proof Given pe M, we define G(p) as follows: Let f, be a path such
that f,(0) = b and 7,(1) = p. Then the path f = F, o f; on M has a unique
lifting to a path f, on M, covering f and with initial point f3(0) = b,. We
define G(p) = f5(1). Of course we must show that the definition is indepen-
dent of the path f; chosen, and that G is continuous. On the other hand, once
these facts are proved, then we see that F; = G o F, and that G(b,) = b, are
immediate consequences of the definition, as is the uniqueness of G. More-
over this definition is natural since any G with the properties required in the
theorem must take f; to a path f, - G on M, which covers f = F, - f; and
runs from b, to G(p).

Now suppose that f; and §, are distinct paths on M, from b, to p. Let
f=F,f, and g = F, - §, and consider the loop f+g~"' with g~ !(s) =
g(1 —s), 0<s< 1 This loop determines an element [f*g~'] of
F,,m,(My, b,) and hence also the (same) element of lenz(]ﬁz ,b,). In view
of the preceding corollary, if we lift this to a path from b, , its terminal point
will necessarily be b, ; and so the lifted paths f; and §, on M, beginning at b,
both end at the same point, that is, f5(1) = §,(1). It follows that by using
either f, or §, we obtain the same value for G(p). We also see from this line of
argument that there is a one-to-one correspondence between points of M,
i = 1,2, and equivalence classes (under relative homotopy with endpoints
fixed) of paths fon M issuing from b. In fact, let pe M, [ f]a homotopy class
of paths from b to p; [ f] determines a point p;,, of M, which lies over p.
Indeed, the class [f] lifts to a class [f], all curves of which issue from the
point b -and we have just seen that they all have as terminal point j; .
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If we make this identification, we may let [f] denote p,,, and then F,
projects the class of paths [ ] to the common terminal point of its elements,
that is, F,([f]) = f(1) (and similarly for F,, M, of course). The classes of
loops at b correspond to the points over b, which is to say that the elements
of (M, b) are in one-to-one correspondence with the points over b. These
remarks should clarify the intuitive situation and are useful later. The reader
might find it helpful to think of the example M = R*>, M = T2,

To continue the proof, it is clear that G is one-to-one onto and that G ™!
is described in a symmetrical way to G so G~' is C®. Now let
p, = G(p,)e M, and let V,  be an admissible coordinate neighborhood of
p=Fip) on M, i=1,2. We also suppose (V)= B}(0) = R* and
¥(p) = 0.1f fis a path from b to p on M which lifts to paths f; joining b; to p,
on M;, i = 1,2, then we see that this path may be used in the deﬁmtlon of G
as described above. For any point g in V we have a radial path (in the local
coordinates), say ' gy, from p to g and f, = f* g, lifts to paths from b;to g; in
the component U, of F; !(V) containing b;, i = 1, 2; thus G(g,) = 4. This
descrlptlon being unique, and valid for every ge V, we see that G: U, — U2
is one-to- one and onto and in fact may be described as follows: G| U, =

(F,|U,) "o (F,|U,). Thus G| U, is a diffeomorphism and since M, is
covered by open sets of this type, G is differentiable, which completes the
proof. ]

(9.6) Corollary If F: M — M is a covering and M is simply connected, then
the covering transformations are simply transitive on each set F~'(p). If we fix
be M and be M with F(b) = b, then these choices determine a natural isomor-
phism ®: 7,(M, b) » T' of the fundamental group of M onto the group of
covering transformations.

Proof Suppose that q,q,€F~ l(p) We apply Theorem 9.5 with
M, = M, M, = M to obtain a covering transformation G: M — M such
that G(g,) = g, . To see that the hypotheses are satisfied it is only necessary
to note that because Mis 51mply connected, 7,(M, g;) = {1}, i = 1, 2; hence

F,(m(M, q,))={1} = (n,(M q,))- We remark that by Theorem I11.9.3,
it now follows that the group I" of covering transformations must therefore
be simply transitive on F~'(p) for each pe M.

Having fixed be M and b n~'(b), we may establish an isomorphism of
n,(M, b) and T as follows. Let [g]e n,(M, b) and § the lift of ge[f] to M
determined by §(0) = b. We have seen earlier that any two curves §;, §,
which are lifts of curves of homotopic curves, in particular two loops of [g]
with §,(0) = b = §,(0), must have the same terminal point b, and must be
homotopic (with endpoints fixed). Since g is a loop, (b) = b = F(b,).
let ®[g]lel be the covering transformation taking b to b, = §(1). ThlS
defines @: n,;(M, b) - . It is easily checked that ® is a homomorphlsm
using the arguments of the preceding theorem. If ®[g] =1, then
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§(0) = b = §(1) so that § determines an element of =, (M, b). Since this
group contains only the identity, we have § ~ e; by a homotopy H. Then
H = F - H is a homotopy of g to ¢, so [g] = 1 and hence ® is one-to-one.
We also see that @ is onto: if G, e T, then let b, = G,(b). There is a path j
from b to b, and since F(b) = F[G,(b)] by deﬁnmon of covering transforma-
tion g = F- g is a loop at b. It determines [g]e n,(M. h): and since the
covering transformation G = ®([f]) agrees with G, on b, G\(b) = b, =

G(b), we must have G = G, by the results of Chapter III (or by Lemma 9 1).

(9.7) Theorem Let M be a connected manifold and b a fixed point of M.
Then corresponding to each subgroup H < m,(M, b) there is a covering
F: M — M such that for some b € F~'(b) we have F,n(M,b)=H. Fand M
are unique to within isomorphism.

Proof The uniqueness is just the previous theorem, and the proof of
that theorem also indicates how the space must be constructed. The points
of M will consist of equivalence classes of paths from b, two such paths f, g
being equivalent if and only if f(1) = g(1) and [f* g~ ']e H, g~ ' denoting
the path g~ '(s) = g(1 — s), 0 < s < 1. It follows from the fact that H is a
subgroup that this is an equivalence; we denote it by f & g and denote by { 1’}
the equivalence class of f (or point of M). The projection map F: M - M is
defined by F({f}) = f(1) for any fe {f}. Givenany {f}e M, let p = f(1) and
V. y be a coordinate neighborhood of p on M with ¥(p) =0 and y(V) =
B}(0), the open n-ball. For each ge V there is a unique path g, from p to g
corresponding to a radial line in y(V). Then q — {f* g,} defines a map
0,V > Mwith F-04q) = F{f°g, =f°g,1) = qforallginV.Suppose
h is a path from b to q also and that h # f, that is, {ho f "'} ¢ H. Then it is
easy to see that 0,(V)n 6,(V) = &. Indeed, if for some ge V, we have
{f*g, = {h*g,); this would require [ f* g, = (h=g, )] =[f+*h™'] to be
an element of H, contrary to assumption. We leave it to the reader to check
that the sets 8 (V') with coordinate maps - F define a manifold structure
on M which makes F:M — M a covering with {V,y} as admissible
neighborhoods.

Finally, we must establish that F, (,( (M, b)) = H, where b = {e,}, the
point of M determined by the constant path at b. Suppose that f(t),
0 <t <1,isaloopatbwith[f]e H. Then f(0) = f(1) = b and we define a
one- parameler family f, of paths from b by f,(s) = f(st), 0 < s, t < 1. Let
f(t fi(s)l. Then f(t), 0 <t < 1, is a path on M with F(f(1)) = fi(1) =

f(1), hence]'coversfand is a loop at b. It is straightforward to check that this
actually determines an isomorphism F, of 7,(M, b) onto H; we may apply
methods similar to those already used above. This completes the proof. |

If we take H = {1} we have a very important corollary.
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(9.8) Corollary Every connected manifold M has a simply connected cover-
ing which is unique to within isomorphism. Choice of be F~'(b) for be M
determines an isomorphism of m,(M, b) onto T the group of covering transfor-
mations. Then M/T" is diffeomorphic to M, that is, M is the orbit space of its
Sfundamental group acting properly discontinuously on its universal covering M.

Exercises

1. Show that if F: M —» M is a covering and M is Riemannian, there is a
unique Riemannian metric on M such that F is an isometry.

2. Suppose that the assumptions of Exercise 1 are satisfied and that M is
compact. Determine the relation of the volumes of M and M in terms of
their fundamental groups.

3. Determine the meaning, in terms of F: M — M (a covering), of
F,(n,(M, b)) being a normal subgroup of n, (M, F(b)).

Notes

Integration on manifolds has two very important applications both of which are in-
troduced briefly in this chapter. First, integration on Lie groups with respect to an invariant or
bi-invariant volume element has been crucial in many areas of research on Lie groups and their
homogeneous spaces. Weyl used it to prove the complete reducibility of representations of
semisimple Lie groups, a central fact of representation theory (see, for example, Weyl [2]). We
have seen how this was done for the compact case; the generalization to noncompact, semi-
simple groups was accomplished by Weyl's * unitary trick.” But the integral is also used c\ien-
sively to study function spaces on Lie groups and to prove such basic theorems as the
Peter-Weyl theorem. The reader wishing to go further into these ideas should read relevant
portions of Chevalley [1] and look at the last chapter of Helgason [1]. Many ideas used in the
study of Lie groups can be exploited in studying the spaces on which they act, especially
homogeneous spaces—which are essentially coset spaces of Lie groups. In this case, too,
the invariant volume element and related theory of integration is crucial in many problems of
current interest in analysis. Again the reader is referred to Helgason [1] for samples of these
applications.

The other important application of integration on manifolds is to algebraic topology via
de Rham’s theorc  and Hodge's theorem (see Warner [1]). This approach to topology was
particularly useful in the study of the topology of Lie groups and homogeneous spaces, for
which purpose de Rham's theorem was presumably first conjectured: A survey article by
Samelson [1] should give the reader some idea of just how crucial this was in the early theory. A
well-known theorem, the Gauss-Bonnet theorem (O'Neill [1]; Stoker [1]), is a beautiful
example of how integration may be used to obtain relations between the topology of a manifold
and some of its local geometric invariants: in this case the curvature. A recent treatise by Greub
et al. [1] gives a comprehensive treatment of the many relations of differential geometry to
algebraic topology, including, of course, the generalized Gauss-Bonnet theorem.
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We begin this chapter by showing very briefly how differential calculus can be applied to
study the geometry of curves in Euclidean space £” (or R"), especially plane curves (n = 2) and
space curves (n = 3). The geometric concepts which are discussed—arclength, curvature, and
torsion—will be familiar to many readers as will the basic tool used, namely differentiation of a
vector field along a curve. In the second section differentiation of vector fields along curves is
used again to define and study differentiation of vector fields on a special class of Riemannian
manifolds- -those which are imbedded (or immersed) in £” and carry the induced Riemannian
metric. These same ideas can be used to investigate the geometry of surfaces in E?, which is the
subject matter of much of classical differential geometry. However, our main objective is to use
this situation as a model in order to define differentiation of vector fields on an arbitrary
Riemannian manifold M. This is done in Section 3 where the Riemannian connection V is
defined and its existence and uniqueness (depending only on the Riemannian metric) is
demonstrated. We define in essence, a sort of directional derivative of vector fields Y on M,
Vy, Y giving the rate of change of Y at pe M in the dircction of X ,. It generalizes X ,f the
derivative of a function, which was defined at the beginning of Chapter IV. As might be
expected, it is more complicated than differentiation in Euclidean space, where we can take
advantage of the natural parallelism. Conversely. it can itself be used to introduce a more
restricted type of parallelism on arbitrary Riemannian manifolds. Once the basic properties of
V. Y are established. we are ready to apply differential calculus to the study of Riemannian
manifolds.

We very briefly and formally introduce the Riemannian curvature tensor—an important
geometric object which we study in the next chapter. The remainder of this chapter is spent on

293
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the study of geodesics, which generalize to Riemannian manifolds the straight lines of Euclidean
geometry. They have important similarities to straight lines as well as important differences.
For example, like straight lines of Euclidean space, the unit tangent vector is constant (has
derivative zero) as we move along the curve. Although geodesics in general are not the curves of
shortest length between any two of their points, they will have this property for nearby points,
and so on. Only the most basic properties can be proved in such a brief treatment, but enough is
established to reveal the interesting variety of phenomena which occur for geodesics in general
manifolds.

In the final section some important examples are considered, namely the Riemannian
symmetric spaces, which have even more similarities with Euclidean space than the usual
Riemannian manifold. In particular, the space of non-Euclidean geometry is a symmetric space.
The examples considered here also have important curvature properties which are discussed (in
part) in Chapter VIIL

The presentation of Sections 7 and 8 was very much influenced by Milnor [1], especially his
Sections 10, 20, and 21

1 Differentiation of Vector Fields along Curves in R"

In order to clarify the definition of differentiation given later for general
Riemannian manifolds, we shall first consider some special situations in the
oriented Riemannian manifold R" (with the standard orientation and inner
product). In doing so we will make full use of the natural parallelism in R",
that is, the natural identification of the tangent spaces at distinct points.

Let C be a curve in R" given by x(t) = (x'(¢), ..., x"(t)) witha < t < b.
We suppose that Z(t) = Z,,,, is a vector field defined along C; thus to each
t € (a, b) is assigned a vector (Fig. VIL.1):

20) = La53) € Tl

‘ a/dx

Figure VIL1

We will suppose Z to be of class C!, at least, which means that the compon-
ents a'(t) are continuously differentiable functions of ¢ on the interval (a, b).
The velocity vector of the (parametrized) curve itself is an example—in this
case a'(t) = x'(t).
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Our purpose is to define a derivative or rate of change of Z(t) with
respect to t; it will be denoted Z(t) or dZ/dt and will again be a vector field
along the curve. Of course, in general, neither Z(t) nor its derivative need be
tangent to the curve. Now since in R" we have a natural parallelism (or
natural isomorphism) of T,(R") and T,(R") for any distinct p, g€ R", we are
able to give meaning to Z(t, + At) — Z(t,), the difference of a vector in
Towo+an(R") and a vector in T,,,(R"). For definiteness we suppose
Z(to + At) moved to or identified with the corresponding vector in T, (R")
and that the subtraction is performed there (Fig. VII.2). This allows us to

define the differential quotient

1 o dto + At) — di(te) [ 0
A [2lto + A1) = Zto)] = ,-; A (é?)mm

ZUg+ B0

21y
Z g+ A1)
x(l°+Al)
ZUg+BN=2Z1)
" x )
Figure VIL.2

The equality is due to the fact that if we write vectors in terms of the basis
0/dx', ..., 3/0x"™ which is a field of parallel frames on R", then vectors at
distinct points, say Z(t, + At) and Z(t,), are parallel if and only if they have
the same components. Passing to the limit as At — 0 gives the definition

) 200 (5) -Tato(sn) e Tulk)

(1.2) Remark A consequence of this formula is that if we introduce a new
parameter on the curve, say s, by t = f(s) with ¢, = f(so), then

a2y _(a) (42}
ds),, \ds/, \dt),’

(dt/ds),, is a scalar; the other terms are vectors.
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As a simple example consider the curve x(t) = (cos ¢, sin t), a unit circle
in R2. Suppose Z(t) = —sin 1(3/0x) + cos t(6/dy); this is the velocity vector
of the point which traces out the circle. Then dZ/dt = —cos t(0/0x) —
sin 1(0/dy) is a vector at x(t) = (cos t, sin t) which has constant length +1
and points toward the origin (Fig. VIL.3).

Z")\y

x(1)=(cos ¢, sin 7)

az /at

x
{1, 0)

Figure VIL3

(1.3) Definition A vector field Z(t) is constant or parallel along the curve
x(t) if and only if dZ/dt = 0 for all ¢.

Suppose that Z,(t) and Z,(t) are vector fields of the above type defined
along the same curve C and that f(¢) is a differentiable function of t on
a <t <b. Thenf(t)Z(t) and Z,(t) + Z,(t) are vector fields along C and we
have the following easy consequences of formula (1.1).

(1.43) :11:( (0 + Zy(1) = dft Ly df;,
(14b) L0z =Lz + 10
(14)  L(20.2:0) = ("f, Z:(0) + (zlm, Al

where (Z,, Z,) is the standard inner product in R".

The formula we have given for dZ/dt is in terms of the components of
Z(t) relative to the natural field of frames 8/0x", ..., 8/0x" in R", which are
constant along x(t). However, we sometimes find it convenient to use some
other field of frames, say F,(t), ..., F,(t), defined and of class C' at least
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along x(t). Then Z(t) has a unique expression as a linear combination of
these vectors at each x(t):

Z(t) = b ()F(t) + -+ + b(1)F,(1).
Differentiating this expression we obtain, with the aid of (1.4a,b),

- dF;
- z ( Fi{t) + b’(t)a—f--’).
di
However, since dF ;/dt are vectors along x(t), they too are linear combina-
tions of F(t),
dF; &
ot = ) aj(t)Fy(t).

k=1
This gives the formula

(19) -5 (%

This includes (1.1) as a special case since a(r) =0 when the frames
F(¢), .... F,(t) are parallel.

Although we have used a particular coordinate system, the natural one in
R", in fact

£y b’(t)a*(r))Fk(t)

dz

- o= lim —[Z(ty + A1) — Z(t

dt A:—~m0A [ ( o+ ) ( 0)]
is an object which depends only on the geometry of the space; it is indepen-
dent of coordinates, so it is defined equally well for parametrized curves
in E".

The Geometry of Space Curves

As an illustration of these ideas we derive the Frenet—Serret formulas for
a curve of class C? in R>. We first note that length of the curve from a fixed
point x, = x(to) is given by s = [i, ((x(¢), x(t))"/* dr so that ds/dt =
(x(r), X(r)). If s is used as parameter, then ds/dt = ds/ds = 1 so that x(s) is a
unit vector tangent to the curve. We let T(s) = X(s) denote this unit tangent
vector. Because arclength, the parameter s (to within an additive constant),
and T (s) are determined by the (induced) Riemannian metric on x(s), not by
the particular rectangular Cartesian coordinates or origin used, they and the
derivatives of T(s) are geometric invariants of the curve, that is, they will be
the same at corresponding points for congruent curves. Differentiating the
identity (T(s), T(s)) = 1 and using (1.4c), we obtain 2(T(s),dT/ds) =0
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Therefore dT/ds is zero, or is a nonzero vector orthogonal to T(s) at each
point of the curve. We define the curvature k(s) by k(s) = |dT/ds|; and when
k(s) # 0, we let N(s) be the unique unit vector defmed by dT/ds = k(s)N(s).
When k(s) # 0, let B(s) be the uniquely determined unit vector such that
T(s), N(s), B(s) define an orthonormal frame with the orientation of 9/0x’,
8/0x?, 8/0x> (see Fig. VIL4). This determines a field of orthonormal frames

x3

Figure VIL4

X‘

along the curve, defined whenever k(s)# 0, which we shall henceforth
assume is the case at all points of the curve under consideration. This
assumption is justified since it is the generic or typical situation for a space
curve. In fact, we have the following fact concerning a curve for which k(s)
vanishes identically.

(1.6) Theorem If k(s) =0 on the interval of definition, then x(s) is a
straight line segment on that interval, and conversely, for a straight line,
k(s) = 0.

Proof If the curve is a straight line, then it is given in terms of arclength
by x(s) = a' + b's, i = 1,2, 3, where )\, (b*)* = 1. Thus

T - Zi=1 bl a/ax
and dT/ds = 0. Conversely, if k(s) = 0, then dT/ds = 0. Since T =) dx'/ds
0/0x, s being arclength, this implies d’x'/ds’=0, i=1, 2, 3. Thus

x'(s)=d' + b's, i=1,2,3, with @' and b’ constants, and the curve is a
straight line. Note that T(s) and k(s) are defined for a curve in R, any n (not
just n = 3), and the proposition just proved is still valid. |

Now, returning to the study of a curve in three-space, for convenience of
notation we let F,(s), F,(s), F(s) denote T(s), N(s), B(s), respectively. Since



1 DIFFERENTIATION OF VECTOR FIELDS 299

this is a field of orthonormal frames we have (F (s), F(s)) = é,;. Differentia-
tion of these equations gives the relations

dF; dF; .
(ds . Fj(s)) + (F,-(s), dsj) =0, Lj=1273
As we pointed out in the derivation, dF;/ds must be a linear combination of
the F,(s) for every s, so we may write

dF; )
71;4 = ;a";Fk(S), J= l, 2, 3.
This combines with the previous equations to give

(Za{-‘Fk , Fj) + (F,-, Za}Fk) =0
k k
or

al(s) + di(s) =0, 1<ij<3
This means that the matrix (ai(s)) is skew-symmetric. By definition dT'/ds =
k(s)N, that is, a}(s) = k(s), and so aj(s) = 0 = aj(s). Let a3(s) = t(s) as a
matter of notation. Then rewriting in terms of T, N, B, we have the Frenet-
Serret formulas:

(1.7) ‘Z - K(s)N,

dB

Pl 7(s)N,
expressing the derivatives with respect to s of T, N, and B which are called
the tangent, normal, and binormal vectors, respectively, of x(s), in terms of
these vectors themselves. Formula (1.7) defines the functions k(s) and t(s)

along the curve.

(1.8) Definition k(s) is called the curvature and t(s) the torsion of the curve
C at x(s).

The curvature measures deviation of C from a straight line and the
torsion measures “ twisting” or deviation of C from being a plane curve. Of
course, T, N, and B as well as curvature and torsion are independent of the
coordinates used in the Euclidean space containing C.

(1.9) Theorem A curve in E? lies in a plane if and only if t(s) = 0.

Proof 1f the curve lies in a plane, then from the definition of T'(s) and
dT/ds we see that these vectors lie in the plane of the curve for each point
x(s) of the curve. Thus the unit vector B(s) has a fixed direction, orthogonal
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to the plane, and so is always parallel to a fixed unit vector orthogonal to the
plane. Therefore dB/ds = 0 and (s) = 0.

Suppose that 7(s) = 0. Then dB/ds = 0 and B is a constant vector along
the curve. We choose the coordinate axes so that the curve passes through
the origin 0 at s = 0 and so that B(s) is parallel to 0/0x>, the unit vector in
the direction of the x*-axis. Then x(s) = (x'(s), x*(s), x*(s)) determines the
vector x(s) from the origin O to the point x(s) on the curve. Differentiating
(x(s), B(s)), we have

:iis (x(s), B(s)) = (T(s), B(s)) + (x(s), %?) =(T(s), B(s)) =0

so that (x(s), B(s)) is constant. Since x(s) = 0, that is, x(s,) = 0, the vector
x(s) [or line Ox(s)] is always perpendicular to B = /0x>. Thus the curve lies
in the x'x*-plane. |

The advantage of using arclength s as parameter on the curve C and the
frames T(s), N(s), B(s) is that they all have intrinsic geometric meaning,
depending as they do only on the Riemannian structure of the ambient space
E? and the nature of the curve itself and not on any coordinates that we
might use in E3, Although the formulas for the derivative of a vector field Z
along the curve are more complicated, since they involve the second terms d*
in (1.5) which vanish when we use parallel frames along C, nevertheless the
advantage of being geometrically determined is quite crucial. Even the
coefficients a*, which here are +k(s) and +1(s) or zero, have geometric
meaning as we have seen. In fact it is not difficult to show (see, for example,
O’Neill [1]) that k(s) and t(s) determine C up to congruence.

As an illustration of the utility of the Frenet frames T, N, B we consider
briefly the dynamics of a moving particle in space whose position p(t) is
given as a function of time z. Let s(¢) be the length of path traversed from
time t=0 to time ¢t s(¢)= o ((dp/dt,dp/dt))'/* dr. Then ds/dt =
((dp/dt, dp/dt))*'* = | dp/dt|| is the speed with which the particle moves along
the curve, while its velocity vector is given by

dp dpds ds
O=a=dsa~Ta
where T is the unit tangent vector. Differentiating we obtain the acceleration
d*p dT (ds\? d%s
At = gz = 7(5) a’
Since dT/ds = kN this becomes

ds ds\?
(1.10) a(t) = F T + k(dyt) N.
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Thus the acceleration decomposes into the sum of two vectors, one in the
direction of the curve, whose magnitude is the time rate of change of the
speed d?s/dt?, and the other normal to the curve and directly proportional to
both the square of the speed and to the curvature, this latter depending only
on the curve. If the motion is a straight line motion, then k = 0so that a has
the direction of the line. If the particle moves at constant speed, so that
d*s/dt* = 0, then the acceleration depends only on the shape of the path.
The same remarks also apply to the force F acting on the particle, which by
Newton’s second law, F = ma, is proportional to a with the mass m as
constant of proportionality.

Curvature of Plane Curves

Some special comment is required for the case of a curve C lying on an
oriented plane. Let s — (x(s), y(s)) define the curve, parametrized by
arclength. Then T = x(s) 0/0x + y(s) /0y is the unit tangent vector. If
dT/ds # 0, then we may as before define k(s) = ||dT/ds||, that is, we may
consider the curve as a space curve (x(s), y(s),0) whose z-coordinate
z(s) = 0, and use the same definitions. However, for plane curves a more
refined definition of curvature is possible: At each point of C choose N so
that T, N have the same orientation as d/0x, d/0y (this uniquely determines
T, N). (See Fig. VIL.5.) Then define the curvature k(s) so that k(s)N = dT/ds.
This allows k(s) to be negative, zero, or positive. The curvature thus defined
for a plane curve has the previously defined curvature of C (considered as a
space curve) as its absolute value, k(s) = | k(s)|. To carry our interpretation
somewhat further let 6(s) be the angle of T with the positive x-axis
(Fig.VIL5). Then

Tis) = cos 0(s) ° + sin 6(s)
S) = COS U\s ox 6y’

and
. g . a
‘iZ = —0(s) sin 0(s) 6‘1 + 0(s) cos 6(s) oy
kN=dT/ds
c
a/dy
wis) 7(s)

Gl

/x (s) ardx

X

Figure VILS
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The unit vector N(s) chosen so that T'(s), N(s) is an oriented orthonormal
basis is N(s) = —sin 6(d/0x) + cos 8(d/0y), since the determinant of the
coefficients of T, N as combinations of ¢/0x, 8/@y is

det cosf) sind - 41
—sin® cos@]

Thus k(s) = O(s) or df/ds, the rate of turning of the tangent vector T with
respect to arclength. Moving along C in the direction of increasing s the
curvature is positive when the tangent is turning counterclockwise and nega-
tive otherwise. Its sign depends on the sense of the curve (direction of in-
creasing s) and the orientation of the plane, but not on the coordinates.

Suppose C is a circle of radius r. Then s — (r cos(s/r), r sin(s/r)) gives the
curve parametrized by arclength:

Since

s\ 0 . {5\ 0
N = “'COS(;)E; — Slﬂ(})é‘;

is the unique unit vector such that T, N has the orientation of 8/0x, 3/dy, we
see that k(s) = 1/r. Thus the curvature is a constant. If, as we have assumed
by our parametrization, the circle is traversed in the counterclockwise sense,
it is a positive number; in any case its magnitude is inversely proportional to
the radius.

Returning momentarily to the dynamics of a moving particle we see that
if a particle moves on a circle in such a way that its speed is constant v, then
the force F acting on the particle is

2
F=ma="2 N.
r

Since N is the unit normal vector, F is directed toward the center of the
circle and its magnitude is mvd/r which gives the usual formula for the
centripetal force necessary to keep the particle in a circular orbit.

Exarcises

1. Prove that a curve in R? for which t(s) = 0 and k(s) is a constant, k # 0,
is a circle.
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2. A helix is defined by parametric equations of the form x! = acos ¢,
x? = asintand x* = bt, where a, b are positive constants. Determine k
and 7 for a helix. [Hint: First change to arclength as parameter.]

3. Let Z, and Z, be two vector fields along a curve in R® and let Z, x Z,
be their cross product (as defined in a three-dimensional vector space).
Show that

d dz dz

Zh—(Zl x Z,) = Jtl xZ,+ Z, x 7;.

4. Show that the plane which closest approximates a curve C at p is
spanned by T and N. This plane is the limiting position of the plane
through p’, p, p” on C as p’, p” approach p.

5. Using the technique of Exercise 4, find the center of the best approximat-
ing circle and of the best approximating sphere to each point p of C.
[They should be located relative to the moving coordinate frame
T, N, B]

6. Show that if the plane of T and N goes through some fixed point 0 of E*
for every point on C, then C lies in a plane.

2 Differentiation of Vector Fields on Submanifolds of R"

In the previous section we studied differentiation of vector fields along
curves, which includes, of course, one-dimensional submanifolds of
Euclidean space. In this section we do the same for vector fields “along”
other submanifolds M = R", for example a surface in R. This is somewhat
more complicated and certainly not the most direct way of approaching the
subject of differentiation on manifolds; but it should help our geometric
understanding. Just as in the case of a curve, we are concerned with a vector
field Z defined at each point of M but not necessarily tangent to M (see
Fig.VIL6), that is, to each pe M, we assign Z, € T,(R"). When Z is such that

Figure VIL6
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Z,is tangent to M, Z e T (M) < T,(R"), then we shall say that Z is a vector
field on M or a tangent vector field. Only in this case has Z meaning for M as
an abstract manifold, independent of any imbedding or immersiont in R". In
any case differentiability of Z may be given meaning since its components
relative to the canonical frames of R" at points of M will be functions on M,
Z,= Y%, @(p)(0/0x*),, and by definition we shall say that Z is of class C"
if a*(p),a = 1,...,n, are of class C" on M. In particular, the vector fields
a/dx', ..., 8/dx" of R", restricted to M, are C*-vector fields along M (but
rarely on M).

If pe M, then T,(R") and its subspace T,(M) carry the standard inner
product of R" so M has the induced Riemannian metric. This allows us to
decompose any vector Z,, p€ M, in a unique way into Z, = Z,, + Z, with
Z,e T(M) and Z,e T,(M), the orthogonal complement of T,(M). This
reflects the direct sum decomposition of T,(R") into mutually orthogonal
subspaces: T,(R") = T,(M)@® T,(M) called the tangent space and the
normal space to M at p. Let n', n” denote the corresponding projections:
n(Z,) = Z, and n"(Z,) = Z}; they are linear mappings of T,(R") onto the
subspaces tangent and normal to M. Figures VII.7 and VIL8 illustrate this
decomposition for a curve and surface in R*.

Figure VIL7

Suppose that Z is a vector field along M of class C'. Then n'(Z) and ="(Z)
are also vector fields, which are tangent and normal to M, provided that they
are differentiable. We leave the proof of the following lemma (including the
assertion of C" differentiability) to the exercises.

(2.1) Lemma With Z as above 7'(Z) and n"(Z) define mutually orthogonal
Cr-vector fields Z', Z" along M such that Z = Z' + Z", that is, at eachpe M,

t Since we consider only local questions in this section, we may restrict ourselves to
imbedded (regular) submanifolds by Theorem 111.4.12.
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Figure VIL8

Z,e T(M)and (Z,, Z,) = 0. If fis a function of class C" on M, then n'(fZ) =
f7(Z) and 7"(fZ) = fr'(Z). Further, given two such vector fields Z, Z, , then
W(Z, + Z)=n(Z,) + w(Zy)and n"(Z, + Z,) = n"(Z,) + "(Z,).

As examples we note that a vector field Z along a curve decomposes
uniquely into the sum of a tangent vector field and a vector field in the
normal plane: #'(Z)=(Z, T)T and =n"(Z)= (Z,N)N + (Z, B)B (see
Fig. VIL7). For the case of an arbitrary C* imbedded manifold M, we see
that n'(¢/0x*) applied at each pe M gives a C* tangent vector field to M for
eacha=1...,n

Now let Y be a tangent vector field to M = R” that is, for each
pe M. Y, e T,(M), or equivalently n'(Y) = Y. If p(t) is a curve on M of class
C' or higher, defined for some interval of values of t, then Y(t) = Y, is a
vector field along the curve. As such we can ignore M and differentiate Y(r)
as a vector field along a curve in R" obtaining dY/dt, another vector field
along the curve. In general, of eourse, dY/dt will not be tangent to M;
however, at each point p(t) we may project dY/dt to a tangent vector
m'(dY /dr).

(2.2) Definition The projection m'(dY /dt) will be denoted DY /dt and will
be called the covariant derivative of the tangent vector field Y on M along the
curve p(r) (see Fig. VIL9).

Both Y and DY/dt are tangent vector fields, and thus have meaning for
the abstract manifold M. However, the process by which DY/dt is obtained
from Y and p(t) makes use of the imbedding of M in R". Our ultimate aim is
to obtain for an abstract Riemannian manifold M a definition of derivative
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e yp%z

Figure VIL9

of a vector field along a curve which does not make use of an imbedding but
is intrinsic to the Riemannian and differentiable structure of M itself. In the
meantime we shall study in more detail the properties of DY /dt and will see
that it has properties similar to the derivative discussed in Section 1.

It is important to note that Y (t) need not be the restriction to a curve p(t)
of a vector field Y on M—as above—in order for DY/dt to be defined. We
need only suppose that Y(t) is a vector field along p(t), so defined that it is
always tangent to M, that is, such that Y(t)e T,,(M). Then, as above,
DY/dt = n'(dY/dt), where dY/dt is the derivative of the vector field along a
curve as defined in the previous section. Now suppose as in (1.4a-c) that we
have vector fields Y,(z) and Y,(¢) along p(t) on M and tangent to M. Then we
have corresponding properties.

(2.3) Theorem With Y(t), Y,(t), Y5(¢t) as above and f(t) a C' function of t
we have

(2.3a) g(Yl + Y2)=Dd—):l+DT):2,
2:3) D s =L v + 1092,
(23¢) ‘%(Yh Y) = (%, Yz) + (Yl,l—)d-):z—).

The last equation concerns the induced Riemannian metric on M, that is,
the inner product on T,(M), at each pe M, induced by the inner product in
T,(R"). These properties are immediate consequences of the definitions, the
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properties of ', and of the corresponding statements of (1.4a—c). Applying =’
to both sides of (1.4a) and using linearity gives (2.3a). Similarly using (1.4b),
we see that (2.3b) holds:

D d
a M=

t dt

The last property follows from (1.4c) if we remark that

ay, _(dY; + [dY; _DY.-+ Y 12
de ar) T ) T a T a ) TS

and that n"(dY;/dt) is orthogonal to T,, (M) so that
DY, dY, ( DY, dy, DY, DY\
_ o1 7 g ny & _ _ Y Y ,
(dt +1r(dt),Y2)+ Yo u T e’ ? Y dr

(24) Remark If we change to a new parameter, say s, by ¢ = f (s), then
DY/ds = (DY/dt)(dt/ds), dt/ds = f'(s) being a scalar. This also follows from
applying 7' to the similar relation dY/ds = (dY/dt)(dt/ds) of the previous
section.

el verf)-drostt

(2.5) Definition Given M < R" as above, let Y, be a vector field defined
at each point of a curve p(t) on M and which at each point is tangent to M,
that is, a vector field along p(t) tangent to M. Then we shall say that Y, isa
constant or parallel vector field if DY /dt = 0. More generally if Y is a tangent
vector field on all of M, then it is constant or parallel if it has this property
along every curve on M.

It is very important to note that DY/dt may be identically zero even
though dY/dt is not, thus a vector field along a curve may be constant
considered as a vector field on a submanifold M of R" even though it is not
constant considered as a vector field along the same curve in R". This obser-
vation is a crucial point in some of our subsequent discussions, so we give a
simple example. Let M = S, the unit circle in R2. Then t — (cos ¢, sin t) is
the parametric representation and it may be considered as defining a curve
on M. Let Y(¢) be the unit tangent vector to this curve. As we have seen
dY/dt is orthogonal to Y(t), that is, normal to M; hence DY/dt =
n'(dY/dt) = 0, although dY/dt is never zero and in fact has constant length
+ 1. Since any great circle on the unit sphere "' = R" is congruent to the
great circle t — p(t) = (cos ¢, sin t, 0, ..., 0) on the intersection of $"~! and
the 2-plane x* = --- = x" = 0 of R", we see that the unit tangent vector to
any great circle arc p(t), parametrized by arclength, has the same property:

DY _ D (dp
dt dt\ dt
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This is admittedly a special case; in general the derivative of a tangent
vector field to M along a curve p(t) in M has both normal and tangential
components different from zero. If a curve on M is such that (D/dt)-
(dp/dr) = 0, that is, the (covariant)derivative of the unit tangent vector to the
curve is zero along the curve, then we shall say the curve is a geodesic of M.
We have just seen that the great circles on the unit sphere in R" are
geodesics. In the case in which M is an open subset of R" or all of R", then
dY/dt = DY/dt, that is, in R" itself, as might be expected, covariant differen-
tiation is just the usual differentiation. In this special case, according to
Theorem 1.6, the only curves p(t) for which

D(dp\ d{dp

de\de) — dt\dt
vanishes identically are straight lines parametrized by arclength—or with ¢
proportional to arclength. Thus geodesics on an imbedded manifold M are
those curves which in some sense generalize the concept of straight line—

even though they may not look “straight™ when viewed from the ambient
space R". We shall study these questions in some detail later in this chapter.

Formulas for Covariant Derivatives

In order to further study the covariant derivative DY/dt of a tangent
vector field Y on M along a curve we will need more detailed computations
using local coordinates. Suppose dim M = m and that U, ¢ is a local coor-
dinate system on M with (U) = W, an open subset of R™. We denote the
local coordinates by u', ..., u™ and remark that ¢~ ': W — R" is an imbed-
ding of W whose image is, of course, U—an open subset of M. We have
previously referred to ¢~ ' as a parametrization of M. Let u = (u', ..., u™),
then

e ) =(g'W).....g"W)). ueW,

gives ¢~ ' in terms of its coordinate mappings g*(u). [We let a, §, y, and so
on, denote indices that range from 1 to n and i, j, k, and so on, indices
ranging from 1 to m.] The coordinate frames will be denoted F,, ..., F,,; they
span the tangent space to M at each point. Since this tangent space T,(M) at
peM is a subspace of T,(R"), these vectors are linear combinations of
0/0x', ..., 0/0x". In fact, generalizing earlier formulas for m =2 and n = 3
(Example 1V.1.10) we have:

0 * {04 0
2.6 F = —1 —_— = — —_
(246) v = Pu (5u') ,,,Z‘, (5u')¢,(p, ox*
Now suppose that p(z) is a curve on M of class C' and that Y(t) = Y, is
a vector field along the curve which is always tangent to M. Then Y(t) may

1
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be written as a linear combination of F,,...,F,, so that Y(r) =
Yry b0)F,. Although

( db*

-Z

is not tangent to M in general, projecting we obtain

by _ _(dY db* v fdFs
dt (dt) kZ(ItF+bn(d1))

d
k
Fotb h)

or
db“ DF
2.7) Z ( h").
We know, however, that DF,/dt,i = 1, ..., m, are vectors tangent to M
and may be expressed as linear combinations of F,, ..., F,,. Suppose that

the curve p(t) is given in local coordinates by @(p(t)) = (u'(t), ..., u™(t)),
then in (2.6) the components are (composite) functions (3g*/0u’), ., of t
through u'(t), ..., u™(t), and at each p(t)

DF; (dF; T S [T &

" ( dt) =z ,.; duidut di “(axa)
by the ordinary chain rule of differentiation applied to (2.6), and the proper-
ties of =’ The derivatives 0%¢*/0w’ du' are functions of u', ..., u™ and are
evaluated at u(t) = (u'(t), ..., u™(r)) in this formula.

We have prevxously remarked that when M is imbedded in R" by a C*
imbedding—which we shall always assume—then ¢/0x* restricted to M is a
C* vector field along M. By Lemma 2.1, n'(0/0x*) defines a C* tangent
vector field on M, which must have then a unique expression of the form
w(@/0x*) = Y, ak(u)F, on U. The a;(u) are C* functions on M which we
do not compute. Using them and the coordinate functions g*(u) of the par-
ametrization ¢~ ! we define the C* functions T'f(u) as

12
Z()u"”“ s, 1<ijk<m
Symmetry in i, j is a consequence of interchangeability of the order of differ-
entiation. We do not explicitly compute these functions now, but we use
them to write new formulas for DF /dt:

j
(2.8) Z Fk i=1...m,

k=1

at each p = p(t ). the Tf; being evaluated at (u'(r ™(t)). A particular
case, the curve given by u' = constant for i + /and uJ =1, glves the formuila
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for the covariant derivative of the vector field F; along the jth coordinate
curve, convéniently denoted DF,/0u':

= Y TNF

k

This gives an interpretation of the meaning of I'¥,(u); it is the kth component
(relative to the coordinate frames) of the covariant derivative of F; along
that curve in which only the jth coordinate is allowed to vary, that is, along a
coordinate curve. Using these formulas we may finally write (2.7) in the form
in which we want it (after appropriate change of indices):

m dbk m
@9) - $ (% + 5 meopod)n.
x= i
This formula gives us the analog to formula (1.5) in that DY/dt is ex-
pressed in terms of the field of frames F, ..., F, on U < M, frames defined
independently of either p(¢) or Y. The components of the covariant deriva-
tive are the terms in brackets. The functions I'};(u) are defined over all of U
and in (2.9) are evaluated at points of the curve. Indeed for every coordinate
neighborhood on M we have frames F;, i = 1,..., m, and functions I'¥,
which give DF ,/ow'. From these data DY /dt can then be computed according
to (2.9) by ordinary differentiation of the components of Y and coordinates

of p(1).

Vx, Y and Differentiation of Vector Fields

We will now change our point of view slightly in deriving some con-
sequences of formula (2.9). Let Y be a tangent vector field on M which is
defined everywhere—not just along some cv-ve. On the coordinate neigh-
borhood U we write Y = )7, b*(u)F,. Let p be a point of U such that
@(p) = (5, ..., ug), and let X, be a tangent vector at p, X, = Y &'F,,, @
constant for j=1,...,m. Now choose any differentiable curve p(t) what-
soever with p(ty) = p and (dp/dt), = X,, so that in local coordinates it is
defined by u(t) = (u'(¢), ..., u™(t)) with u'(to) = whand (du'/dt),, = a'. Then
we may compute (DY/dt),_,, as above with a surprising result. First we
observe that Y(t) = ). b*(u(t))F, implies that

db* ob* .
()= & (6] o= 0
Taking this into consideration, (2.9) may be written in modified form as

(2.10) (D Y

‘WL ZP”+ZF%WWQH
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A careful examination of this formula discloses the remarkable fact that
the right-hand side does not depend on p(t) but only on its tangent vector X ,
at p. Since (DY/dt),, is a vector in T,(M), this formula defines a mapping of
T,(M) to itself X, — (DY/dt),,. We introduce the notation Vy Y for the
image of X, that is, we define Vy, Y = (DY/dt),, along any curve p(t) with
p(to) = p and (dp/dt),, = X ,. We have defined previously a “directional
derivative™ X, f of a function f with respect to a vector X ,; what we have just
now done is define in similar fashion a rate of change of the vector field Y at
p in the direction X ,. It is measured by a vector Vy Y.

It is worth commenting that along the curve p(t) we have at each point
Vi Y = DY/dt as a consequence of our notation. We summarize the essen-
tial properties of Vy Y in a theorem.

(2.11) Theorem Let M = R" be a submanifold. For any tangent vector field
Y of class C',r > 1, on M we have at each point pe M a linear mapping
X, = Vy, Y of T,(M)— T(M). Then Vy, Y, being defined as above, has the
following properties:

(1) If X, Y are vector fields of class C" (of cluss C*) on M, then V4 Y
defined by (Vx Y), = Vy Y is a C'~ " (respectively, C*) vector field on M.

(2) The map T (M) x ¥(M) - T,[(M) given by (X,,Y) >V, Y is R-
linear in X , and Y. For a function f, differentiable on a neighborhood of p,

Vi (fY) = (X, /)Y, + f(p)Vy, Y.

(3) IfX,YecX(M), then[X,Y]=V,Y -V, X.
(4) If'Y, and Y, are vector fields and (Y,, Y,) their inner product, then
X, (Y, o) = (Vi, Y1, Vap) + (Y1, Vy, Vo).

Proof Let Y =) b*F,and X =Y d*F, in the notation just used. The
b* are functions of the local coordinates (4, ..., u™) and so are the a* when X
is a vector field. Since X ,b* = Y 7, (2b*/0w’)a’, the definition Vyx Y= DYdt
and (2.10) imply that

k
VY=Y ¥ (ng ) rf,.bfaf) F,.
k i i
From this formula, valid for each pe U, it is clear that properties (1) and (2)
hold, whereas (4) is just the earlier property (2.3c) of DY/dt. [Again note that
X, f = dfjdt, the derivative of f(p(r)), when we assume X , = dp/dt; in parti-
cular this holds for f'= (Y,, ¥;).] Only property (3) requires more careful
verification. We will verify (3) by direct computation in a coordinate neigh-
borhood U, ¢ using our previous notation. With X and Y given on U as
above we compute [X, Y]:
k k
X, Y]=Y (‘”’ i bf)Fk.

i \ew ow
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Using the formula for (DY/dt),, we compute V| Y — Vy X. We have

V¥ —Vy X = z{(‘”’k s bJ) + T T — ab)F

However, since I'f; = I'¥; this reduces to the first term in parentheses, the
second sum bemg zZero. Thus (3) follows. |

We conclude with several remarks. First, a careful reexamination of what
we have done will show that Vy 'Y depends for its definition only on the
Euclidean structure of R", that is, on E™ and on the imbedding of M in E™. It
is independent of local coordinates, although we use them in its definition
and in the proof above. However, dY/dr and DY/dt = n'(dY/dt) are geomet-
ric in nature and so is Vy Y.

Secondly, if VY is axnomatlzed and defined first, then DY/dt could be
introduced by DY/dt Vipa Y and we could reverse our definitions and
steps above.

Finally we note that although there is a partial duality of roles of X and
Y in the symbol VY, which in fact defines an R-bilinear mapping of
¥(M) x ¥(M) - X(M) by (X, Y) > V, Y, actually there is an important
difference in the roles of X and Y. Namely this mapping is C*(M )-linear in
the first variable (Exercise 3) but not the second [by (2) of Theorem 2.11].

In this connection we observe that when X and Y are vector fields on M,
then the Lie derivative Ly Y = [X, Y] gives a rate of change or derivative of
Y in the direction of X. However, this derivative requires a vector field X,
not just a vector X , at a single point as does VY. Thus the two concepts of
differentiation are essentially different. Property (3) of Theorem 2.11 gives
their precise relationship.

Exercises

. Prove Lemma 2.1. [Hint: The ideas in the next exercise may help.]

2. Let U, ¢ be a coordinate neighborhood on M < R" and let F,, ..., F,,
be the coordinate frames on U—as in (2.6). If pe U, then show that we
may complete these frames to C* frames F,,..., F,, 4y, ..., F, of R" on
some neighborhood V < U of p. (This means that the components of
these vectors relative to the frames of R" are C* functions of the local
coordinates of M.) Using the Gram-Schmidt orthogonalization process,
show that there is a C® orthonormal frame field F), ..., F, on this
neighborhood V such that for each k = 1, ..., n, the vectors F1, ..., F;
and F,..., F, span the same subspace. Use the new :frames to give
expressions for ', #”° on V.

3. Provethatif X, Ye ¥(M)andfe C*(M),thenV,y Y = fV, Y. Find the
correct formula for Vy(fY).
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4. Let M be a hypersurface of R" (submanifold with dim M = n — 1).
Show that if p(t) is a curve on M = R" and Z(t) = Z ,,, is a vector field
along p(t) such that HZ )| = 1 and Z(¢) is always normal to M [that is,
orthogonal to T,,(M)], then DZ/dt i 1s tangent to M.

5. Let M be the rlght circular cylinder x? + y? = a? in R*. Find all curves
p(t) = (x(1). y(t (t)) on R* which are geodesics, that is, for which
(D/dt)(dp/dt) =

6. Lety=/f(x),a s x < b, be a curve in the xy plane and let M < R3 be
the surface obtained by revolving the curve around the x-axis. Assume
S(x) is C? at least and that f(x) > 0 on the interval. Show that the curve
y = f(x), z = 0, and each curve into which it rotates is a geodesic. Deter-
mine conditions for the intersection of M and a plane x = constant to be
a geodesic.

3 Differentiation on Riemannian Manifolds

We now pass to consideration of abstract Riemannian manifolds—
manifolds which are not submanifolds of Euclidean space. Our purpose is to
develop a satisfactory theory of differentiation on such manifolds, having
properties like those discussed above but intrinsically defined, that is, with-
out imbedding M in Euclidean space. We will reverse the order of ideas in
the last section and begin by an attempt to define for M a derivative Vy, Y of
a vector field Y in the direction of a tangent vector X, to M at p. Ofcourse
we use the properties discovered in the previous sectlon as our model. In all
that follows we shall suppose all vector fields and functions on M to be C*.

(3.1) Definition A C* connection V on a manifold M is a mapping
V: ¥(M) x ¥(M) — ¥(M) denoted by V: (X, Y) - V, Y which has the lin-
earity properties: For all f, ge C*(M) and X, X', Y, Y’ e ¥(M):

(1) Vixigx Y =f(VxY) + g(Vy. Y),
(2) VxlfY +gY)=fVyxY +gVy Y’ + (Xf)Y + (Xg)Y".

One should not attempt to read anything into the word “ connection ”—
it is just an operator like the directional derivative. Note the asymmetry in
the roles of the first and second vector fields X and Y; V is C*(M) linear in
X but not in Y. However, if f'is a constant function, then Xf = 0; thus V is
R-linear in both variables. Of course, we do not know that connections of
this type exist, although by Theorem 2.11 they do for M imbedded in
Euclidean space. In addition, according to that theorem we have in this
special case two further properties:

(3) [X.Y]=V,Y -V, X (symmetry), and
4) X(Y.Y)=(VyY,Y)+ (Y,VyY')
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(3.2) Definition A C® connection which also has properties (3) and (4) is
called a Riemannian connection.

Note that in these definitions it is only property (4) that involves the
Riemannian metric; thus on arbitrary differentiable manifolds one may
study C*® connections [properties (1) and (2)] or symmetric C* connections
[properties (1)-(3)]. However, only the Riemannian case will be of interest to
us.

(3.3) Theorem (Fundamental Theorem of Riemannian Geometry) Let
M be a Riemannian manifold. Then there exists a uniquely determined Rieman-
nian connection on M.

We prove this theorem in several steps in a manner somewhat similar to
that of the existence proof for the operator d on /\(M). Before doing so we
deduce a consequence of the definition of connection which will resolve a
minor discrepancy with the last section. In the discussion of differentiation
on manifolds imbedded in R" we defined the map X,—V, Y from
T,(M) - T,(M) using the vector field Y but without any assumptlon that X,
was the value at p of a vector field X. However, given vector fields X and Y
a vector field VY was then defined by (VyY), =V, Y for pe M, thus
obtaining a map V of pairs (X, Y) of vector fields to a vector field V, Y, as in
our present definition. We have now taken this map on pairs of vector fields
as the primary notion, and we wish to see that conversely, Y defines a linear
map of T,(M) — T,(M) for each pe M, that is, to see that (Vx Y), depends
not on the vector field X but only on its value X , at p. The same is not true of
the dependence on Y as will appear in the corollary below.

(34) Lemma Let X, Y e ¥(M) and suppose that either X = 0or Y = 0 on
an open set U = M. If V is a connection [satisfying properties (1) and (2) of
Definition 3.1], then the vector field Vy Y = 0 on U.

Proof Suppose that Y =0 on U and ge U. There is a relatively com-
pact neighborhood V of g with ¥ = U and a C* function f'such that f = 1
on ¥ and f = 0 outside U (by Theorem II1.34,let K = Vand F = M — U).
Since Y =0 on U, fY = 0 on M. However, property (2) implies that V
takes the O-vector field to 0; therefore Vy(fY) = 0 on M. But then, using
property (2) again we have

0 =(Vx(U7)); = (X f)Y, + f(@)(Vx Y), = (Vi ¥),.
Since q is an arbitrary point of U, this completes the proof when Y = 0 on
U. A parallel proof using property (1) applies when X = 0 on U. ]

This lemma, together with the fact that V, Y is C*(M)-linear in X, will
enable us to establish the equivalence with our earlier definitions.
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(3.5) Corollary Let p be any point of M. If X, X'€ X(M) such that
X, = X,. then for every vector field Y,(VyY),= (Vy,Y),. Denote this
uniquely determined vector by Vy Y. Then the mapping from T, (M) — T,(M)
defined by X, — Vy Y is linear.

Proof Let U, ¢ be a coordinate neighborhood of the point p, V a
relatively compact neighborhood of p with V < U, and fa C* function on
M which is 1 on ¥ and 0 outside U, as in the proof of the lemma. If
X € ¥(M), then on U we have

X = Za,-E,
i=1
with a;€ C*(U) and E, ..., E, the vectors of the coordinate frames. We
define X, E,,...,E,c ¥(M) and a,,...,a,e C*(M) by X =fX, E, = fE;
and g, = fa;, i=1,...,n, 0on U, and all to be zero (vectors and functions

respectively) outside U. Then we have

-~ ~

X=a,E + +a,E,

on all of M; but on V this reduces to the equation above since X=X,
E; = E; and &, = g, on this set. Applying Lemma 3.4 and property (1) of V
gives

VyY =ViY = YaV,Y on V.
i=1

Hence
(VX Y)p = Z bl(p)(VE: Y)p = Z ai(p)(VEi Y)p ’

where the right-hand side depends only on the value Y, of the vector field X
at p. This proves the first statement and the formula itself shows that the
mapping X, - Vy Y = (V, Y), is a linear mapping of T(M) into itself. For
its value depends linearly on the components a,(p), ..., a,(p) of X , relative
to the basis E, ,. ..., E,, of T,(M). ]

An important consequence of Lemma 3.4 is that it allows us to define
(unambiguously) the restriction VU of a connection V defined on M to any
open subset U — M. This is done as follows. Let X, Y be C*-vector fields on
U and let pe U. We again choose a neighborhood V of p with ¥ < U and
take a C* function f which is +1 on V and vanishes outside U. Then
X = /X and Y = fY may be extended to vector fields on all of M which
vanish outside U. We then set

(Vl)é Y)p = (V,\" ?)p :
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In fact, the left hand side is defined at every point of V by this equation and
by the lemma this definition is independent of the choices. It is easily verified
as an exercise that VY is a connection and is Riemannian if V is—using the
induced Riemannian metric on U. The importance of this follows from the
next lemma.

(3.6) Lemma Suppose that a Riemannian connection V exists for every
Riemannian manifold. If it is unique for manifolds covered by a single coordin-
ate neighborhood U, then it is unique for all manifolds. Conversely, if there
exists a uniquely determined (Riemannian) connection VY for every Rieman-
nian manifold covered by a single coordinate neighborhood U, then there exists

a uniquely determined Riemannian connection V on every Riemannian
manifold.

Proof We suppose that V is a Riemannian connection on M. By
hypothesis there is a uniquely determined Riemannian connection VY on
each coordinate neighborhood U, ¢ of M (with the induced Riemannian
metric). Let X, Y be vector fields on M and denote by X, Yy their restric-
tions to U. It is an easy consequence of the definition of VY, the restriction of
V to U, that V¥ Yo = (Vx Y)y. Then on each coordinate neighborhood we
have (Vy Y)y = qu Y, for, by the uniqueness assumption, V¥ = VY. Since
M is covered by coordinate neighborhoods, this proves the first statement.

Now suppose that VY is uniquely determined on every coordinate neigh-
borhood U, ¢ of M. If there is defined on M a V with properties (1)-(4) it
must be unique by the above. We shall define V on M as follows: Let
X, Ye X(M) and let pe M. Choose a coordinate neighborhood U, ¢ con-
taining p and define (Vy Y), = VY, Y, . This defines V, Y not only at p but
on the neighborhood U. It is easy to verify properties (1)}-(4) since they hold
for VY. Suppose V,y is a coordinate neighborhood overlapping U; let
W = U n V. Then W is a coordinate neighborhood using either coordinate
map ¢ or ¥ and, V¥ being thus uniquely defined, we have at every point q of
w

(Vgu YU)q ( YW)q ( YV)q
This completes the proof of the lemma. |

Proof of Theorem 33 The proof of the existence and uniqueness of a
Riemannian symmetric connection, Theorem 3.3, is now reduced to the case
of a manifold covered by a single coordinate neighborhood. Let U, ¢ cover
the manifold M and let x',..., x" denote the local coordinates and
E,, ..., E, the coordinate frames. Denoting the inner product by (X, Y) we
have as components of the metric tensor the C* functions g;}(q) = (E,,,, ia)
on U = M. The matrix (g;;(¢)) is symmetric, positive definite, hence it has 2
uniquely determined inverse (g"(q)) whose entries are C* functions on U
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also. We shall show that there exists a unique Riemannian connection V on
M. First we note that if V can be defined at all, then by properties (1) and (2)
it is determined by the C™ functions I'Y; on U, | < i, j, k < n, defined by
Ve, E; =33 THE,. In fact, if X =) b(x)E; and Y =} a/(X)E; on U,

then from (1) and (2) and our definition of I';,

k ij

Conversely, given functions I'}; on U, this formula defines a C* connection
satisfying (1) and (2).

However, the I'}; are not arbitrary C* functions since a Riemannian
connection satisfies the further properties (3) and (4). Because [E;, E;] = 0
for the coordinate frames, property (3) is equivalent to

0=[E.E]=VyE;— Vg, E = ;(l",.‘j — IYE,
or, in fact, to the symmetry of I'}; in the lower indices:
(3) r:‘(j= l"jf,-.
Finally, property (4) is equivalent to

Ekgij = Ek(E.' > Ej) = (VEkEi ’ Ej) + (Ei s VEkEj)
or to

(4) E.g;= Zs (Figs; + Tjgs)s I<ijk<n

Finally, using the matrix (g") inverse to (g;;), we define I';; = Y 5,94,
which implies that I'; = ¥ I';; g*. Thus the n* C* functions I'}; determine
the n* C* functions I';;, and conversely. Properties (3') and (4') become

(3") rijk = rjik
and
(4”) ‘ﬁ!lfj/ﬁxk = rkij + rkji .

respectively, if we write E, g;; = dg,;;/0x*, that is, if we consider g;; as func-
tions of the local coordinates.

In summary, given a Riemannian connection on M, covered by a single
coordinate neighborhood, then if a Riemannian connection V exists, it deter-
mines n* functions I';;, of class C* which have the two properties just
mentioned. Conversely, it is easy to check by reversing these steps that any
such functions determine a C* Riemannian connection on M. Thus the
theorem is completely established by the following lemma.
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(37) Lemma Let W be an open subset of R" and let (g;;) be a symmetric,
positive definite matrix whose entries are C* functions on W. Then there exists
a unique family of C* functions T'j3(x), 1 < i, j, k < non W satisfying the two
sets of equations (3") and (4").

Proof Write Eq. (4”) twice more, each time permuting i, j, k cyclically.
Then subtract the second of these equations from the sum of the first and
third. Using (3"), [";;, = T4, gives the unique solutions

1 (0g;; 99 | OGui
P = 2(6x" “ax T o)
This completes the last step in the proof of the fundamental theorem 3.3.

Suppose that U, ¢ is a local coordinate system with coordinates
x!,...,x" Let E,, ..., E, be the coordinate frames and Y = ) &*E, be the
expression on U of the vector field Y. If pe U and X, = ) b*E,,, then we
have the following formula for V, Y on U.

(3.8) Corollary For each pe U, using the above notation, we have

da* o
(Vy¥),= Vi ¥ =¥ (z Py l“}‘ja'bl)Ek
? Kk \j ox! ij
with

1 0gq 0Og:;; 0g;
rk = - ges(99si _ 99i  99is)
& 2g (6x’ ox* + Ox!

Proof As we have seen in the proof (Vy Y), is the same as V}, ¥, that
is, V¥ on X, Y restricted to U. For this reason we use the same symbol V for
all cases. The formula of the corollary follows at once from applying proper-
ties (1) and (2) defining a connection to Vg g (3 a“E,). |

Of course, this is the same formula we obtained earlier in the proof of
Theorem 2.11 for a manifold M in Euclidean space. In fact we have an
obvious corollary of the uniqueness of V:

(3.9) Corollary In the case of an imbedded (or immersed) manifold in
Euclidean space, the differentiation defined in Theorem 2.11 depends only on
the Riemannian metric induced by the imbedding (but is otherwise independent
of the imbedding).

(3.10) Remark In Sections 1 and 2 we used the concept of differentiation
of vector fields along curves dY/dt to define DY /dt and then Vy Y on sub-
manifolds of R". In this section we showed quite independently of the earlier
discussion that there is a uniquely determined Riemannian connection V on
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every Riemannian manifold M. Using this result we come full circle and
define—for a vector field Y and curve p(tr) on M—the covariant derivative
DY/dt of Y(t) = Y,, by
DY
dr

Let Y be given locally by Y = 3 b*(x)E, and p(t) by x(t) = (x*(t), ..., x"(1)).
Then from Corollary 3.8, with X ,,, = Y X/(t)E; = dp/dt, it is easy to rede-
rive formula (2.9) (renumbered here)

Vdp/dt Y

k n Jj
@) S PR EOSEDA LY
ij=
Since db"/dt depend only on the values of b, ..., b", components of Y
along the curve, the formula is valid when Y is defined only at points of the
curve. Of course on any interval of the curve Y may be extended to a vector
field on M, but DY/dr is independent of the extension by (3.11).

Constant Vector Fields and Parallel Displacement

A vector field Y on M is said to be constant if Vy Y = Oforall pe M and
X, € T,(M). In general there do not exist such vector fields, even on small
open subsets of M. However, given a differentiable curve p(t), 0 <t < T,
there will be a vector field X(t) = X, constant or parallel along p(t) (by
which we mean DX/dt = 0).

plt

(3.12) Theorem Let p = p(0). the initial point of the curve p(t),0 < t < T,
and let X ,€ T,,,(M) be given arbitrarily. Then there exists a unique constant
vectorﬂeld X ) along p(t) such that X ,, has the given value. IfE,,, ..., E,,
is an orthonormal frame at p(0), then there is a unique, parallel field of ortho-
normal frames on p(t) which coincide with the given one at p = p(0).

Proof (The proof depends on the existence theorem 1V.4.1 which is not
fully proved in this text. Moreover, we need a special fact about systems
which are linear in the unknown functions. The necessary proofs are in the
references already cited, for example, Hurewicz [1].) To prove the existence
and uniqueness of X(r) = X, it is enough to demonstrate it for arcs of p(t)
lying in single coordinate neighborhoods. For the curve can be partitioned
into a finite number of such arcs and X (t) defined on each in turn beginning
with r = 0. Now suppose that U, ¢ is such a neighborhood and contains p(t)
for ¢ <t < d and that X ., is given. We wish to determine X ,,, = > a*(1)E,
so that it is parallel which occurs if and only if

= _Zrk

. dx



320 VIl DIFFERENTIATION ON RIEMANNIAN MANIFOLDS

by virtue of (3.11). In this system of ordinary differential equations a*(t) are
unknown except at ¢ = ¢, I'; depend on ¢ through x(¢). Thus a*(r) satisfy a
system of first-order equations which we know to have a unique solution
satisfying arbitrarily given initial conditions X ., = Y a*(c)E;. Therefore
a*(t) are defined and unique for some interval of values of r and they are
necessarily C" if the curve is C". We need to know that the solutions a*(t) are
defined for all values of ¢ in the given interval ¢ < ¢t < d. This is so (as
mentioned above) because the equations are linear, that is, the right-hand
sides are linear in the unknown functions a'(t).

The second part of the proposition is a consequence of the first and of the
fact that property (2.3c) holds: We extend each of the E;,, to a parallel
vector field E;,,, then by definition DE,/dt = 0, 1 < i < n. Differentiating
(E;, E;), we find that

Hi(Ei’ E}) = (d[’ E_,) + (E,,Tt) =0.

Thus (E;, E;) is for each i, j a constant function along p(t). Since at p(0) it is 0
if i # jand +1 if i = j, the same is true everywhere on p(t). |

(3.13) Remark We remark that it is sufficient for the curve to be piece-
wise differentiable, for then we can move X, along each piece separately.
Therefore it follows from this theorem that given a piecewise differentiable
curve p(r), there exists an isomorphism, in fact isometry, 1,: T,,(M) —
T,,,(M) determined by the condition that 7,(X ) be a parallel (constant)
vector field along p(t). It is clear from our initial discussion of dX /dr along a
curve p(t) in Euclidean space that this would enable us to define the deriva-
tive of vector fields along curves on a Riemannian manifold M by comparing
vectors at different points of the curve. The notion of parallel displacement
along curves is sometimes taken as the starting point in studying differentia-
tion on manifolds.

Exercises

1. Show that if E,, ..., E, is a parallel frame field along a differentiable
curve p(t) in M and X(1) = X, is a vector field along the curve defined
by X(f) = Y-, a'(t)E;pw. then

DX & dd
de ~ Z‘l dr Eiror-
2. Using spherical coordinates we may cover the 2-sphere S of fixed radius
a minus a single meridian from north to south pole by a single coordin-
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ate system U, ¢. The parameter mapping ¢~ ! takes W = {(u', u?)|
0 < u' <2m, 0 < u? < 7} onto the sphere as imbedded in R by ¢:

@~ Yu', u?) = (a cos u' sin u?, asin u' sin u?, a cos u?).

Find g;,(u', u?) and compute I'f(u', u?).

3. Let the upper half plane be considered as a manifold M covered by a
single coordinate system M = {(x, x?)| x? > 0} with U = M and coor-
dinates (x', x2). Ifg;(x) = (x?)” % &;;.find I'¥;. Show that x' = constant is
a geodesic.

4. Show that isometries of Riemannian manifolds preserve the Riemannian
connection, that is, if F: M, — M, is a difffomorphism preserving the
Riemannian metric, then F, (VYY) = V@) F (Y).

5. Let M be a Riemannian manifold, W an open neighborhood of (u4, o)
on the uv plane, and F: W - M a C™ mapping. Let 0F/0u and JF/0v
denote the vectors tangent to the curves v = constant and u = constant,
respectively, and let D/du, D/0v denote the covariant derivatives of any
vector field along these respective curves. Using (3.11), show by direct
computation that

ij

D OF _ D JOF
ovdu  udv’

To which property of the Riemannian connection does this correspond?

4 Addenda to the Theory of Differentiation on a Manifold

In this section we insert a brief treatment of two topics which are closely
related to the previous section, but which we do not need or use until the
next chapter. First, we introduce the Riemann curvature tensor, and second,
we briefly treat connections from the point of view of exterior differential
forms.

The Curvature Tensor

It is a standard theorem of advanced calculus that second-order partial
derivatives are independent of the order of differentiation:

o) = 2ole)
axi\oxi] — axi\exi)

For functions on manifolds the analogous property X(Yf) = Y(Xf) does
not hold in general. Indeed [X, Y] measures the extent by which it fails:

X(Yf) = Y(Xf) = [X, Y]f.

[It still holds if X = E;and Y = Ej, since E, f may be identified with af/ox¥,
k= 1,....n if we allow fto denote the expression for the function on M in
local coordinates x', ..., x".]
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Since interchangeability of order of differentiation is measured by an
interesting object [X, Y] in the case of functions, it is natural to study the
same question for V, and V, derivatives of a vector field Z on M with
respect to vector fields X, Y. A relatively simple example (Exercise 1) shows
that in general V4(Vy Z) — Vy(Vx Z) # 0; hence it determines a vector field
on M which may be thought of as analogous to [X, Y]. In fact, however, a
more important expression, which involves also the measure of noninter-
changeability of derivatives of functions [X, Y], is the following related
vector field, denoted by R(X, Y)Z or R(X, Y)" Z:

(4.9) R(X,Y) Z = Vy(Vy Z) — Vy(Vx Z) — Vi 1, Z.

It is readily verified that this formula defines a multilinear mapping of
X(M) x ¥(M) x ¥(M)— ¥(M), that is, R(X,Y)-Z is R-linear in each
variable. However, from another point of view, in this expression R(X, Y) is
an operator, determined by the vector fields X and Y, and assigning to each
vector field Z a new C*-vector field R(X, Y) - Z. Note that if [X, Y] = 0, as
is the case when X = E;, Y = E; are vectors of a coordinate frame, then

R(X, Y) Z = Vy(VyZ) — Vy(Vx2),

so that if R(X, Y) = 0 on M, then V, and V, are interchangeable for all Z.
A purely formal reason for the added term —V,y y; Z in the definition is so
that the following important theorem holds.

(4.2) Theorem At any point p, the vector (R(X, Y)- Z), depends only on
X,.Y,,Z,, the values of the three vector fields at p, and not their values in a
neighborhood or on M thus formula (4.1) assigns to each pair of vectors
X,. Y,e T(M) a linear transformation R(X,, Y,): T,(M) - T,(M). In fact,
(X,,Y,) > R(X,, Y,) is a linear mapping of T,(M) x T,(M) into the space of
operators on T,(M).

Proof From the definition of R(X, Y)-Z we see that it depends R-
linearly on each of the three arguments X, Y, Z. Moreover if fis a C*

function on M (not necessarily constant), we have

R(fX.Y)-Z =R(X,fY)-Z=R(X,Y) fZ = R(X, Y) - Z
as we may easily check by direct computation.

Now suppose that U, ¢ is a coordinate neighborhood. Let (x!, ..., x")
denote the local coordinates and E,, ..., E, the coordinate frames. We sup-
pose that X =Y o'E;, Y =3 BE;, Z =3 y*E,. Then by the remarks
above,

R(X,Y) Z= Y «BYR(E;, E)) " E,

i jok
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and we see that at a given point p of U the right-hand side involves first
R(E;, E))- E,, which is independent of the vector fields, and second the
values of the functions o, §/, y* only at the point p itself, not at nearby points.
This proves the theorem. We used only properties (1) and (2) of the connec-
tion V, but the next fact uses the Riemannian metric. ]

(4.3) Corollary The formula R(X,Y,Z, W) = (R(X, Y)" Z, W) defines a
C®-covariant tensor of order 4. This tensor depends only on the Riemannian
metric on M: If M|, M, are Riemannian manifolds and F: M, - M, is an
isometry, then F*R, = R,.

Proof Since R(X,, Y,)' Z, is defined as an element of T,(M) for any
pe M, its inner product (R(X,, Y,) - Z,, W, ) with any W, € T,(M) is a well-
defined real number. Thus for each p, RP(X,,, Y,.Z,, Wp) =
(R(X,,Y,)- Z,, W,) defines a multilinear function of four variables on
T,(M), that is, an element of 7 *(T,(M)). This clearly defines a C*-tensor
field since both inner product and R(X,Y)-Z are C* for
X,Y,Z WeX(M).

We have defined an isometry of Riemannian manifolds to be a
diffiomorphism which preserves the Riemannian metric, that is,
F,: T,(M,) - Ty,(M,) preserves inner products (and is an isomorphism
onto). [If we do not suppose that the C* mapping F is one-to-one onto, but
only that F, is onto and preserves inner products, then it is called a local
isometry. It is an isometry on some neighborhood of each point (for exam-
ple, covering spaces).] The last statement of Corollary 4.3 is valid for local
isometries also. Now since V is uniquely determined by the Riemannian
metric, F, preserves the connection, more precisely F,(VyY)=
Vi Fyu(Y). From this we deduce that R,(F, X,F,Y) F,Z=
R,(X, Y)- Z. Since inner products are preserved, this implies F*R, = R;.

(4.4) Definition The operator R(X, Y)is called the curvature operator and
the tensor R(X, Y, Z, W) is called the Riemann curvature tensor. [It is not
difficult to see that each one determines the other (Exercise 2).]

(45) Remark Let E, ..., E, be a field of frames on U, an open set of M.
Then the Riemann curvature tensor is uniquely determined on U by either of
the n* sets of functions R, or R,;, defined by the equations

R(E,. E))E; = Z R E;
J

and

R(Ek ,E  E;, Ej) = Rijkl = Zgstfkl ’ 9js = (Ej’ Es)'
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The Riemannian Connection and Exterior Differential Forms

There is another way of formulating the properties of covariant deriva-
tives, connections, curvature tensor, and so on, which we shall now touch
upon—it will be more fully treated later. We suppose that U is an open
subset of a manifold M which has defined over it a field of C* frames
E,, ..., E,. The most usual case is when these are the coordinate frames of a
coordinate neighborhood U, ¢. However, in the case of a Riemannian mani-
fold, which is our present interest, we might find it convenient to consider a
neighborhood with orthonormal frames (Exercise 4). Corresponding to
E,, ..., E,, we have at each pe U the dual basis ', ..., 6" of T¥(M), charac-
terized by 6°(E;) = &;. It is a field of dual coframes on U and is clearly C*. If
f', ..., 0" are given, then conversely E,, ..., E, are determined (Section V.1).

Now in defining V, Y on a manifold so as to satisfy properties (1) and
(2), we saw that it is enough to know Vg E;; for Vy Y may then be computed.
In fact, Vg, E; = Y, T' E;, and we determined the I'}; above. If a connection
is given so that I'}; are known on U, then we may define n® one-forms 6 by
0% =, ;6" Conversely, given these one-forms, then I'}; = 8%E,), and
hence Vi, E;, and the connection is determined. Indeed one checks at once
that Vy E; = Y, 64 X)E,, that is, the values of the forms 6}, ..., 07 on X are
the components of V E; relative to the given frames. Therefore, given U and
0, ..., 0" a field of coframes on U, then the connection is determined on U
by the n? forms 6%. They are called the connection forms.

Of course, the n? connection forms 6% are not arbitrary, they must satisfy
certain conditions corresponding to properties (1)-(4) of Definition 3.1 if
they are to determine a connection on U, especially in the case of a Rieman-
nian connection—the one we are interested in. We have the following
restatement of the fundamental theorem of Riemannian geometry in terms
of forms—although we restrict ourselves only to the case in which the mani-
fold is covered by a single coordinate neighborhood or more precisely a
neighborhood on which is defined a frame field.

(4.6) Theorem Let M be a Riemannian manifold such that it has a covering
by a C* field of coframes 0, ..., 0". Then there exists a uniquely determined
set of n* C® one-forms 6%, 1 < j, k < n, on M satisfying the two equations

(i) da6'— %0’7\0} =0,

(i) dgi = ) u (0igs; + 049u:)s
where g;; = (E;, E}), with E,, ..., E, the uniquely determined field of frames
dualto 8, ...,0,. The forms 6% so determined define the Riemannian connec-
tion satisfying properties (1)-(4) of the fundamental theorem by the formulas:

(V) VilfY) = (XN)Y + /Y4 Y. fe C=(U).
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Conversely, the Riemannian connection determines 0% as explained above
and these 0% satisfy (i) and (ii).

The proof is basically a duplication of that of the fundamental theorem
[Theorem 3.3] in the case of manifolds covered by a single coordinate neigh-
borhood (see Exercises 6-8). It can then be extended to general M in similar
fashion.

If we recall that a Riemannian manifold M of the type described may be
covered by an orthonormal frame field E,, ..., E, withg;; = (E;, E;) = J;;,
then we have a nicer version of the above. In this case we denote 6 by w' and
0 by w!. Using the fact that g;; = 8;; (and hence dg;; = 0), we obtain the
following corollary:

(4.7) Corollary Let M be a Riemannian manifold which has a covering by a
field w', ..., w" of coframes whose dual frames E, ..., E, are orthonormal.
Then there exists a unique set of n* one-forms ¥, 1 < j, k < non M satisfying

(i) do'=Y,;0rw;=0,
(i) of+wf=0.

These o} determine the Riemannian connection (as above) and conversely.

Finally, we note that since 0% are uniquely determined by 6, ..., 0" and
the Riemannian metric—the coframe field and the metric—then the
exterior derivatives d6% are also uniquely determined, as are their expres-
sions as linear combinations of the basis 0°A 05, 1 < i < j < n, of two-forms
on the domain U of 0!, ..., 0" As we shall see in the next chapter, the
coefficients in these linear combinations determine the components of
the curvature tensor.

Exercises

1. Using Vg E; =), TSE, and Exercise 3.3, show that for the metric
gi; = (x2)7% 3;; on {(x', x?)[x? > 0},

VEk(VEiE') - VE.‘(VEA E]) # 0

2. Show that R(X, Y, Z, W) determines R(X, Y)- Z, that is, if the values of
the former on all vector fields are known, the same holds for the latter.

3. For a local coordinate system, compute R}, and R, in terms of I'};
and g;;.

4. Show that any coordinate neighborhood may be covered by a C*
orthonormal frame field.

5. Suppose that F: ¥(M) x --- x ¥(M) — ¥(M) is a C*(M)-multilinear
mapping of k vector fields (X,,...,X,;) on M to a vector field
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F(X,, ..., X)) [C*(M) linear in each vector field separately], M a
Riemannian manifold. Show that

(D(Xl""’Xk’Xk+l)= (F(Xl,..., Xk)’ Xk+l)

defines a covariant (k + 1) tensor.

6. Use Lemma V.8.4 to show that [X, Y] =V, Y — V, X is equivalent to
property (i) of Theorem 4.6. Prove that property (ii) is equivalent to
X(Y,Z) = (Vy Y, Z) — (Y, Vx Z) if we use Xf = df(X).

7. Prove directly, using differential forms, that there exists one and only
one set of forms 6% satisfying (i) and (ii) as asserted in Theorem 4.6.

8. Complete the proof of Theorem 4.6 using the results of Exercise 7 by
showing that (iii) and (iv) define a Riemannian connection on M as
claimed.

5 Geodesic Curves on Riemannian Manifolds

As a first example of the use of covariant differentiation on a Riemannian
manifold—we shall define and study the class of curves called geodesics. Let
p(t) be a curve on M and dp/dt its velocity vector, defined for some open
interval a < t < b of R; we suppose it to be of class C? at least.

(5.1) Definition The (parametrized) curve p(t) is said to be a geodesic if its
velocity vector is constant (parallel), that is, if it satisfies the condition
(D/dr)(dp/dt) = 0, the equation of a geodesic, for a < t < b.

As we saw previously, when M = R" with its usual metric this implies
that the curve is a straight line. But in Section 2 it was seen that for a
submanifold of R" this can mean something quite different, an example being
the great circles on §"~! = R™.

The parameter on a geodesic is not arbitrary; the fact that a curve is a
geodesic depends both on its shape and its parametrization as we may see
from the example of a (geometric) straight line in R? given parametrically by
x! =13, x2 = 3. We write p(t) = (¢3, ¢3); then

dp

0 0
AP _ 4,2 U 2 ¢
a3 T g

Since D/dt = d/dt in R?, we have

Didp\ D(.,D ., 8\ @& @
dt(dt) ‘41(3‘ oxi T30 ) T8 T O

Therefore this curve is not a geodesic although the path traversed is the line
x! = x2. 1f p(t),0 <t < b, is a nontrivial geodesic (not a single point), then
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the permissible parametrizations—those with respect to which it remains a
geodesic-—are given by the following lemma.

(52) Lemma Let p(t), a <t < b, be a nontrivial geodesic and let t' be a
new parameter. With respect to t' the curve will be a geodesic if and only if
t = ct' + d,c # 0and d constant. In particular, the arclength is always such a
parameter.

Proof If we introduce a new parameter ¢ by t = ¢t’ + d, ¢ # 0, then
dp/dt’ = ¢ dp/dt and (D/dt')(dp/dt’) = c?(D/dt)(dp/dt) = 0; so the curve re-
mains a geodesic relative to t'. Now let s be arclength measured from p(t,), a
point of the curve. Then ds/dt = | dp/dt|. Since dp/dt is constant along the
curve, by (2.3c) its length ||dp/dt| is constant. Either ||dp/dt| is identically
zero with p(t) a single point and s = 0 or else ds/dt = ||dp/dt| = c, a nonzero
constant, and s = ¢t + 4. This means that the curve is a geodesic when
parametrized by arclength. Since any other permissible parameter is related
to arclength by a similar (linear) relation, any two parameters are linearly
related. i

In order to make general statements about geodesics on manifolds we
shall need to study the defining equation in some detail using the existence
theorem (IV.4.1). We can, however, give a few further examples by virtue of
the following two observations. First, the equation of a geodesic imposes
only a local condition on the curve. More precisely, if each point of a curve C
has a neighborhood in which it may be written in the form p(t),a <t < b,
with (D/dt)(dp/dt) = 0, then it is a geodesic; for then, using arclength from
some fixed point as parameter on all of C, it must satisfy the equation
(D/ds)(dp/ds) = 0 over its entire length. Secend, the property of being a
geodesic is preserved by isometries because covariant differentiation is
preserved and therefore so is parallelism of a vector field (for example, dp/dt)
along a curve.

Now we let n:R* - T? be the standard covering discussed in
Example I11.6.15 and in Section 111.9. We take R? with its usual Riemannian
metric. Since the covering transformations are translations, they are isome-
tries of R2. It follows that we may define on T2 a Riemannian metric which
makes the projection = a local isometry, meaning that z, is an isometry of
each tangent space T,(R?) onto T,,(T?). With this metric the geometry of
T? is locally equivalent to that of Euclidean space. [This Riemannian metric
should not be confused with the metric induced on a torus imbedded in R*
by the standard Riemannian metric of R*.] Combining our two observa-
tions, it follows that even a local isometry, as for example this map =, carries
geodesics onto geodesics. This means that the images of straight lines of R?
on T? are geodesics of T? (Fig. VII.10). In particular, lines of rational slope
map to closed geodesics on T2, lines of irrational slope do not—they are
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dense on T2 Nothing like this occurs in R?, where geodesics can be neither
closed curves nor dense. Thus “straight lines ” even on spaces locally isome-
tric to Euclidean space present some fascinating variations from what we
might expect.

A similar, even simpler example is a right circular cylinder
M ={(x, y,z)e R*| x* + y* = 1}. The Riemannian metric induced by that
of R? is the same as that given by the covering n: R? » M (of Exercise 1). In
this case the covering map is given by rolling up the plane into an infinite
cylinder each strip of width 2n covering M once. Details are given in the
exercises.

In order to study properties of geodesics on a Riemannian manifold M,
we pass to local coordinates (x', ..., x") on a connected coordinate neigh-
borhood U, ¢. Then by (3.11) the equation of a geodesic (D/dt)(dp/dt) = O is
equivalent to the system of second-order differential equations:

d?x* " dxt dxi

(5.3) ’d;E + i‘jzzlr?j(x)ﬁ—d[‘ =0, k= 1,...,".

A solution is a curve given in local coordinates by n functions
(x'(t), ..., x"(t)) which satisfy (5.3). As usual let E, ..., E, denote the coor-
dinate frames. We may apply our existence theorem I1V.4.1 to prove the
existence and uniqueness of a geodesic through each pe U with prescribed
tangent direction at p and study its dependence on p and the tangent
direction.

(5.4) Lemma Given any qe U, we can find a neighborhood V of q with
V < U and positive numbers r, 6 such that for each pe V and each tangent
vector X,=) bE, with ||X,| <r, there exists a unique solution
(x*(t), ..., x"(t)) of (5.3), defined for —& < t < 0, which satisfies x'(0) = x'(p)
and x'(0) =b', i=1,...,n Let p(t) = @~ }(x'(t), ..., x"(t)) as just defined.
Then p(t)e U for |t| <.
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Proof We consider the following system of 2n first-order ordinary dif-
ferential equations defined on the open subset W = @(U) x R" = R" x R"
=R

Ik
(55) ‘; _ k=1,..,n
dyk n
= X)Wk, k=1 ..,n
I lzzl )y

The right-hand sides are C* functions of (x, y) = (x',..., x"; y', ..., y") on
W. Therefore, according to the existence theorem for ordinary differential
equations cited above, for each point in W there exists a § > 0 and a neigh-
borhood ¥V of the point with the property that given (a;b)=
(a'.....a" b, ..., b") e V, there are 2n unique functions x* = f¥(t, a; b) and
Y=gt asb). k=1,...,nand |t| <J,satisfying the system of equations
(5.5) and the initial conditions [0, a;b) = a* and g*(0, a; b) = bk,
k = 1,..., n. These functions are C* in all Vdriables and have values in W. If
pe U. we consider the point (¢(p);0) = (x'(p x"(p);0,...,0)e W.
Then there is a 0 > 0 and a neighborhood of((p(p 0) as descrlbed This
neighborhood may be chosen to be of the form (V) x B(0) for some V
with ¥V = U compact and r' > 0. Since V is compact, we may find a number
r>0 such that if (3 gi(x)b;b;)'"* = |X,|| <r and peV, then
(3 (b")*)'* < . This follows from the inequalities used in the proof of
Theorem V.3.1. We see at once from the special nature of system (5.5) that
df*/dt = ¢* and hence
dzf" L dridrd
Z Ydr dt’
In other words x*(t) = f*(t, a; b) are solutions of the system of equations
(5.3), and therefore the equations in local coordinates of geodesics satisfying
x*(0) = d¢* and (dx"/dt),-, = b* k = 1, ..., n. Finally, according to the exist-
ence theorem cited, the image of I; x ¥ under the map
(ta,b)y > (S (t,a;b), ..., f"(t.a; b);g*(t, as b), ..., g"(t, a; b))

is in W which proves that p(t) = ¢~ '(f(t. a: b)) € U. ]

The lemma has the following corollary, which guarantees the existence

of a unique open geodesic arc through any given point with prescribed
direction.

(5.6) Corollary If M is a Riemannian manifold pe M and 'Y, a nonzero
tangent vector at p, then there is a A > 0 and a geodesic curve p(t) on M
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defined on some interval —6 <1t <94, 6>0, such that p(0)= p,
(dp/dt),~o = AY,. Any two geodesic curves satisfying these two initial condi-
tions coincide in a neighborhood of p.

To see that this is so we take a neighborhood U, ¢ of p and choose 1 > 0
so that |AY,|| < r as in Lemma 5.4; then we apply the lemma.

(5.7) Remark It is clear from our earlier remarks to the effect that “ being
a geodesic” is a local property of parametrized curves, that if two geodesic
curves C, and C, coincide (as sets) over some interval, then their union—
suitably parametrized—is a geodesic. Further, we now see that if two
geodesics have a single point in common and are tangent at that point, then
their union is a geodesic. This implies that each geodesic is contained in a
unique maximal geodesic. A maximal geodesic is one that is not a proper
subset of any geodesic: If it is parametrized by a parameter t witha < ¢t < b,
then a and b (which can be —oo and/or + o) are determined by the curve
and the choice of parameter. It is not possible to extend the definition of p(t)
(with the given parameter) so as to include either of these values and so that
it will still be a geodesic. We shall be interested in determining conditions on
M which ensure that a = — oo and b = + co for every geodesic, or that every
geodesic can be extended indefinitely in either direction. By Lemma 5.2 this
property would be independent of parameter. It is easy to see that this is not
always possible: let M be R? with the origin removed. Then radial straight
lines cannot be extended to the origin. However, given a geodesic through a
point p, clearly we can always reparametrize it so that p = p(0) and p(¢) is
defined for |r| < 2, say. Making use of this fact, we modify Lemma 5.4
slightly to obtain our basic existence and uniqueness theorem for geodesics.

(5.8) Theorem Let M be a Riemannian manifold and U, ¢ a coordinate
neighborhood of M. If qe U, then there exists a neighborhood V of q and an
&> 0 suchthat ifpe V and X ,e T,(M)with | X || < e, then there is a unique
geodesic p(t) = p(t, p, X,) defined for —2 <t < +2 and with p(0) = p,
(dp/dt),—o = X,. The mapping into M defined by (t, p, X ,) = p(t, p, X,) is
C® on the open set |t| <2,peV, | X,| <& and has its values in U.

Proof According to Lemma 5.4, we may find a neighborhood V of ¢
and numbers r, > 0 such that given any pe V and vector X ,e T,(M) with
|X,| < r, then there is a geodesic p(r) defined for || < & and satisfying the
initial conditions p(0) = p, (dp/dt)o = X,. We know that if we change to a
parameter t = ct’, ¢ # 0 a constant, then p(t') = p(ct’) is again a geodesic
with p(0) = p and dp/dt’ = (dp/dt)(dt/dt’) = c dp/dt; thus (dp/dt'), = cX,.
Now if 8 > 2, we may use ¢ = r and we have no more to prove; butif § < 2,
we let ¢ = dr/2. Then, if pe V and X, is a tangent vector at p with | X || <,
we know from the choice of ¢ that ||2X /6| < r. Thus there is a geodesic p(t)
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with p(0) = p and (dp/dt), = 2X /0 defined for |t| < & at least. The curve
p(t') = p(dt'/2) is again a geodesic and satisfies p(0) = p, (dp/dt’)o = (8/2) x
(dp/dt)o = X,. Moreover it is defined for |dr'/2| <48, that is, for
—2 < t' < +2. This completes the proof; the last statement is already con-
tained in Lemma 5.4. ]

Exercises

1. Show that the mapping n: (u, v) — (cos , sin u, v) carrying R? onto the
cylinder M = {(x, y, z)| x* + y* = 1} = R® is a covering and a local
isometry onto M with the induced metric of R?, from R? with the usual
metric.

2. Use Exercise 1 to show that the geodesics on M are the helices, that is,
curves which cut each generator at the same angle (or have a constant
angle with the z-axis), the generators themselves, and the circles of inter-
section with planes z = constant. Find how many geodesics connect two
given points p, g.

3. Show that two isometries F,, F,: M - M of a Riemannian manifold
which agree on a point p and induce the same linear mapping on T,(M)
agree on a neighborhood of p. Can you improve this statement?

6 The Tangent Bundle and Exponential Mapping.
Normal Coordinates

Although it may not have been apparent, the process by which we passed
from a second-order system of equations (5.3) to a first-order system (5.5)
when we first studied geodesics was to introduce new variables which corre-
sponded to the components of tangent vectors at points of a coordinate
neighborhood U, ¢. These vectors X ,, pe U, are in one-to-one correspon-
dence with points (x; y) of the open set W = ¢(U) x R* = R" x R". The
correspondence, which we denote by @, is given by o(X,)=
(e(p); y'..... "), where o(p) = (x',...,x") are the coordinates of p,
X,=>yE,, and E,, ..., E, are the coordinate frames. The differential
equations of geodesics (5.3) were interpreted as a system of first-order differ-
ential equations (5.5) on W. Like all such systems, they correspond to a
vector field on W (which we discuss in Section 7).

In order to free ourselves from working exclusively with local coordin-
ates, it is natural to try to think of W being the image under ¢ of a coordin-
ate neighborhood U, » on a manifold. This is possible. It requires that we
define a manifold structure on the set of all tangent vectors at all points of
M, which we shall denote T(M) (compare Section 1V.2). When this is done,

T(M) = {X,e T,(M) | pe M} = U T,(M)
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will become a space, in fact a C* manifold, whose points are tangent vectors
to M (compare Section 1.5). In view of the introductory remarks, it is clear
that we shall want the subset U consisting of all X,such that pe Utobea
coordinate neighborhood with § as coordinate map and W as image,
@: U — W. This virtually dictates the choice of topology and differentiable
structure. Let n: T(M) — M be the natural mapping taking each vector to
its initial point m(X,) = p; then n~'(p) = T,(M).

(6.1) Lemma Let M be a C*-manifold of dimension n. There is a unique
topology on T(M) such that for each coordinate neighborhood U, ¢ of M, the
set U = n=Y(U) is an open set of T(M) and : U — @(U) x R", defined as
above, is a homeomorphism. With this topology T(M) is a topological manifold
of dimension 2n and the neighborhoods U, ¢ determine a C*-structure relative
to which m is an (open) C*-mapping of T(M) onto M.

Proof Let U, ¢ and U’, ¢’ be coordinate neighborhood on M such that
UnU + @;then Un U # &. Comparing the coordinates of pe U n U’
and the components of any X, e T,(M) relative to the two coordinate
systems, we obtain the formulas for change of coordinates in U ~ U

a)lo(b—l(xl"“,xn;yl, ) (f (x f"(X) iy(‘;f,’ g ojn)

where x'* = fi(x', ..., x"), i = 1, ..., n, are the formulas for change of coor-
dinates ¢’ o @~! on Un U’ and the change of components is as in
Corollary IV.1.8. These are easily seen to be diffeomorphisms of »(U n U)
onto §'(U n U’). The remainder of the verification is left as an exercise. Note
that in local coordinates x corresponds to projection of R" x R" onto its first
factor. We should also note that locally, on the domain U of each coordinate
neighborhood of the type above, T(M) is a product manifold, that is, as an
open submanifold of T(M), U is diffeomorphic to ¢(U) x R". In the case of
Euclidean space, U, ¢ may be taken to be all of M = R" so that T(R") is
difffomorphic to R" x R". It is clear that for every manifold M,
dim T(M) = 2dim M. 1

(6.2) Definition T(M) with the topology and C* structure just defined is
called the tangent bundle of M, n: T(M) — M the natural projection.

Using Theorem 5.8, we may define Exp, the exponential mapping; its
domain 2 is some subset of T(M). It is a nontrivial matter to characterize
exactly what this subset is. However, the range of Exp is M itself, thus
Exp: 2 - M maps a vector X, to a point of M. The name derives from the
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exponential mapping of matrices (Section IV.6) for reasons which will be
discussed later. Now let U, ¢ be a coordinate neighborhood of M and
suppose ge U. If a neighborhood V of q and an e > Q are chosen as in
Theorem 5.8, then for each X, with pe V and | X,| < ¢, or equivalently, in
the open subset {X,|peV,|X,| <& of T(M), the geodesic p(t) with
p(0) = p and (dp/dt)y = X , is defined for |1| < 2. On this open set of T(M)
we define Exp as follows.

(6.3) Definition Exp X, = p(1), that is, the image of X, under the expon-
ential mapping is defined to be that point on the unique geodesic determined
by X, at which the parameter takes the value +1.

Thus each ge M has a neighborhood V such that Exp is defined on the
open subset {X,|peV, |X,[| <& = n”'(V). (Note that ¢ depends on ¢
and its neighborhood V.) This information on & may be restated as follows:
Let M, be the submanifold of T(M) consisting of all zero vectors 0,, pe M.
Then p -0, maps M onto M, diffeomorphically and n: My — M is its
inverse. The application of Theorem 5.8 then guarantees that the domain &
of Exp contains an open neighborhood of M, in T(M).

We also note that since |dp/dt| is constant along a geodesic p(t), its
length L from p(0) to p(1) is

1
L=_[0

dp

1
a4 = 11Xl de= 1%,

Thus Exp X, is the point on the unique geodesic p(t) determined by X,
whose distance from p along the geodesic is the length of X, (see
Fig. VIL11).

Figure VIL11
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We shall use the following lemma to obtain identities (6.5):

(6.4) Lemma Assume that g€ M and that X ;e T,(M) for which Exp X is
defined. Then Exp tX, is defined at least for each t with |t| < 1 and q(t) =
Exp tX, is the geodesic through q at t = O with (dq/dt), = X .

Proaf Let g(t) be the unique geodesic with g(0) = q and (dg/dt), = X,
so that Exp X, = ¢(1). Given ¢ with |c| < 1, consider the geodesic
q(t) = glct). We have §(0) = q and (dg/dt),—o = cX, which means that
Exp cX, = 4(1) = g(c). Replacing c by ¢ in this equality gives the statement
above. ]

We now revert once more to local coordinates U, ¢ around ge M and let
V < U ande > Obeas in Theorem 5.8 again so that for pe Vand | X, || <e,
Exp X, is defined. As in the proof of Lemma 5.4, the geodesic determined by
p, X, is given in local coordinates by

t > (Y asb), ..., "t a; b))

with ¢o(p) =a=(a',...,a") and X, =b'E,, + .-+ + b"E,,. This means
that

o(Exp X,) = (f'(1,a;b),..../"(1, a; b))
and further that for |¢| <1

o(Exp tX,) = (f'(1, a;th), ..., f"(1, a; tb)).

However, the Lemma 6.4 and the meaning of the functions f(t, a; b) then
give us the following identities valid for |¢| < I:

65)  fil,al....a" b, ..., tb") = fit.a, ..., a" b, ..., b").

From these remarks we can draw some conclusions concerning the ex-
ponential map. First note that the f* are C® on their domain, hence
X,-»ExpX,isC*on{X,|peV,|X,| < ¢ Second, we may compute the
Jacobian of Exp, at X, = 0,, the O vector at g—for brevity we denote by
Exp, the restriction of Exp to T,(M)n 9. Now gq is fixed, (a’, ..., a") are
constants, and the Jacobian matrix at this point has as entries df/db’ eva-
luated at (1,4',...,a"0,...,0):

ot .. 1, . .
— =1lim-(f(1,a;0,...,h...,0) ~ f(1,a;0,...,0
pw h‘f},h(”“ h )~ fi(l,a ))
Using the identities (6.5), with b/ = 1 and b* = 0 for k + j, first with ¢ = h,
then with t = 0, this becomes
ot

1, . .
— =1 ! ;0,...,1,...,0)—=10,4a;0,...,1,...,
3 hﬂh(f(h,a,O, , 0) - (0, a; 0 1 0))

= fi0,a,...,a"0,..., 1,...,0).
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Since x' = f(r,a',...,a"0,...,1,...,0), i=1,...,n (with ¥ = 1 and
b* = 0 if k # j), considered as functions of r, are the equations of the
geodesic through g with E;, as initial vector, we see that the Jacobian matrix
reduces to the identity at X, = 0,, that is, 3f"/db/ = &;. It follows that for ¢
fixed and for some & < & the mapping X, - Exp X, is a diffeomorphism of
the open set N = {X,| ]| X,| < &} of T,(M) onto an open set N containing
g = Exp 0,. Retaining the notation Exp, for Exp restricted to that part of its
domain in T,(M), we summarize these results as follows.

(6.6) Normal Neighborhood Theorem Every point q of a Riemannian mani-
fold M has a neighborhood N which is the diffeomorphic image under Exp, of a
star-shaped neighborhood N of the zero vector O, of the vector space T,(M).

We have defined N by || X | < ¢ Since the norm in T,(M) is given by the
Riemannian metric, we may choose an orthonormal basis F,, ..., F, of
T,(M), and then, writing X, = 37—, y'F;, we have | X,|| = YI-, (¥')*. With
these choices, the mapping

¥ Equ( _;y‘F:) =0y

takes the open neighborhood N of g diffeomorphically onto B}(0) = R".

(6.7) Definition The coordinate neighborhood N, ¥ of g defined in this
way is called a normal coordinate neighborhood.

(6.8) Remark Normal coordinates have special features that make them
useful in the study of the geometry of the manifold. Of these the most
important are the following:

(i) gij(o) =0y
(i) The equations of the geodesics through ¢ take the form y' = a't,
i=1,...,n, a" constants.
(iii) The coefficients of the connection vanish at g:

ro)=0, ijk=1,...n

The first and second statements are immediate consequences of the
definition and Lemma 6.4. The third follows from the second since for all
a', ..., a" close to zero, substitution of the solutions y' = gt in the equations
of the geodesics yields

Y I't0)a'a’ = 0, k=1,...,n
ij

which implies (iii).
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In fact the same computations used in the proof of the existence of
normal neighborhoods give us a stronger result which we shall also find
useful. We again let U, ¢ be a coordinate neighborhood of ge M, let
E,, ..., E, denote the coordinate frames, X, = Y b'E;, the tangent vectors
to pe U, and ¢(p) = (x', ..., x") the local coordinates. We have shown that
there exists a relatively compact neighborhood V of ¢, V = U,andang > 0
such that Exp X, is defined and in U for each X, with pe VV and with

| X,| < e Then in local coordinates

o(Exp X,) = (f'(1, x', cen X b b, M X X b L b))

with f(t, x, b) being C* in all variables. We held p fixed at g to study the
map Exp, from T,(M) to M. Now, however, we consider the mapping F of
the open set p({X,|peV,||X,| <ef = R" x R"to

o(U) x ¢(U)= R" x R"

which is defined by
Fo(x!,...,x" b b (xS x" (1, x, b), ..., f7(1, x, b))

This map corresponds to themap X, = ) b’E;, — (p, Exp X ), with domain
in T(M). We have already seen that df'/ob/ = 6} when b' =--- = b" = 0.
Therefore the Jacobian matrix of F is nonsingular at any point (x', ..., x";
0,...,0) of R* x {0} for which (x', ..., x") = ¢(p) with pe V. Therefore by
the inverse function theorem for each pair (p, 0,), 0, the zero vectorat pe V,
there is a neighborhood which is mapped diffeomorphically onto an open
subset of U x U =« M x M by this mapping, which takes the pair “p and
vector X, at p” to a pair of points of U, (p, X,)—(p, Exp X,). Now V
was originally chosen as a relatively compact neighborhood of g lying in a
coordinate neighborhood U, ¢. It was used to obtain an ¢ > 0 for which the
open set {X,|pe V and |X,| < & of T(M) was in the domain & of Exp.
This is also a set on which the mapping (p, X,) = (p, Exp X ) is given in
local coordinates by F. From what we have just said we may restrict V and ¢
further (without changing notation) so that the resulting neighborhood
N(V.e)={(p, X,)|peV and |X,| <&} of g, 0, is mapped diffecomor-
phically onto an open set W < U x U. Although W is not of the form
B x B, it does contain the diagonal set {(p, p) | pe V}. We now let B < V be
a neighborhood of g such that B x B = W. Then B x B is the diffeomor-
phic image of some open subset of N(V,¢) which can be described by
Ny ={(p, X,)| pe B, Exp X ,€ B}. Putting these facts together gives the fol-
lowing result.

(6.9) Theorem Let U, ¢ be a coordinate neighborhood of M and g€ U.
Then there exists a neighborhood B = U of q and an & > 0 such that any two
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points p, p’ of B can be joined by a unique geodesic of length less than ¢. This
geodesic is of the form Exp tX,, 0 < t < 1, and lies entirely in U. It follows
that for each pe B, Exp, maps {X ,| | X,|| < ¢} diffeomorphically into an open
set N, such that B< N, c U.

We remark that our choice of the neighborhood N z does not allow us to
conclude that whenever (p, X,)€ Ny, then (p, tX )e Ny for all 0 <1 < 1.
Thus in general B does not necessarily have the property that p, p'e B are
joined by a geodesic lying entirely in B. We have made our choices so that
for each pe V, Exp, maps the ¢ ball {X,||X,| < ¢} into U diffeomor-
phically and clearly has B in its image, thus each p € B has a normal neigh-
borhood N, with Bc N, c U.

With somewhat more effort one can show that it is, in fact, possible to
select a neighborhood B of each point g on a Riemannian manifold with the
property that each pair of points p, p'e B may be joined by a unique (mini-
mizing) geodesic segment lying entirely in B. Such neighborhoods are called
geodesically convex and the proof of their existence is due to Whitehead [1].
It may be found in several of the references, for example, Helgason [1],
Kobayashi and Nomizu [1], or Bishop and Crittenden [1].

Exercises

I. A section of T(M) is a C* mapping F: M — T(M) such that no F =
identity on M. Prove that the sections of T(M) correspond precisely to
C~-vector fields on M.

2. Show that in a manner quite analogous to the definition of T(M), a
manifold structure can be defined on .7 "(M) for any fixed r and that
covariant tensor fields of order r correspond exactly to sections of M
into .7"(M). (*Section” is defined as in Exercise 1.)

3. Show that the set of all unit tangent vectors at all points of M form a
submanifold of T(M). Discuss the existence of sections with image in
this submanifold. '

4. Let M be imbedded in R™ as a submanifold and for each pe M let
N, c T,(R™) be the subspace of vectors orthogonal to T,(M). Show that
N(M) = |J,cu N, can be given a structure of a C* manifold such that
the natural mapping n: N(M) — M given by mapping N,(M) - pis C*.
Proceed by analogy with T(M). '

5. Show that if G is a Lie group, then T(G) is diffeomorphic to G x R",
n = dim G.

6. Let F: M — N be a C* mapping of manifolds. Show that F_: T(M) —
T(N), defined by the usual mapping F,: T,(M) - T,(N), is a C* map-
ping of manifolds and commutes with the projection mappings.
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7 Some Further Properties of Geodesics

Until now we have considered Exp only locally, restricted to a neighbor-
hood of the zero vector at each point of the manifold. Our main purpose in
this section is to prove, following Milnor [1], a theorem due to Hopf and
Rinow [1] which gives conditions that the domain 2 of Exp be the entire
tangent bundle T(M). Equivalently, this means that Exp X, is defined for
every pe M and X e T,(M). First, however, we wish to show that in all cases
the domain 2 is an open set.

(7.1) Theorem 2 is an open subset of T(M) and Exp: 9 - M is a C*
mapping.

Proof We adopt the notation of the previous section and recall that to
each coordinate neighborhood U, ¢ of M corresponds a coordinate neigh-
borhood U,» of T(M). We have U = n'(U) and (U) = ¢(U) x
R"c R" x R". In fact, if ¢(p)=(x',...,x") and E,,...,E, are the
coordinate frames,

P(Xp) = pQLYE) = (x', ... x" y's .0y
The natural mapping n: T(M) > M is given in local coordinates by
o(n(X,)) = (x',..., x"); it is an open C* mapping and has rank n at every

point. Suppose that p(t) is a geodesic on M. Then X ,,, = dp/dt, its velocity
vector, defines a curve t —» X, on T(M) with n(X ;) = p(t). An examina-
tion of the method by which we passed from the equations of geodesics (5. 3)
to first-order equations (5.5) reveals that on $(U) (denoted by W in
Lemma 5.4) we considered the first-order system corresponding to the
vector field

Z =5y g+ 3 (S Tav) o

Now we define a vector field Z on U = T(M) so that $,(Z) = Z'. If, as in
Lemma 5.4, the solutions of (5.5) are given by x'(t) = f(t, a, b) and y'(t) =
dx'/dt,i = 1,..., n, then on U the integral curves (solutions) of the system of
equations defined by Z are of the form

dx! dx"
-1 1 n . _l
(x (t),...,x(t),—dt dt)’

where @~ '(x'(t),..., x"(t)) = p(t) is a geodesic in U = n(U). In brief
X o) = dp/dt is a solution curve of Zon ™ '(U) = T(M)if and only if p(t) is
a geodesic on U. From its geometric meaning, or by a tedious computation
for change of coordinates, we see that Z is a vector field defined intrinsically
on all of T(M), independent of the particular expression in a coordinate
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system, that is, the components (x',...,x" Y. ;TLyy, ..., Y, ; Thy))
transform as they should for a vector field when we pass to other coordinates
so that Z is globally defined and depends only on the Riemannian connec-
tion and metric. The geodesics on M are therefore exactly the projections by
n: T(M) - M of the integral curves of Z. Thus the conclusion of the
theorem follows from Theorem IV.4.5. ]

We have seen that geodesics on Riemannian manifolds generalize
straight lines in R" in the following sense: Their unit tangent vector as we
move along the curve is constant. But another basic property which charac-
terizes straight lines in R" is the famous minimizing property of being the
shortest curve joining any two of its points. We now examine in some detail
the extent to which this property generalizes. A few examples will show that
there are some difficulties.

One of the more interesting is the right circular cylinder M with the
Riemannian metric obtained by considering the plane R? with its usual
metric as universal covering (see Exercise 5.1). Then the geodesics on the
cylinder are exactly those curves which go into straight lines if we roll
the cylinder along the plane: vertical generators and helices. Thus two points
not on a circle whose plane is orthogonal to the axis will be joined by an
infinite number of distinct geodesics of different lengths (Fig. VII.12).

On §? the larger of the two arcs of a great circle which join two points p
and g (which are not at opposite ends of at diameter) is not of minimal
length, even among nearby circular arcs. Finally, for the plane with the

A2
Ly /
L, wiL,)
Ly
/ M
(a} (b}

Figure V11,12
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origin removed, the points (—1, 0) and (+ 1, 0) cannot be joined by a shor-
test curve at all. In view of all this it is remarkable that we are able to salvage
something, in fact almost everything, if we limit ourselves to points close
together and short geodesics. Let us recall that we have defined the length of
a piecewise differentiable curve p(r) (of class D') over a<t<b by L=
{2 ||dp/dt| dt;this is the Riemann integral of a piecewise continuous function.
It is, by definition, equal to the sum of the integrals over the intervals of
continuity [on each of which p(¢) is of class C']. Then we may elaborate
Theorem 6.9 as follows.

(7.2) Theorem For each qe M, a Riemannian manifold, there exists a
neighborhood B and an ¢ > 0 such that each pair of points of B can be joined by
a unique geodesic of length L < ¢, and the length L of any piecewise C' curve
joining these two points is > L. Moreover L = L if and only if these paths
coincide as point sets, or equivalently, when parametrized by arclength, are
identical.

This theorem is established using Theorem 6.9 and the following two
lemmas. According to Theorem 6.9, given ge M, there exists B and ¢ > 0
such that each pair of points p, p’ of B can be joined by a unique geodesic of
length L < & In fact, the equation p(r) of the geodesic is given by p(t) =
ExptX,,0<t<1,and |X,| = L. The open set B lies in a coordinate
neighborhood U, ¢ which contains this geodesic, and Exp,, is a diffeomor-
phism of the open ball of vectors X, of T,(M) of length | X || < ¢ onto an
openset N, of U containing B. This means that any sphere {X || X || = r < ¢}
maps diffeomorphically to a submanifold of U, denoted by S, (and called
a geodesic sphere). The following lemma goes back to the work of Gauss.

(7.3) Lemma Let pe B and suppose Exp, maps the open &-ball of T,(M)
diffeomorphically onto N, > B. Then the geodesics through p are orthogonal
to the geodesic spheres S, determined by Exp, X, | X, || =r,r <e.

Proof Let X(r) be a curve in T, (M) with |X(t)]| = 1,a <t < b. Any
geodesic from the point p may be written r — Exp, rX, 0 < r < ¢, with
| X|l = 1 and any curve on S, in the form t — Exp, rX(t). The mapping
(r, t) = p(r, 1) = Exp, rX(r) maps the rectangle [0, ¢] x [a, b] differentiably
into M, and we will show that the inner product (dp/dr, dp/dt) =0 for
each ry, to. These are the tangent vectors to p(r, t,), the geodesic curve,
and to p(ro, t) a curve on the geodesic sphere S, , respectively, intersecting at
p(ro, to). If this inner product vanishes for every (ry, to), this will establish
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the lemma. We first show that (Cp/cr, *p/c't) is independent of r. By a basic
property of differentiation,

D(f‘p F-p)_(D(p(p) (fp Dap

cr\er’ it orér H(l

Of these the (D/¢r)(¢p/cr) = 0 since holding t fixed and allowing r to vary
gives a geodesic through ¢ with ¢p/’r as its unit tangent vector. In the second
term, if we interchange the order of differentiation (see Exercise 3.5), we
obtain (cp/ir. (Djet)ep/cr)) = yD/Ct)p/cr, 7p/cr). Since |icp/crl =
[ X(1)lf = 1. we see that this is also zero and therefore (Cp/cr. ¢p/it) is
independent of r. But p(0, t)=gq. so p/it=0 at r=0 and thus
(Cp/Cr. ¢p/ct) =0 for all r. Hence for each (roy. ty) the inner product
(Cp/cr. ¢pict) = 0, which completes the proof.

Now we consider a (piecewise) differentiable curve p(t), a <t < b, in
N, — (p}: it has a unique expression of the form j(t) = Exp, r(t)X(r), where
| X(r)] = 1. Using this notation, we state the following lemma.

(74) Lemma (3 |dp/dt| dt = |r(b) — r(a)|. Equality holds if and only if
r(t) is monotone and X(t) is constant.

Proof Again we consider the map (r,t) — p(r, t) = Exp, rX(t) from
[0. ] x [a. b] — U. The curve ji(r) connects the spherical shells S, of radius
r = r(a) and r = r(b) in U,. We have p(t) = p(r(t). t) and

cp

llf? (p (1) +
“."

dt

Since '‘pcr = X(t)] =1 and (ip/cr.ip/*t) =0 (Lemma 7.3), we

have "dp dt 2 = |r'(t)? + |ép/ét||? = | (1) ] Equality holds if and only if
cpcr = 0. that is, X(r) = constant. Hence,

b

a

de > ‘h|l(!)| dt > llhr'(!)(h = |r(b) — r(a)|.

dp
dt
In the last inequality, we have equality only if r(t) is monotone; thus
{& |dpsdt|| dt = |r(b) = r(a)| if and only if r(r) is monotone and X(r) =
constant. This proves the lemma.

Proof of Theorem 7.2 We continue the notation of the lemmas. Suppose
p(t). 0 <t < 1. is a piecewise smooth curve joining p = p(0) to p’' = p(l) =
Exp,rX,eN,.0 <r<eand | X, = I Let d satisfy 0 < 4 < ¢ and con-
sider the segment of the curve joining the shell of radius 4 around p to that of
radius r. According to Lemma 7.4, the length of this segment is > r — J with
equality hoiding only if the curve coincides as a point set with segment of the
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radial geodesic from p cut off by these shells, its length being r — é. Thus the
portion of the curve between these shells has strictly greater length than
r — J unless it coincides as a point set with a radial geodesic. Letting &
approach zero gives the result of the theorem. |

It is probably quite obvious that the statement of Theorem 7.2 is bound
up with the notion of distance on M, that is, the metric d(p, p’) which we
considered in Section V.3. Recall that d(p, p’) is the infimum of the lengths of
all piecewise differentiable curves from p to p’ and that we showed that the
metric topology and the usual topology coincided. The theorem just proved
guarantees that for each point g€ M there is an ¢ > 0 and a neighborhood B
of diameter less than ¢ (in terms of d) such that for every pair of points
p, '€ B there is a unique geodesic segment from p to p’ whose length is the
distance d(p, p'). More generally, we have the corollary which follows.

(7.5) Corollary If a piecewise differentiable path (of class D) from p to q on
M has length equal to d(p, q), then it is a geodesic when parametrized by
arclength.

Note that it follows that the path is C*! Of course the hypothesis and the
definition of d(p, q) imply that the path has minimum length among all such
curves. The proof is immediate: any segment of the path lying in a
sufficiently small neighborhood (as above) must also have as length the
distance between its endpoints (or it could be replaced by a shorter path)
and thus it must be a geodesic. Since the curve is a geodesic locally, it is a
geodesic.

(7.6) Definition A geodesic segment whose length is the distance between
its endpoints is called a minimal geodesic.

Unlike the local situation in Theorem 7.2, we have seen that on an
arbitrary manifold there may be points p, g which are not connected by a
geodesic at all, for example, R? with the origin removed. Moreover, even if
there exist such minimal geodesics joining p, g as there do on the sphere,
they need not be unique—for example, there are an infinite number of
minimal geodesics joining the north and south poles. The question of uni-
queness is not simple and we will not go into it here. For details, as well as
many additional theorems on geodesics, the reader should consult
Milnor [1].

However, the existence question as well as some other questions we have
raised are answered in a beautiful theorem of Hopf and Rinow [1]. Before
stating this theorem we remember that each geodesic and geodesic segment
is contained in a maximal geodesic, that is, a geodesic p(t) such that p(t) is
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defined for a < t < b and not for any larger interval of values. Ifa = — o0
and b = + o, we say that the geodesic can be extended indefinitely. This is
always true of a closed geodesic (a geodesic which is the image of a circle, for
example, a great circle on §2). If every geodesic from pe M can be extended
indefinitely, then the domain 2 of Exp contains all of T,(M) and conversely.

(7.7) Theorem (Hopf and Rinow) Let M be a connected Riemannian
manifold. Then the following two properties are equivalent :

(t) Any geodesic segment can be extended indefinitely.
(ii) With the metric d(p, q), M is a complete metric space.

The proof will be based on a lemma. Assume any geodesic segment
t— p(t), a <t < b, can be extended to a maximal geodesic curve t — p(t),
defined for —o0 <t < +00. In order to see that M is complete (every
Cauchy sequence converges), it is sufficient to show that every closed and
bounded set is compact; and to prove this we need the following lemma,
which is of interest in itself. The proof is modeled on that of Milnor [1].

(78) Lemma If M has the property that every geodesic from some point
pE M can be extended indefinitely, then any point q of M can be joined to p by
a minimal geodesic [whose length is necessarily d(p, q)].

Proof Let q be an arbitrary point of M and let a = d(p, q). Any geodesic
from p may be written p(s) = Exp sX , with X, a unit tangent vector at p and
s arclength measured from p = p(0). We must show that for some X, with
|X,|| =1, p(a) = Exp aX, = g, so that s— Exp sX, 0 < s < a, is the mini-
mal geodesic segment. We will use the following fact, which is also of some
interest.

(7.9) Suppose that py, py, ..., p, are points of M and that
(*) d(po . p1) + d(py, p2) + +++ + d(py- 1, Pa) = d(po , Pa)-

If a piecewise differentiable curve contains p;, piyy, ---, pi+, and has length
equal to d(p;, p; () + =+ + d(p; 1+, -1, Pi+,), then it is a geodesic segment from
p: to p;«,. Conversely, if pg, ..., p, lie on a minimal geodesic segment, in that
order, then () holds for them.

It is easily seen that it is enough to verify this for r = 2. The curve C from
pi 10 piyy to p;y, has length L = d(p;, piy ) + d(p;+ 1, Pi+2)- By the triangle
inequality L > d(p;. p;+,)- If equality holds, C is a (minimizing) geodesic
segment from p; to p;,, as required (Corollary 7.5). But this must be the
case; otherwise we have

d(p; . piv1) + d(pis 1 Piv2) > dlp;s Piss)



344 VIl DIFFERENTIATION ON RIEMANNIAN MANIFOLDS

by the triangle inequality and then substituting in (x) we have

d(pO’pl) + d(pi’pi+2) + 0+ d(pn—l’ pn) < d(pO ’pn)’

which contradicts the triangle inequality. Finally, the last statement follows
immediately from the fact that any subsegment of a minimal geodesic seg-
ment is also minimal.

To return to the proof of Lemma 7.8, using Theorem 6.9 we suppose
4 > 0 to be chosen so that S; = {p’|d(p, p') = 8} is a geodesic sphere in
some normal neighborhood of p, sufficiently small to ensure that each radial
geodesic from p to S; is minimal. Then since S, is compact, there is a py € S;
satisfying

d(po , q) = inf d(p', q).

PESs

Let X, be the unit vector at p such that p, = Exp 6X,. We must have

d(p, po) + d(po , q) = d(p, q),

otherwise there is a piecewise differentiable curve joining p to g whose length
is less than d(p, py) + d(po, q) = & + d(po, q). Since it must intersect S, at
some point p’ and its length from p to p’ can be no less than §, we have
d(p', q) < d(po, q) contrary to our choice of p,. We now consider all s,
0 < 5'< g, such that the geodesic segment s+ Exp sX,, 0 < s < s/, is mini-
mizing and such that

d(p, Exps'X,) + dExp s'X,, q) = d(p, q).

By the continuity of the conditions the collection of all such s’ forms a closed
interval 0 < s < b. If b = g, then Exp aX, = g, which proves the lemma.
Suppose b < a; let p; = Exp bX ,, then d(p, p;) + d(py, q) = d(p, g) and we
may obtain a contradiction by repeating the arguments above as follows. Let
S,,n > 0, be a small geodesic sphere (with radial geodesics minimizing) in a
normal neighborhood of p, = Exp bX, and choose a point p, on §, such
that

d(p,,q) = inf d(p", q).
P €Sy

Then, as before d(p,, p,) + d(p,, q) = d(p,, q) and therefore

d(p, p1) + d(ps, p2) + d(p2 ., q) = d(p, p,) + d(py, q) = d(p. q).

By (7.9) the geodesic p(s) = Exp sX , from p to p, together with the (radial)
geodesic in S, from p, to p, is a single (minimizing) geodesic segment from p
to p, of length d(p, p,) > b, which contradicts the definition of b. Therefore
b = a and the lemma follows. |
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Proof of Theorem 7.7 We now turn to the proof of the theorem. We
show first that (i) implies (ii). Let K be a closed and bounded subset of M.
We will show that K is compact. Suppose pe K and a = sup, ¢ d(p, q); ais
finite since K is bounded. By Lemma 7.8, for any g € K there is a minimizing
geodesic from p to q; its length is d(p, q) which must be no greater than a. It
follows that K = Exp, B,, where B, = {Y,|]Y,| < a}, the closed ball of
radius ¢ in T,. Since B, is compact and Exp is continuous, Exp, B, is
compact. K is a closed subset of Exp, B,, so it must be compact. This
completes the proof that M is a complete metric space according to
Exercise 6.

(7.10) Remark Any manifold M having property (i) has the property that
the domain 2 of the exponential function is all of T(M), that is, that the
vector field Z of Theorem 7.1 is complete. Actually, in proving that (i) im-
plies (ii), we used only the weaker hypothesis of the lemma: every geodesic
from some point p € M can be extended indefinitely, that is, 2 > T,(M) for
some pe M. It was not necessary to assume p € K, for if K is bounded, then
for any pe M the distances d(p, q) are bounded for all g€ K.

Next we show that (ii) implies (i), that is, we suppose that every Cauchy
sequence on M converges and show that this implies the extendability of
geodesics. Suppose to the contrary that there is a geodesic ray, p(t),
0 < t <ty which cannot be extended to t = 7y; we may assume, changing
parameter if necessary, that t is arclength. Let {t,} be an increasing sequence
of parameter values with lim, _, ., t, = to. Denoting by p, the points p(t,), we
have d(p,. p) < |t, — t,,| since the right-hand side is the length of a curve
(the geodesic) from p, to p,,. Thus {p,} is a Cauchy sequence and we denote
its limit by ¢, ¢ = lim,_, p, = lim, ., p(t,). Now we let B be a neighbor-
hood of ¢, and ¢ > 0 be so chosen that each pair of points p, p’ of B are
joined by a unique geodesic of length less than e. Of course this geodesic is
minimizing, or equivalently its length is d(p, p’). We let N be an integer
which is large enough so that for n,m > N we have d(p,, p,,) < ¢ and
d(p..q) <eand p,, p,€B.

Consider n > N fixed and suppose m > n; then we have

d(Py s Pm) + d(Pm > q) = (tw — t,) + d(Pm » q).

Since t,, — t, is the length of our geodesic from p, to p,, and is less than g, this
segment of the geodesic is minimal. Now let m — oo and by continuity we
have d(p,.q) = t, — t, for n > N. Applying this to m > n, we have for all
m>n>N,

d(pn’pm)+d(pm’q)=lm_ln+lO_tm=t0_tn=d(pn’q)'
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Now choosing a fixed m > n, we see that the unique geodesic segment from
p, to p,, of length d(p,, p,,) together with the unique geodesic segment from
p. to g of length d(p, , q) has length equal to the distance d(p,, q) and there-
fore is a single (unbroken) geodesic from p, to g. However, it coincides with
the given geodesic p(t) for t, < t < t,,, that is, from p, to p,,; thus it is an
extension of this to a geodesic segment from p to g. This shows that p(t) can
be extended to t = ¢;.

We note that it is immediate that a geodesic segment p(t), 0 < t < 1,
can be extended beyond its endpoints; this follows at once from the fun-
damental existence theorems. Thus any geodesic on a complete manifold can
be extended indefinitely, Exp,, is defined on all of T,(M) for every p, and Exp
has the entire tangent bundle T(M) as its domain, that is, 2 = T(M). |

The following corollary depends on the fact that a compact metric space
is complete.

(7.11) Corollary If a connected Riemannian manifold M is compact, then
any pair of points p, g€ M may be joined by a geodesic whose length is d(p, q).

(7.12) Corollary Let F,, F;: M — M be isometries of a complete, con-
nected Riemannian manifold. Suppose that F,(p) = F,(p) and F,, = F,, on
T,(M) for some pe M. Then F, = F,.

Proof Let ge M and let p(s), 0 < s < I, be a geodesic from p to g,
p = p(0) and g = p(l). Then F;(p(s)) is a geodesic from Fi(p) to Fi(g),
i=1,2. Since F(p) = F,(p) and F,,(p(0)) = F,, (p(0))these geodesics
coincide and

Fi(q) = Fl(P(l)) = Fz(P(l)) = F,(q). |

Exercises

1. Let M be a complete Riemannian manifold and let g€ M. Identify T,(M)
with R", n = dim M, as a manifold by choosing an orthonormal basis at
g. Then Exp,: T,(M) - M is a C* mapping of R" onto M with 0 map-
ping to q. Suppose M = §", the unit sphere with the usual metric. Prove
that rank Exp, < nfor X if [ X | = kn, k = £ 1, £2,....

2. Show that on a Riemannian manifold M which has R" as a Riemannian
covering (r is a local isometry), the rank of Exp, is n for all ge M.

3. Let M be a complete Riemannian manifold and n: M — M a covering.
Show that there is a unique Riemannian metric on M such that 7 is a
local isometry and show that with this metric M is complete.

4. Give a simple example of a Riemannian manifold diffeomorphic to R"
but such that no geodesic can be extended indefinitely.
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5. Show by example that there is a Riemannian manifold on which dist-
ance between points is bounded, that is, d(p, q) < a, a > 0 fixed, but on
which there is a geodesic of infinite length which does not intersect itself.

6. Show that if M is a metric space in which every bounded set is relatively
compact (has compact closure), then M is complete.

8 Symmetric Riemannian Manifolds

(8.1) Definition A connected Riemannian manifold M is said to be sym-
metric if to each pe M there is associated an isometry g,: M — M which is
(i) involutive (g} is the identity), and (ii) has p as an isolated fixed point, that
is, there is a neighborhood U of p in which p is the only fixed point of g,.

As examples we cite Euclidean n-space, in which case g, is reflection in p;
and S”, the unit sphere in R"*!, with the metric induced by R"*'. In the case
of the sphere, g, is again reflection in p—for each g, o,(q) = ¢', where ¢ and
q' are equidistant from p on a geodesic (great circle) through p (Fig. VIL13).

ape (Xp) 2= Xp

Figure VIL13

In the case of §” we note that a,(p) = p and g,(p*) = p* p* denoting the
point antipodal to p. Thus, in general, g, may have other fixed points than p.
Note also that the first example is a noncompact manifold and that the
second is compact. A symmetric space, as we shall see, is always complete.

(8.2) Lemma If pe M, a Riemannian manifold, and a, is an involutive
isometry with p as isolated fixed point, then ¢,(X,)= —X, and
o,(Exp X,) = Exp(—~X,) for all X e T,(M).
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Proof Since o is the identity, the same holds for (g, )* on T,(M). This
means that the eigenvalues of o,, on T,(M) are + 1. However, if +1 is an
eigenvalue, then there exists a vector X, # O such thatg,,(X,) = X,. For
any isometry F: M - M, F - Exp = Exp - F since geodesics are preserved.
This means that a,(Exp tX) = Exp tX so the geodesic through p with initial
direction X, is pointwise fixed. This means that p is not an isolated fixed
point of ¢,. Thus +1 is not an eigenvalue and o,, = —I, I being the
identity. Since o is an isometry, o ,(Exp X,) = Exp 7,,(X,) = Exp(—X ).
This means that g, takes each geodesic through p onto itself with direction
reversed, exactly as in the two examples we have cited. |

The following corollary is an immediate consequence of Corollary 7.12
and the lemma:

(8.3) Corollary Given any complete Riemannian manifold M and point
p€ M, there can be at most one involutive isometry o, with p as isolated fixed
point.

(84) Theorem A symmetric Riemannian manifold M is necessarily
complete, and if p, g€ M, then there is an isometry a,—corresponding to some
r e M—such that a,(p) = q.

Proof First we show that M is complete by proving that every geodesic
can be extended to infinite length. Suppose p(s) is a geodesic ray with s as
arclength, which is defined for 0 < s < b. We will show that it can be ex-
tended to a length [ > b. Let 5, = 2b, and let 6, be the symmetry in p(s,).
It takes the geodesic p(s) to another geodesic through p(s,) whose tangent
vector at p(s,) is —(dp/ds),, and whose length is the same as that of p(s).
Since it has a common tangent with p(s) at p(s,), it coincides with p(s) on the
interval 4§ < s < b and thus extends it to a length > 2b, which proves the
statement (Fig. VIL.14).

Using this it follows easily that given any p, g € M there is an isometry of
M taking p to g. In fact, let r be the midpoint of a geodesic from p to q. Then

the isometry o, takes this geodesic onto itself and carries p to g. |
plsp) 2
a,(p(0)
0, (7)
210)

Figure VIL14



8 SYMMETRIC RIEMANNIAN MANIFOLDS 349

We remark here that it is easy to verify that the isometries of a Rieman-
nian manifold M form a group I(M); it is a subgroup of the group of all
diffeomorphisms of M. A classical theorem due to Myers and Steenrod [1]
asserts that it is a Lie group and acts differentiably on M. According to the
theorem just proved it is also transitive when M is a symmetric space.

Before developing further the properties of symmetric spaces we prove a
theorem which gives a rich collection of examples.

(8.5) Theorem Every compact connected Lie group G is a symmetric space
with respect to the bi-invariant metric.

Proof Let y: G - G denote the diffecomorphism which takes each ele-
ment to its inverse, ¥(x) = x~'. This map is clearly involutive and in fact it is
an isometry of G with e, the identity, as isolated fixed point. To establish this
we recall that to each X, e T,(G) corresponds a uniquely determined one-
parameter subgroup ¢ — g(t) with g(0) = X, (Section 1V.6). Since y(g(1)) =
g(—1), by the chain rule we obtain

. d .
ba(X) = ¥, 60) = G wlat) = —o0) = ~X..
t=
This means that {,, = — I, which is an orthogonal linear transformation (or
isometry) of any inner product on T,(G). Let ae G be arbitrary and denote
left and right translations by any ge G by L, and R, respectively. We may
write

Y)=x""=(a""x)""a7! = Rooi oY o Ly-u(x),
Hence y,,: T,(G) = T, (G) may be written

'/’ta = (Ra-l*)e N '/’*e ° (La-l*)a s

which is a composition of three linear mappings each of which is an isometry
of the inner product determined by the bi-invariant metric (R,-, and L,
induce isometries on every tangent space and y,, is an isometry as shown
above). It follows that y: G — G is an isometry. If we consider a normal
neighborhood of e (as in Definition 6.7 with g = ¢), then by Lemma 8.2 ¢
is given in local coordinates by reflection in the origin, and hence e is an
isolated fixed point.

Now let ge G. We define the isometry a,: G — G which has g as an
isolated fixed point by g, = L, R, y, that is, g (x) = gx~'g. It is an
isometry since R,, L,, and y are isometries, and it is easy to check that it is
involutive and has g as isolated fixed point. |

(8.6) Example Let G = SO(n) be the group of n x northogonal matrices
of determinant + 1. According to Example 1V.6.7, the tangent space T,(G),
e = I, the n x nidentity matrix, may be identified with the skew symmetric
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matrices A = (a;;) = — A’ in the sense that X, = >, ; a,;(0/0x;;) is tangent at
I to SO(n) considered as a submanifold of Gi(n, R) = R™. The one-
parameter subgroups are of the form Z(t) = ¢'“. In this case we may com-
pute Ad B: T,(G) — T,(G) as follows. First one verifies from the definition of
e'4 that

Be'AB~ ! = tB4B-!

(compare Exercise 1V.6.6). Since Ad(B) acting on T(G) is just the linear map
of the tangent space induced by the mapping Z — BZB~ ! on SO(n), we see
that Ad(B) takes the component matrix 4 = (a;;) of X, to BAB™'. Now
define on T(G) an inner product (X, Y,) for X,=7Y a;(@/0x;)
Y, = Z ¢;j(0/0x;;) by

(X ¥) =t AC= Y aye;.

i, j=

It is clearly bilinear and symmetric; moreover, since
(Xe, Xe) = tr AlA = Z a,-ja,-_,- = Zaizj,
ij
it is positive definite. Finally for Be SO(n)

(Ad(B)X, , Ad(B)Y,) = tr((BAB"~ 'YBCB~ 1)
= tr(BACB™!) = tr AC = (X,, Y.).

This means that this inner product determines a bi-invariant Riemannian
metric on G (Lemma V1.3.4). By Theorem 8.5, G is a symmetric space with
this Riemannian metric. A similar procedure may be employed to obtain the
bi-invariant Riemannian metric for other compact matrix groups.

We now develop the general properties of symmetric spaces somewhat
further. Let M be any symmetric Riemannian manifold and p(z),
— <t < o, be any geodesic on M. The symmetry o, associated with
any point of this geodesic maps the geodesic onto itself and reverses its sense.
If ¢ is a fixed real number, then we denote by 7, the following composition of
two such isometries, T, = 0, © 0 p2,- Since 7, maps the geodesic onto itself
and preserves its sense, its restriction to the geodesic must be of the form
1.(p(t)) = p(t + constant). In fact, since 7.(p(0)) = 0y ° Tpe2)(P(0)) =
0, P(c) = plc), we see that the constant is ¢ and 7.(p(t)) = p(t + ¢).

Now we consider how z, acts on the tangent space at a point of p(t).
Suppose in fact that X o, € T,0,(M), and define a vector field X, along p(t)
by the formula X i, = 7,, X ). Let X}, be the unique vector field satisfy-
ing X',0, = X 0, Which is constant along the geodesic p(t). We wish to show
that these two vector fields coincide. Now for any real number t¢, & piq) X p)



8 SYMMETRIC RIEMANNIAN MANIFOLDS 351

is a parallel vector field along p(t) since o, is an isometry. On the other
hand, 6,4, X 00 = — X Since p(to) is the fixed point of the symmetry.
Because — X, is also a constant vector field along p(¢) and agrees with the
field o, X »s at one point, it must agree everywhere. Applying this argu-
ment twice we see that 1., X, = X,,., for all ¢ and each constant c.
Letting t = 0 and ¢ = ¢ proves our assertion. We have proved the following

theorem.

(8.7) Theorem Let p(t), —c0 < t < 00, be a geodesic of a symmetric mani-
Jold M and <, the associated isometry (defined above) for each real number c.
Then . (p(t)) = p(t +¢). If X,o is any element of T,o (M), then
X py = Tux X o) is the associated parallel (constant) vector field along p(t),
that is, as t varies ©,,: T,0(M) = T, (M) is the parallel translation along the
geodesic.

(8.8) Remark Note that if p, = p(c,) and p, = p(c,) are any two points
of a geodesic p(t)) —oo <t < oo, then by the same argument
6,,° 6, (p(t)) = p(t + 2(c; — ¢,))and (o, - 6,,), maps any parallel vector
field along p(t) to a parallel vector field.

Theorem 8.7 will be used to prove a fact about compact Lie groups
which is not at all obvious; it is given as a corollary to the following theor-
em. [It is because of this theorem that the notation Exp tX is used for
geodesics in Riemannian manifolds.]

(89) Theorem Let M = G, a compact, connected Lie group with the bi-
invariant metric and let X, e T,(G). Then the unique geodesic p(t) with
p(0) = e and p(0) = X, is precisely the one-parameter subgroup determined by
X,. All other geodesics are left (or right) cosets of these one-parameter
subgroups.

Proof Given a geodesic p(t) with p(0) = e, we consider the isometry
0 (5T 0y Of G. By the remark above we see that this maps the geodesic onto
itself with p(t) being mapped to p(t + 2s). But using our formula for 6, on G
together with p(0) = e, we have

Gp(s)ap(ﬂ)p(t) = p(s)p(t)p(s)-
[The right-hand side is the group product of p(s), p(t), and p(s).] Thus for all
t, s,
p(s)p(t)p(s) = plt + 2s).
Using various ¢ and mathematical induction, this gives for arbitrary s and
any integer n

(p(s))" = plns)
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In particular, if a, b, ¢, d are integers with bd + 0, we have

E+E _ L ad+bc— i ad Lbc_ ‘_1 ' E
PWo™d) = Pl = Ploa) P\ba) TP\p) Pla)
Thus for any rational numbers we have

plry + r2) = p(ry)p(ra)-

Since p(t) depends continuously on ¢t we see that this holds for all real
numbers, and thus any geodesic with p(0) = e is a one-parameter subgroup.
However, since there is exactly one geodesic and one such subgroup with
given p(0) = X,, we see that the first sentence of the theorem is true. The
second follows at once if we use the fact that either left or right translations
are isometries, and hence preserve geodesics, together with the fact that a
geodesic through any g e G is uniquely determined (with its parametriza-
tion) by its tangent vector at g. |

(8.10) Corollary If G is a compact Lie group, then any ge G lies on a
one-parameter subgroup.

Proof With the bi-invariant Riemannian metric G is a symmetric
Riemannian manifold. Moreover it is complete and hence any pair of points
can be joined by a geodesic. If g € G, then the geodesic segment from e to g is
on a one-parameter subgroup according to the theorem. |

(8.11) Example If G = SO(n), then the geodesics, relative to the bi-
invariant metric of Example 8.6 are the curves p(t) = ¢'? (4 any skew sym-
metric matrix) and their cosets.

In the case of a group G with bi-invariant metric we can now establish
a relation between the Lie derivative and the Riemannian differentiation V
of vector fields, which we shall need in the next chapter.

(8.12) Theorem If X and Y are left-invariant vector fields on G and V is as
above, then we have

ViY =4X, Y] =4LyY.

Proof Suppose that Z is any left-invariant vector field. Then we will
compute V, Z. If g(t) is the uniquely determined one-parameter group with
g0)=e and §(0)=Z,, then for any vector field Y we have
V.. Y = (DY,,/dt),-o. However, Z,, = dg/dt, and ¢(t) is a geodesic. Thus
DZ,/dt = (D/dt)(dg/dt) = 0 and V, Z = 0. Since Z and the metric are
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left-invariant, it follows that V,Z =0 everywhere on G. Thus
Vy+v{X + Y) =0, from which we conclude that

VY +V, X =0.

On the other hand, we know that for any pair of vector fields a Riemannian
connection satisfies the identity Vy Y — V, X = [X, Y]. Combining these
two identities gives the lemma. |

Exercises

1. LetT:V — V be a linear transformation on a vector space over R which
is involutive, that is, T2 is the identity. Show that there is a basis of V
such that the matrix of T is diagonal with diagonal elements equal to
+ 1.

2. The unitary group U(n) consists of all complex matrices 4 which satisfy
the relation AA4* = I, A* = 'A, the transpose conjugate. Show that U(n)
can be considered as a compact subgroup of Gl(2n, R) and determine a
bi-invariant Riemannian metric by giving it explicitly on T, (U(n)) as in
Example 8.6.

3. Let G be a compact Lie group with a bi-invariant Riemannian metric
and let X,, Y,, Z, be vectors at the identity. Compute R(X, Y)- Z by
extending them to left-invariant vector fields on G and using
Theorem 8.12.

9 Some Examples

Except for Euclidean space itself, the examples we have given of symme-
tric spaces have been compact manifolds. We will consider a further exam-
ple, which is not compact. To do so we must begin, in a rudimentary way at
least, to develop some additional theory which will show the path toward
further examples—in fact toward all examples of symmetric spaces.

As we have noted, symmetric spaces are acted upon transitively by their
group of isometries. It is natural, therefore, to ask under what circumstances
can one be sure that a manifold M, acted on transitively by a Lie group G,
can be endowed with a Riemannian metric relative to which the transforma-
tions of M by elements of G are isometries. A sufficient condition is given by
the following theorem.

(9.1) Theorem Let G be a Lie group acting transitively on a manifold M.
Then M has a Riemannian metric such that the transformation determined by
each element of G is an isometry if the isotropy group H of a point pe M is a
connected compact (Lie) subgroup of G.



354 VIl DIFFERENTIATION ON RIEMANNIAN MANIFOLDS

Proof We let 8: G x M — M denote the action, and for each ge G,
6, M - M denotes the diffeomorphic transformation of M onto itself
determined by g, 6,(g) = 6(g, q). If g€ H, then 6,(p) = p so that it induces a
linear mapping 6,,: T,(M) - T,(M). Since 0, -6,,=80,,,, we have
0,00 © 0550 = 0,,4,4 50 that g — 6, is a homomorphism of H into the group
of linear transformations on T,(M). From the fact that 6 is C* it is easily
verified that this is a C® homomorphism, that is, a representation of H on
T,(M). Referring to Section VL6 and, in particular, Theorem VIL.3.9, we see
that since H is compact and connected, there must be an invariant inner
product, which we shall denote by ®,(X ,, Y,) on T,(M). Now if g € M, there
is a ge G such that 6,(q) = p. We define @ (X, Y,) by

D (X,, V) =00 (X,,Y,)=D,0,,X,,0,,7,)

q° g% “q

If 6,,(q) = p also, then gg; ' € H. Hence 6}, -, ®, = @, and
03,0, = 03,05, .0, = 03, - 6}, - 630, = 630,.

g1 991
It follows that @, is well defined; it is positive definite since 6, is a
diffeomorphism; and it is easily verified that ® is C* and G-invariant on M.
Thus ® defines a Riemannian metric on M with respect to which each 6, is
an isometry of M. This completes the proof. |

In the following theorem we will continue this notation, and suppose as
above that H is compact and connected and moreover that the action of G
on M is effective. Then we are able to impose an additional condition which
will be sufficient to ensure that M, with a metric which makes G a group of
isometries, is a symmetric space. This will open the way to further examples;
of which we give only one in detail.

(9.2) Theorem With G, H, p and M as above suppose that a: G — G is an
involutive automorphism of G whose fixed set is H. Then the correspondence
&(6(g. p)) = 6(a(g), p) defines an involutive isometry of M onto M with p as an
isolated fixed point.

Proof First we check that & actually defines a mapping of M onto itself.
Let g be an arbitrary point of M. By transitivity there is at least one ge G
such that 0(g, p) = ¢. If ¢’ is a second such element, then g’ = ghand a(g’) =
a(g)a(h) = a(g)h. Hence

4(0(g’, p)) = 6(alg'). p) = O(a(g)h, p) = B(x(g), B(h, p)) = 6(ax(g). p)

as required. Therefore & is defined independently of any choices. Since &2 is
the identity, & is onto. Let us assume for the moment that we have proved
that & is C*, has p as an isolated fixed point, and that &,: T,(M) - T,(M)is
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—1, thatis, @,(X,) = — X ,. Then, clearly, &, preserves the inner product ®,
on T(M).Ifge M, g + p, then choose g € G such that 6,(p) = g. Then

&(q) = 0((g), p) = O,;)(6,-1(a))-

Hence a,,: T(M) — T, (M) is given by &,, = 0, ° 6,-1,, both of which
are isometries on the tangent spaces. Thus subject to checking the other
properties, & is an isometry.

In order to verify the remaining properties we need to use the fact that
the natural identification of M with G/H given by the mapping F:G/H
— M, F(gH) = 0(g, p), is C* and commutes with left translation on G/H.
Thus we use Section 1V.9, which was an application of Frobenius’ Theorem
[although, in fact, in the examples given below the facts we need here can be
checked directly without relying on this general procedure]. First we recall
that if gH € G/H, then there is a C* section § defined on a neighborhood V
of gH,S: V - G withn - S = id (n: G - G/H is the natural projection and
id the identity on V). Using the diffeomorphism F, obtain a C® section
S=S-F'onV= F(V) into G which means a C* mapping such that
8(S(q), p) = g for all qe V. Every point of M is contained in the domain ¥ of
such a section, and & | V is given by

#(q) = 3(6(5(q). p)) = 0(x(5(a)). p)

which is a composition of C* mappings. It follows that & is C*.

Finally we wish to show that & has p as an isolated fixed point and that
&,, = —I. We use facts demonstrated in Section V.6 concerning the expon-
ential mapping (Definition IV.6.8)

exp: T,(G) > G

(not to be confused with Exp, the exponential mapping of Riemannian
manifolds). Given any X e T,(G), then exp tX, = g(t) is the one-parameter
subgroup of G with g(0) = X,; and exp X, = g(1). By Theorem 1V.6.10,
there is an ¢ > 0 such that an ¢-ball B}(0) = T,(M) is mapped diffeomor-
phically onto a neighborhood U of e, the identity of G. Since a: G » G is a
Lie group automorphism with «? the identity, a,: T,(G) — T,(G) splits T,(G)
into the direct sum of two subspaces V' * of characteristic vectors belonging
to the characteristic values +1 of a,. Since afexp tX,) = exp to,(X,),
0 (X,)=X, if and only if X,eT(H) Thus T(G)=V @V,
V' =T/(H). n:G—-G/H defines n,: T,(G)— T,,(G/H) with kern, =
T,(H) and =, |V~ an isomorphism onto. It follows that m - exp maps a
neighborhood W of V™ n B2(0) = T,(G)diffeomorphically onto a neighbor-
hood of H in G/H. Composing with F: G/H — M gives a diffeomorphism
onto an open set around p. Thus for X ,e W, the mapping X, — 6(exp X,, p)
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is a diffeomorphism. Moreover a&(0(exp X, p)) = 6(a(exp X.), p) =
6(exp(— X ), p). It follows that p is the only fixed point of & in this neighbor-
hood and that &,: T,(M) - T,(M)is —I; each vector is taken to its negative.
Combining this with what we have already established, the proof is
complete. ]

The following corollary is immediate, since each 0, M - M is an
isometry.

(9.3) Corollary Under the assumptions of the theorem M is a symmetric
space with involutive isometries 6, = & and 6, = 0, & > 0,-, for g = 6(g, p).

Much of the above is to enable us to consider somewhat more com-
plicated examples of Riemannian manifolds, of which the following is a
sample.

(9.4) Example Let M be the collection of all n x n, symmetric, positive
definite, real matrices of determinant + 1, and let G = Sl(n, R) be then x n
matrices of determinant + 1. Then G acts on M as follows:

0(g, s) = gsg,

where g’ denotes the transpose of g € Si(n, R). We will let p, the base point of
the theorems above be I, the n x n identity. We then note that H = SO(n)
since

H = {ge Sl(n, R)| 0(g. 1) = I}

is given by the equivalent condition gg’ = I, that is, ge SO(n), the group of
orthogonal n x n matrices. Hence M is canonically identified with
Si(n, R)/SO(n).

The automorphism o which we consider is defined by a(g) = (g™ ')’, the
transpose of the inverse of g e Si(n, R). Note that a(g) = g if and only if
g€ SO(n). Thus all of the conditions of the theorem are met if Si(n, R) is
transitive on M. However, any positive definite, symmetric matrix ¢ may be
written in the form g = gg' = glg’ where g € Sl(n, R) by standard theorems
of linear algebra. From the corollary above M is a symmetric space relative
to an Si(n, R) invariant metric. [Note that &@: M - M can be seen, quite
directly, to be C* and to have the identity p = I as its only fixed point on M.
In fact, using g = sls’, we see that

ag)=a0(s,1)=0(s"', )=s""'s"=(ss)"'=¢q .

Thus &: M — M simply takes each positive definite symmetric matrix to its
inverse. The only such matrix which is equal to its own inverse is the
identity 1.]
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(9.5) Example A variant on the above. which is a particularly important
case, is the following. Let M = !(x. v)e R* |y > 0}, the upper half-plane.
[Note that it is covered by a single coordinate neighborhood.] We define an
action of SI(2. R) on M as follows. We identify R? with C, the complex
numbers. in the usual way. Let - = x4+ ivand let w=u+ iv,i = \F 1.
When g € SI(2. R), that is,

h

g=(“ ) ad — be = +1,
¢ d

we then define w = 0(g. z) = (az + b)/(cz + d). 1t is not difficult to verify

directly that if y = Im(z) > 0, then ¢ = Im(w) > 0 and that ()(g,. My, - :)) =

0(g, y». ). Moreover the Riemannian metric defined (in the local coordin-

ates (x, y)—or = = x + iy—which cover M) by the matrix of components

1 1
= 0 0
2 2
v Im(z

(.‘Iij) ’ I = ( )) I
0 s 0 —

¥ (Im(z))?

is invariant under the action of S/(2, R); thus this group acts on M as a
group of isometries of this metric (Exercise 4).

If we let the complex number i which corresponds to (0, 1) in R?, play the
role of p in the general discussion above {Theorems 9.1 and 9.2), we note the
following two facts. First, the action is transitive. Given any z, = u + vi
with r > 0, then an element of G = S/(2, R) taking i to = is

u

0 -
Vi
giving, in general,
.- 1
()(,‘I- :) = \/L_‘+_(“_V'2 = pz + I;

0 + (1//v)

Ny, i) = u+ir.

and. when - = i.

Second. the isotropy group of i consists of all g = (¢ §) e Sl(n. R) such
that i = (ai + b)/(ci + d). However, this means that ai + b= —¢ + di or
a=d and b= —c. Since in addition ad — bc = +1, we have also

a? + b* = 1; hence
_ cosf sinf
9=\ _sino coso
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and H = SO(2). It follows from our general theory in Section 1V.9, that the
upper half-plane with this geometry and the 2 x 2 positive definite matrices
of Example 9.4 are equivalent both as manifolds and as homogeneous spaces
with S/(2, R)/SO(2). This shows that the identification of a homogeneous
space with a coset space of a Lie group as a prototype is a deeper and more
interesting result than it might appear to be. In many cases rather concretely
given geometric spaces can best be studied in the context of coset spaces of
Lie groups.

The example we have been considering, the upper half-plane, is a realiza-
tion (due to Poincaré) of the space of non-Euclidean geometry discovered by
Bolyai, Lobachevskii, and Gauss. Its geometry can be studied using results
of this chapter. For example, we have earlier asked the reader (Exercise 3.3)
to check that the lines x = constant are geodesics in this geometry. Now we
propose another problem: Show that the upper halves of circles with centers
on the x-axis are—when suitably parametrized—also geodesics. This is done
by showing that each such circle is an image by one of the isometries of G of
a vertical line. Moreover, since through a point z there is such a circle
tangent to any direction, these must be all of the geodesics. Using this fact it
1s easy to see that Euclid’s postulate of parallels does not hold in this
geometry: There are more than one, in fact an infinite number of lines
through a point z not on the line L which are parallel to L. that is, do not
intersect L at any point of the upper half-plane M. The possibilities are
shown in Fig. VIL.15, where L and L) indicate parallel lines (geodesics)
which bound the infinite collection (faint lines) of lines L parallel to L
through =

is ' '
y axy LI M LZ

d

Figure V118

(9.6) Example As a last example of a symmetric space, we mention the
Grassmann manifold G(k, n) of k-planes through the origin of E". We have
noted in Section IV.9 that this is a homogeneous manifold acted on in a
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natural way by Gl(n, R). It is easy to see that the subgroup SO(n, R) also acts
transitively on the k-planes in R". In fact, a k-plane contains an orthonormal
basis f,, ..., f, which can be completed to an orthonormal, oriented basis
fi,....f, of R". Then there exists an orthogonal transformation of determin-
ant + 1 taking the standard basis ey, ..., e, to this one. Hence the k-plane P,
spanned by e,, ..., e, is carried onto any k-plane P by at least one element of
SO(n, R) acting in the natural way. The isotropy group H of Py is S(O(k) x
O(n — k)). the matrices in SO(n) of the form

A
(0 OB) AeO(k), BeO(n — k), det AdetB = +1.

We shall not pursue this example further except to mention that in this
case a is the automotphism a: x+— gxg~ ' determined by the element

_ _lk 0
9= 0 ln—k
of Gl(n, R); then a(x) = x if and only if xe H.

Many further details on this and other symmetric spaces may be found in
Helgason [1).

Exercises

1. Prove that any positive definite, symmetric n x n matrix P is of the form
P = AA’, where A4 is a nonsingular matrix of determinant + 1. Find all
possible 4 such that P = AA’ for a given P. Show that conversely 44", A
an n X n matrix, is positive definite if 4 is nonsingular.

2. Show that if P is a positive definite symmetric matrixand P = P!, then
P=1

3. Ifa, b, c,d are real, compute the imaginary part of (az + b)/(cz + d)and
show that it has the same sign as Im(z).

4. Prove that SI(2, R), acting as in Example 9.5, leaves the Riemannian
metric given there invariant, that is, each transformation of this type is
an isometry of the upper half-plane. Show that under these isometries
circles with center on the x-axis go into circles of the same type, or
vertical lines.

5. Show that the mapping 4 — e* maps the symmetric n x n matrices onto
the positive definite symmetric matrices and is one-to-one and onto. Use
this to show that curves through I given by P(t) = ¢4, A symmetric,
n x n, allow us to identify 7T,(M), the tangent space at I to the manifold
M of positive definite symmetric matrices of determinant + 1 with the
symmetric n x n matrices of trace zero. (See Example 9.4.)
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6. Using Exercise 5 show that if X, and Y, correspond to symmetric
matrices 4 and B, then (X,, Y;) = tr AB’ defines an inner product on
T,(M) which is invariant under the action of 6, , h e SO(n) and 0, as in
Example 9.4.

7. Verify that « defined in Example 9.6 is an involutive automorphism of
SO(n) leaving fixed the subgroup H.

Notes

The proper generalization of differentiation from Euclidean manifolds to Riemannian
manifolds was difficult to discover and came long aflter the work of Gauss and Riemann. The
notion of paralle!l displacement of vector fields along curves generally attributed to Levi-
Civita [1] furnished the basic idea from which the theory developed. The use of the operator V,
and its axiomatization are much more recent and are due to Koszul [1]. Many of the references
contain a more complete theory of connections and of differentiation on manifolds which does
not depend on a Riemannian metric—and hence is not unique.

The curvature, which is introduced so briefly here, is in some sense the obstacle to differen-
tiating exactly as in Euclidean space, for there parallel displacement of a vector field along a
curve from p to ¢ is independent of the path chosen. In the Riemannian case, however, it is not
the same along every curve. Thus parallel displacement of 7,(M) along a closed curve (loop)at
p yields the identity transformation of T,(M) if we are in Euclidean space, and a linear transfor-
mation related to the curvature operator otherwise.

Once differentiation is successfully generalized, one can begin the study of Riemannian
geometry itsell. We began this with the study of geodesics and, in the next chapter we shall go
on to a brief study of curvature. Of course, we do not dig very deeply; both geodesics and
curvature as well as their interrelations are the basis for a considerable amount of interesting
research. The reader should consult Bishop and Crittenden [1], Kobayashi and Nomizu [1],
Milnor [1], and other books listed in the references for further work and extensive bibliogra-
phies of these topics.



VIII CURVATURE

This chapter continues our brief introduction to Riemannian geometry by defining and
interpreting the concept of curvature. This is the most important invariant of a Riemannian
metric on a manifold and completely determines the local geometry. Its definition requires the
operation of differentiation developed in Chapter VII.

We begin with a brief exposition of the geometry of surfaces in £, that is, two-dimensional
submanifolds imbedded in ordinary Euclidean space; E* comes equipped with a Riemannian
metric and thus induces one on the surface. Using differentiation of vector fields along curves on
the surface M we are able to define a symmetric bilinear form (covariant tensor of order 2) on M
which is related to the shape of the surface, and a corresponding symmetric (self-adjoint)
operator on the tangent spaces 1o M whose trace and determinant are the mean and Gaussian
curvatures. The latter, denoted by K, is of fundamental importance because of the profound
discovery of Gauss that it is unaltered by modifications of the manner in which M is imbedded
so long as lengths of curves (and hence the Riemannian metric) are unaltered. This is not proved
until Section 4: but in Section 3 we deduce the basic symmetry properties of the Riemannian
curvature R(X, Y, Z, W), a covariant tensor of order 4 which was defined in Section VI1.4.
These properties are then used in Section 4 to prove Gauss’s theorem and to determine the
relation of the Gaussian curvature and the Riemannian curvature. This involves the important
idea of sectional curvature in an arbitrary Riemannian manifold, which is defined and discussed
in Section 4, using the various symmetries of R(X, Y, Z, W).

In Section 5 we extend the differentiation process previously defined for vector fields to
arbitrary covariant tensor fields and use it to define the notion of parallel vector fields. We state
(without proof) the local characterization of symmetric spaces as Riemannian manifolds whose

361
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curvature tensor is parallel. This includes, in parficular, the manifolds whose curvature is
constant on all sections, called manifolds of constant curvature. The last section is devoted to a
discussion of these Riemannian manifolds; they include all of the classical geometries:
Euclidean, hyperbolic or non-Euclidean, and elliptic (real projective space).

1 The Geometry of Surfaces in E3

In this section we use our earlier definitions of curvature for curves in
Euclidean three-dimensional space to obtain various quantities which mea-
sure the shape of a surface M near each of its points. All of these will depend
for their definition on the fact that the surface M lies in Euclidean space;
however they will be independent of the coordinates used both on M and on
E®, as will be seen from their definition. Since all properties are local in
character, we suppose that M is an imbedded surface of which we consider
only a portion covered by a single coordinate neighborhood U, ¢ with
W = ¢(U) a connected open subset of R?, the uv-plane. Thus pe U =« M
has coordinates (u(p), v(p)) = @(p); and, taking the Euclidean three-
dimensional space with a fixed Cartesian coordinate system, that is, identify-
ing E* with R3, the imbedding or parameter mapping ¢~ ': W = U < R?is
given by x' = fi(u,v), i = 1,2,3. Let E, = ¢ '(0/0u) and E, = ¢ '(0/0v)
denote the coordinate frames and suppose further that M is orientable and
oriented with U, ¢ giving the orientation. This is an important condition on
M since we are then able to define, without ambiguity, the unit normal vector
field N to M; it is the unique unit vector at each pe M which is orthogonal
to T,(M) = T,(R*) and so chosen that E,, E,, N form a frame at p with the
same orientation as 8/0x", 8/0x?, /0x> the standard orthonormal frame of
R’. Length and orthogonality are defined in terms of the inner product
(X, Y) of Euclidean space which, of course, induces a Riemannian metric on
M by restriction. We shall study the shape of M at pe M by means of the
derivative of N in various directions tangent to M at p.

In fact, using the ideas developed in Sections VII.1 and VII.2, let p(t) be
any differentiable curve on M with p{0) = p and p(0) = X, € T,(M). Re-
stricting N to p(t) gives a vector field N(f) = N, along p(t) which may be
differentiated in R* as a vector field along a space curve, giving a derivative
dN/dt which is itself a vector field along p(t). Applying (VII.1.4c) and using
(N, N) =1, we have

d dN
O—dt(N,N)_Z(dt ,N).
This means that dN/dt is orthogonal to N(t) at each point p(t) and hence is
tangent to M, that is, dN/dt € T, (M) (see Fig. VIIL1).
If we restrict our attention to a fixed point pe M, and consider various
curves through it with p(0) = p and tangent vector X, = p(0), then we have
the following result.



1 THE GEOMETRY OF SURFACES IN E? 363

Figure VIIL1

(1.1) Theorem The vector (dN/dt),-, depends only on X , and not on the
curve p(t) chosen. Let S(X,) = —(dN/dt),—o. Then X, — S(X,) is a linear
map of T,(M) - T,(M).

Proof Let X, = aE,, + bE,, be an arbitrary element of T,(M) written
as a linear combination of the coordinate frame E, ,, E,, of the coordinate
neighborhood U, ¢ containing p. Let

p(e) = (1 (u(t), o(e)). £ 2(ult), o(t)). £2(ult), v(2)))
be any differentiable curve with p(0) = p, p(0) = X, and suppose p(0) has
coordinates uy = u(0) and v, = v(0). Since p(0) = X,, we have p(0) =
ak,, + bE,,, that is, 4(0) = a and £(0) = b. We denote by n'(u, v) the com-
ponents of N on U relative to the standard frames in R*

0
+ n*(u, v) a2t nu, v) -

N—n(uv)a .

6 1
Then, along the curve
p

NG = i) o) 5

(@)~ 2[5, o+ (‘22").,(.,)“04%

3 (on' 0 3 (on 0
= — )+ b
“(i;l (au )tp(p) ox' ) ( Z (av )tp(p) )

This shows that S(X ,) depends linearly on the components of X ,, and since
(dN/dt),~¢ liesin T, (M) we have §: T,(M)— T,(M) is a linear map More-
over only the values (1(0), v(0)), the coordinates of p. and u(0), ©(0), the
components of p(0) = X ,, appear in the formula. Thus (dN/dt), depends on
pand X, and not on the curve used in the calculation. [ |

and
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(1.2) Remark The linear map S: T,(M) — T,(M) given at each pe M does
not depend on the choice of coordinate system U, ¢ on M nor on the
Cartesian coordinate system used in Euclidean space. This is because N is
defined using only the orientations of M and Euclidean space and the inner
product of the Euclidean space; the differentiation depends only on the
existence of parallel orthonormal frames in Euclidean space. Thus N, dN/dt,
and S are independent of coordinates and involve only the geometry of M as
an imbedded surface in Euclidean space. The operator S has been appro-
priately called the shape operator, see O’Neill 1], in whose work the reader
may find a detailed discussion.

By way of examples, suppose M is the xy-plane. Then N = E;, a con-
stant vector, so that S(X,) = 0. On the other hand if M is a sphere of radius
R, the unit normal N at (x!, x2, x*)e M is given by

N = x'a x2d x*0
“Rox TR T Roxd
If we move in any direction tangent to the sphere along a great circle curve,
parametrized by arclength so that |X,| =1, then S(X,)= —dN/ds
= (I/R)X ,. Further examples will be considered presently.

We may use the linear map S: T,(M)— T,(M)—more accurately
denoted S,—which we have determined at each pe M to define a C* covar-
iant tensor field on M, assuming (as we shall henceforth) that M is a C*
submanifold. We follow a standard procedure from linear algebra: Let
S: V- ¥V be a linear operator on a vector space ¥ with inner product
(X, Y). Then the formula

W(X, Y) = (S(X), Y)

defines a bilinear form, or covariant tensor of order 2, on V. The form ¥ is
symmetric if and only if

(8(X), ) = (X, 8(Y))

holds for all X, Ye V; S is then called symmetric or self-adjoint. For the
linear algebra involved the reader is referred to Exercise 9 and to Hoffman
and Kunze [1].

(1.3) Theorem S(X) is a symmetric operator on the tangent space T,(M) for
each pe M and W(X,Y) is a symmetric covariant tensor of order 2. The
components of S and ¥ are C® if M is a C® submanifold.

Proof In order to prove these statements we compute the components
of W(X,Y). As above U,¢ is a coordinate neighborhood and
@~ ': W > U < M is the corresponding parametrization. The components
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of W(X,Y) relative to the coordinate frames E, = ¢, '(0/0u) and
E, = ¢, '(0/0v) are given by the standard formulas below, 1n Wthh we use
ON/éu and N /dv to denote the derivatives of N along the coordinate curves
on M obtained by holding one coordinate fixed and allowing the other to
vary (as parameter along the curve):

W(E, E,) = (S(E,). Ey) = —(%N E,),

W(E,, E;) = (S(E,). E;) = —(‘fj;’ E)

W(E, , E,) = (S(E;) Ey ) = —(561:, El),

ov
If we denote by X = X(u, v) the position vector from 0 to ¢~ *(u, v)

W(E, , Ey) = (S(Ea), Es) = — (aN, EZ).

0 0
X = f o) oy +S200) o+ S0 0) 55

then X, = E, and X, = E, are just the vectors whose components are the
corresponding derivatives of the components of X with respect to u and v,
that is, X, =@X/ou = E, and X,= 0X/0v = E,. Remembering that
(N, X,) =0 = (N, X,) and differentiating, we obtain

ON _ Zfi
_(Eu’x")_(N’X"" Zn,az,

ON o ON
‘(BU’X) (N, Xo) = X s o = (N,X,,U)——(E,XU),

ON Zfi
—(»éu,x) (N, X,,) = ana =

These computations show that the components of 'Y, and hence of S, are C*
if M is. The second of these relations shows that ¥(X, Y) = (Y, X)) so the
tensor ¥ is symmetric. The 2 x 2 matrix (I;) = (W(E;, E})) of its compo-
nents will often be written
I m
n %)

where [ = (N, X,,) = I, m= (N, X,,) = l;; = l5;, and
n< (N, qu) = 122.
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The bilinear form W(X, Y) is called the second fundamental form of the
surface M, and the inner product (X, Y) the first fundamental form. Although
the components of the Riemannian metric (X, Y) are denoted by g;; for the
general Riemannian case, one often uses E, F, G in the classical case of a
surface M in Euclidean space. Thus

g1 = E=(X,, X.)
di12 = F= (XM’XU)= (Xv’Xu) =F=g21’
92 =G =(X,, X,) I

(14) Remark It is a classical theorem of differential geometry (which we
shall not prove) that two surfaces M, and M, in R® are congruent if and only
if they correspond in such fashion that at corresponding points both fun-
damental forms agree (O'Neill 1, p. 297; Stoker [1, p. 138]). Of course the
“only if” part is immediate from the definitions. This fact shows the impor-
tance of these two forms in the geometry of the surface.

The Principal Curvatures at a Point of a Surface

Having once proved that S(X) is a self-adjoint linear operator on 7,(M)
at each pe M, we can use standard theorems of linear algebra, together with
what we have learned of curves in space, to study the geometry of M.

(1.5) Theorem At each pe M the characteristic values of the linear trans-
Jformation S are real numbers k, and k, , k, > k,.Ifk, # k,, then the charac-
teristic vectors belonging to them are orthogonal; if k, = k, = k at p, then
S(X,) = kX, for every vector X, in T,(M). The numbers k, and k, are the
maximum and minimum values of ¥(X ,, X,) = (S(X,), X, ) over all unit vec-
tors X, € T,(M).

Proof These statements are taken directly from theorems of linear alge-
bra, but we shall sketch a proof for the case k; # k,, leaving the case
k, = k, to Exercises 7 and 8. All vectors are elements of T,(M), p fixed, in the
following proof. We suppose k, > k, are the characteristic values, which are
real since S is self-adjoint (Exercise 7), and we let F, F, be characteristic
vectors of unit length corresponding to k,, k,. We have

kl(Fh Fz) = (S(F1)9 Fz) = (Fls S(Fz)) = kz(Fb Fz)a

which implies (F,, F;) = 0 when k; # k,, as assumed. Replacing F, by
—F, if necessary, we may suppose F, F, is an orthonormal basis with the
same orientation as T,(M).

Next we show that k, and k, are the maximum and minimum values of
(S(X,), X, ) for unit vectors X ,. Any unit vector X ,€ T,(M) may be written



1 THE GEOMETRY OF SURFACES IN E? 367

X,=cos0 F, +sin0 F,. Let k(0) denote (S(X,), X,)="¥(X,, X,). Since
F,, F, is an oriented, orthonormal frame, we have

(*) k(0) = k, cos* 6 + k, sin?8  (Euler’s formula).
Differentiating gives

k

30 = 2(k, — ky) sin 0 cos 0.

Hence the extrema of k(f) occur when 0 = 0, 4z, =, or 3x; in other words,
when X, = +F, or +F, so that k, and k, are maximum and minimum
values of (S(X,), X,) as claimed. |

We remark that k, and k, are the maximum and minimum of the expres-
sion W(X,. X,)/(X,, X,) over all X, # 0 in T,(M). The points p at which
k, = k, are called umbilical points of M if k; # 0 and planar points other-
wise. Note that a sphere of radius R consists entirely of umbilical points with
k, = 1/R = k,. Similarly, if M is a plane, every point is planar with
ky =0=k,.

We shall now interpret k(0) = W(X ,, X ,) geometrically. Let p be a point
of M and X, a unit tangent vector at p; X, and N, determine a plane on
which we may take p as origin and X ,, N, as unit vectors along the axes (in
that order), thus giving a coordinate system and orientation on the plane
(see Fig. VIIL.2). The plane intersects M along a curve which, of course, lies

Figure VIII.2

on M and on the plane, and passes through p. It is called the normal section
at p determined by X ,; there is clearly such a curve for each X ,. The vector
N, is the normal to the curve at p and X, is its unit tangent vector. Writing
this curve as p(t) with p(0) = p and with arclength as parameter, we have
p(t) = dp/dr a unit vector for every ¢ so that p(0) = X,. Differentiating
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(N, dp/dt)=0 along the curve, we find that (dN/d:, dp/dt)=
— (N, d?p/dt*) = —k, the curvature of the plane curve p(t) as defined at
the end of Section VILI. In particular, at p=p(0), (dN/dt, X,)=
—(S(X, ), X,). Thus with X, =cos 6 F, + sin 6 F, as above, we find that
k(6) = k is the curvature of the normal section determined by X - For this
reason k(0) is called the normal curvature (of the section determined by
X,); and k, and k,, the maximum and minimum of k(9), are called principal
curvatures at p and the corresponding unit vectors F,, F,, (chosen to con-
form to the orientation) are called principal directions at p.

To study the surface at p we will now choose an xyz-coordinate system in
Euclidean space so that the origin is at p, T,(M) is the xy-plane, and the
principal directions F,,, F,, and unit normal N, at p are 0/0x, 6/dy, 0/0z,
unit vectors on the x-, y-, z-axes, respectively. Let x =, y = v, and
z = f(u, v) be the (parametric) equation of the surface. Then we may identify
the xy- and uv-planes and assume that the parameter mapping ¢~ ' takes
some open set W on the xy-plane onto an open set U on M. The conditions
then imply

f0,00=0 and  f£(0,0) = 0 = £,(0,0).

If we compute the components of the first fundamental form at p, we
obtain E = 1 = G and F = 0. For the second fundamental form, recall that
@ ' (x, y) > (x, y.f (x, y)) is the parametric representation of M and thus
at p, | = (0/0z, fxx 0/02) = frx, m = (0/0z, £, 8/0z) = f,,, and

n = (8/0zf,, 9/0z) = f,, .

Now the fact that we have chosen coordinate axes so that 9/0x and 6/0y
are principal directions tells us thatm = Oand | = k,, n = k,. Thus we have

k(0) = fi cOs?0 + f,, sin?d  at x=0, y=0.
Let f(x, y) be expanded in Taylor series at (0, 0). Then

z=f(xy) = [0, 0)x* + £,,(0, 0)y* + R,

where R contains terms of higher order. Let f, (0, 0) = a and f, (0, 0) = b.
Then we see that the normal sections of z = ax? + by? have the same sec-
tional curvatures at p as does the given surface. Therefore the quadric sur-
faces must give typical examples.

(1.6) Example z = ax? + by?, ab > 0 (see Fig. VIIL.3a). This is an elliptic
paraboloid; the principal curvatures are a and b. If both are positive, it lies
above the xy-plane; if both are negative, it lies below. In either case when &,
and k, have the same sign, the surface is (locally) on one side of T,(M).
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Figure VIIL.3

(L7) Example :z = ax? + by% ab = 0 (see Fig. VIIL.3b). If both are zero,
we have the xy-plane as our surface; if one, say b = 0, then we have a
parabolic cylinder which is above the xy-plane if a > 0.

(1.8) Example :z = ax? + by?, ab < 0 (see Fig. VIIL3c). In this case we
have a hyperbolic paraboloid or saddle surface with the xy-plane tangent at
the saddle. Suppose, for example, 2 = 1 and b = —1. Then by Euler’s for-
mula () k(0) = cos? 6 — sin” 0 and hence k() varies from +1to —1 and is
zero at +n/4, +3n/4. When k, > 0 and k, < 0, then the surface must have
points (locally) on both sides of T,(M).

In these exercises we follow the notation of the text.

Exercises

1. Show that if pe M is not an umbilical or planar point, then there exist
coordinates U, ¢ on a neighborhood of p such that the curves
u = constant and v = constant are tangent at each point to the princi-
pal directions. [These curves are called lines of curvatures.)

2. Let M be the surface obtained by revolving a curve z = f(x) around the
z-axis. Show that the lines of curvature (Exercise 1) are the circles
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z = constant on M and the curves obtained by intersection of M with
planes containing the z-axis. Determine the umbilical points.

Let U, ¢ be coordinates such that u = constant and v = constant are
lines of curvature. Show that in the first fundamental form the compo-
nent F is zero in these coordinates and that the principal curvatures are
I/E and n/G.

A direction X, at pe M such that ¥(X,, X)) = (S(X,). X,) =0 is
called an asymptotic direction. Show by example that there may be two,
one, or no asymptotic directions at a point of M. Find the asymptotic
directions at each point of a hyperboloid of one sheet,
(x%/a®) + (y*/b?) — (2%/c?) = L.

Show that if there are two distinct asymptotic directions at p e M, then
there exist coordinates U, ¢ around p such that u = constant and
v = constant are everywhere tangent to asymptotic directions (they are
asymptotic lines). Find the asymptotic lines for a hyperboloid of one
sheet.

For a surface of the form z = f(x, y) find the components of the first
and second fundamental forms and the directions of the lines of curva-
ture and asymptotic lines.

In the following exercises assume ¥V is a Euclidean vector space with

inner product (v, w) and that S: ¥ — V is a linear operator.

7.

10.

Suppose that S is self-adjoint. Show that its matrix relative to an
orthonormal basis is symmetric. If dim ¥ = 2, use this to show that the
discriminant of its characteristic polynomial is not negative, so that the
characteristic roots are real.

When § is self-adjoint and dim V = 2, show that if u # 0is a character-
istic vector of S, then so is any v orthogonal to u. Prove, using
Exercise 7, that if the discriminant is zero, then S is a scalar multiple of
the identity transformation.

Show that the correspondence S« (S(v),w) is an isomorphism
between the space of linear operators on ¥V and the space of bilinear
forms on V.

Give a precise definition of what would be meant by a C* field of linear
operators on a manifold M. If M is Riemannian, show that the collec-
tion of such fields is isomorphic in a natural way to 7 2(M).

2 The Gaussian and Mean Curvatures of a Surface

The negative of the trace and determinant of any matrix of the linear

transformation S defined in Section 1 are the coefficients of the characteristic
polynomial of § and are important invariants. The determinant is
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K = k| k,, the product of the characteristic values; it is called the Gaussian
curvature of the surface. The trace is k, + k,, the sum of the characteristic
values; and H = }(k, + k) is called the mean curvature of the surface. These
quantities may be computed directly from the components of the fundamen-
tal forms, using any parametrization of the surface. This we now proceed to
do.

(2.1) Theorem

In — m? 1 Gl — 2Fm + En
K=-t2™  ad H=. O —omtH
EG_p M H=, " p

Proof Together,
S(X,)=aX, + bX,, S(X,)=cX, + dX,

give the components of the operator S in terms of the coordinate frames
E, = X, and E, = X, naturally given by the parametrization of M near p,
that is, on the coordinate neighborhood U, ¢. Thus we may write

a b

K= and 2H =a + d.
c d

In terms of X,, X, we have
KN=K(X,x X,)=S8(X,) x S(X,)
and
2H N =2H(X, x X,) = S(X,) x X, + X, x §(X,),

where x denotes the cross product of vectors in three-dimensional
Euclidean space.

Now note that (X, x X,, X, x X,) = | X, x X,[|* = EG — F?and use
the fact that for any vectors X, Y, U, V of R we have the Lagrange identities

(x.U) (X, ¥)
(Y,U) (Y,V)

(X x W x V)=

Then we obtain the formulas for K and H by taking the scalar product on
both sides with X, x X, in each of the equations above. ]

Since the Gaussian curvature K is the product of the principal curvatures
k, and k,, we see that K > 0 at p if both k, and k, are different from zero
and have the same sign. This means that either k; > 0 and k, > 0 and the
curve of each normal section curves toward the normal so that the surface
lies entirely on the same side of the tangent plane as the normal N,
sufficiently near the point p, or k; < 0and k, < 0 and each curve goes away
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from the normal so that the surface (near p) lies entirely on the opposite side
to N,. Equivalently, introducing local coordinates in R? as in Examples
1.6-1.8, K > 0 if and only if the function z = f{x, y) has a strict relative
extremum at the point.

On the other hand, if K < 0, then k, and k, are different from zero and
have opposite signs. This means that the surface is like a saddle surface:
some normal sections are concave toward the normal N and some concave
away from it.

When k = 0 one of the principal curvatures must be zero and then little
can be said. Two examples, in addition to the plane, are z = (x* + y?)%,
which is obtained by revolving z = x* around the z-axis, and
z = x(x? — 3y?), the so-called monkey saddle, which is similar to the usual
saddle surface except that there are three valleys running down from the
pass: two for the monkey’s legs and one for its tail (Fig. VII1.4).

The mean curvature will be of less concern to us than the Gaussian
curvature for reasons that will appear later. Surfaces for which the mean
curvature vanishes are of special interest, however. They are minimal sur-
faces; they are like the surfaces formed by a soap film stretched over a wire
frame (Fig. VIIL5). They have the defining property of being surfaces of

Figure Vili.4 Figure VIILS
Monkey saddle. Minimal surface.

minimal area among all surfaces with a given boundary (the wire frame).
Thus, in a sense, they generalize the geodesics—curves of minimal length
joining two fixed points. Like the equation of geodesics, the vanishing of the
mean curvature guarantees the property of minimality only in a local sense.

(2.2) Example We consider a torus; then intuitively we can see that the
two circles running around the torus which are the points of contact with the
two parallel tangent planes orthogonal to its axis divide the torus into an
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inner portion on which K < 0 and an outer portion at which K > 0. Along
the two circles K = 0, since along these circles the normal vector remains
parallel to the z-axis (Fig. VIIL6).

Figure VIIL6

(2.3) Example Let (4, v)— (u, v, uv) parametrize the saddle surface
z = xy. Then X, = (8/0x") + v(0/0x®) and X, = (8/6x?) + u(d/x>) from

which
E F\ (1+ uv
F 6] \ w 1+ u?)
Moreover AN = (—-v, —u, 1) with A= (1+u*+v})"* and
X,.,=0=X,,X,, = 8/0x3. It follows that

From this we obtain

1 —uv
K = —(14‘), H = 1‘3

The Theorema Egregium of Gauss

The entire subject of differential geometry was influenced by a very
profound discovery of Gauss which may be stated as follows:

(24) Theorem (Gauss) Let M, and M, be two surfaces in Euclidean
space and suppose that F: M| — M, is a diffeomorphism between them which
is also an isometry. Then the Gaussian curvature K is the same at correspond-
ing points.

To see the meaning of this theorem we shall consider some examples.
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(2.5) Example Let M, be a plane and M, a right circular cylinder of
radius R in Euclidean space R3. If we roll the cylinder over the plane, we
obtain a correspondence which does not change the length of curves or the
angle between intersecting curves, hence it is an isometry. Since K = 0 for
the plane, according to the theorem the same must be true of the cylinder.
Note that they do not have the same second fundamental form, that is, I, m,
and n do not vanish identically for the cylinder. In fact curvatures of the
normal sections vary from zero to 1/R. This depends on the imbedded shape
of the surface, but K does not; it depends only on the Riemannian metric
induced on M.

(26) Example As a second example, let M, be any open subset of the
sphere of radius R and let M, be a plane. Since K, = 1/R? # 0and K, = 0,
the theorem implies that there exists no diffeomorphism of M, into M, that
is an isometry. For example, any plane map of a portion of the globe must
distort some metric properties (distance or length of curves, angles, areas,
and so on). [It is interesting to note that Gauss was engaged on a surveying
commission at the time he discovered his Theorema Egregium (a “most
excellent theorem ™). The reader is referred to the annotated translation,
Gauss [1], of Gauss’s famous paper for some historical comments.]

However, there do exist surfaces isometric to, but not congruent to, say,
the upper hemisphere. Suppose this hemisphere to be made of a thin sheet of
brass. It is intuitively clear that we may bend it by squeezing at the edge
without introducing any creases (see Fig. VIIL.7). This will give a surface
isometric to the original since length of curves is unchanged. It follows that
K is the same at corresponding points; however, the surfaces are not
congruent.

Figure VIIL7

Surface M, isometric to hemisphere M.

(27) Example Among the more interesting examples of (locally) isomet-
ric surfaces are the helicoid and the catenoid (Fig. VIIL.8). The first surface is
given parametrically by

(u,v) > (ucosv,usinpv,v), u>0 —o0 <v< 0.
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Figure VI1IL8
(a) Catenoid; (b) helicoid.

It is similar in shape to a spiral staircase. On the other hand, the catenoid is
obtained by revolving the catenary x = cosh z around the z-axis. We may
parametrize it as

(z, 8) > (cos 0 cosh z, sin 0 cosh z, z), -0 <z<ow, 0<6<2n
The isometry between these surfaces is given by
v=70, u = sinh z.

The verification is left as an exercise (Exercise 8).

We emphasize what by now may be obvious, namely, that Theorem 2.4
implies that the Gaussian curvature K of a two-dimensional Riemannian
manifold M is determined by its structure as an abstract Riemannian mani-
fold, not by its particular embedding into R*. Of course, in our presentation
of K in the preceding paragraph, the Riemannian metric on the surface is
given by the imbedding in R?; it is induced by the standard Riemannian
metric of R3. However, according to Gauss’s theorem, two very different
(noncongruent) imbeddings of the same surface, say F,: M - M, = R*and
F,: M — M, = R* have the same Gaussian curvature at each point if each
imbedding induces the same Riemannian structure on M or equivalently, if
F=F,<F;': M, » M, is an isometry. This leads to the conclusion that
were the theorem true, K should be computable (on the coordinate neigh-
borhood U, ¢) from the components E, F, G of the first fundamental form
alone. This is the classical proof. (See, for example, Stoker, p. 139 [1].) The
present proof takes advantage of the subsequent work of Riemann and uses
the Riemann curvature tensor, introduced briefly in Section VIL4, together
with consequences of the fundamental theorem of Riemannian geometry—
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both offspring of the work of Gauss and Riemann. At the same time we shall
make some first steps toward investing the curvature tensor with geometric
meaning.

Proof of Theorem 24 We remember that at a point pe M the value of
the Gaussian curvature K is given by
_n—m
" EG-F¥
where E, F, G and I, m, n are the components of the first and second fun-
damental forms, respectively, relative to a system of local coordinates u, vin
a neighborhood U of p. The value of the ratio K is independent of the
coordinates chosen although E, F, G and I, m, n are not. Let E; = X, and
E, = X,, where X = X(u, v) gives the surface in R>. Then we have seen that

ON _\(oN ON _\(oN
— 2= —_ — —_ | — -
o= (o) (o) - (G2 )

and, since E = (E, E,), F = (E,, E;), and G = (E;, E;),
EG - F* = (E,, E\)E,, E;) — (E,, Ez)z-

Since E, F, G are the coefficients of the Riemannian metric, it is enough
to show that In — m?> = K(EG — F?) depends only on the Riemannian
metric. We shall show that

In - m2 = R(El, E2 N E2 5 El)’
where R(X,Y, Z, W) is the covariant tensor of order 4 defined in
Section VI1.4, in which case K is given by
(2.8) K = (EG - Fz)_lR(El, E27E2’El)

R(El’V_EZ ’ E2 > El)
(El» El)(Ez > EZ) - (El’ E2)2

The left side is independent of local coordinates; thus, the right side is also.
In fact it is easily shown that replacing E,, E, at a point by any pair of
vectors F,, F,, spanning the same plane, leaves unchanged the expression
on the right-hand side of formula (2.8), which we shall prove gives K. This
expression, defined at each point of an imbedded surface M, is thus indepen-
dent of local coordinates on M, and moreover it depends only on the
Riemannian metric. Clearly this is true of the denominator and we recall
that by definition

(R(El’ EZ) ' E2 ] El) = (VElszEZ - VEZVEl EZ - V[E],Ez]EZ ’ El)’
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which depends only on the Riemannian metric by the fundamental theorem
of Riemannian geometry (Theorem VII.3.3). In fact in our present case, since
E, and E, denote coordinate frames of local coordinates u, v, we know that
[E,, E;] = 0, and so we must show only that

In —m?* = (Vg,Vg,E; ~ Vg, Vi, E; , Ey)

in order to prove the theorem.

We may compute the right-hand side using the definition of V., Z,
i = 1,2 (for any tangent vector field Z), given originally in Section VII.2;
namely, we take dZ/0u and 0Z/dv, project them to the tangent plane at each
point of the surface, and obtain DZ/ou = Vg, Z and DZ/ov = Vg, Z. If N
denotes the unit normal, and E, = X, and E, = X, then this procedure
gives

VE|E2=XuL'_(N’X|w)N’ VEZE2=XUU—(N’XUIJ)N'

Differentiating again and projecting onto the tangent plane (by subtracting
the normal component of the derivative) gives

VEz(VE|E2) = Xvuv - (N’ Xuv)Nu - C N’
VE,(VEZEZ) = Xuvu - (N’ va)Nu —C2 N.

We need not compute the scalars ¢; and ¢, multiplying N since (N, E,;) =0
so that these terms vanish in the final computation, in which we take an
inner product of each term above with N. This yields for R(E, E,, E,, E,)
(VE\VEZEZ - VEZVE1E2 > El) = (Xuvm Xu) - (N’ va)(Nu ’ Xu)
- (Xpu[v ? X“) + (N’ XIIU)(ND ? Xll)'

This must be seen to be equal to the earlier evaluation of In — m? above,
namely,

In — m2 = (Nu’Xu)(Nv’Xv) - (Nu’Xv)(Nv’Xu)‘

Since X, = X... applying the identities developed in the proof of
Theorem 1.3, we have (N, X,,) = —(N,, X,) and (N, X)) = —(N,, X,).
This completes the proof. |

This proof provides an interpretation of the Riemann curvature tensor
for a two-dimensional Riemannian manifold. Indeed, when F,, F, are
chosen at pe M so that they are mutually perpendicular unit vectors, then
expression (2.8), which we have found for the Gauss curvature K, becomes

K=R(F1,F2,F2,Fl).
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Exercises

1. Prove the Lagrange identity for the inner product of the cross product of
vectors of R*:

(X x Y,U x V)= (X, U)(Y; V) — (X, V)(Y, U).

2. Show that k, and k, are given by H + (H?> — K)"/2.

3. Show that if K > 0 at p, then there are no asymptotic directions, and if
K < 0 at p, then there are two asymptotic directions and the principal
directions bisect the angles made by the asymptotic directions.

4. Show that a surface M is minimal if and only if there are two asymptotic
directions at each point and they are mutually orthogonal.

5. For a surface of revolution formed by revolving z = f(x) around the
x-axis determine when K > 0, when K = 0, and when K < 0. Give a
sufficient condition that the surface be minimal.

6. Verify that a diffeomorphism of two Riemannian manifolds which
preserves lengths of all C! curves is an isometry, that is, it preserves the
inner product in the tangent spaces at corresponding points.

7. Verify that (2.8) is unchanged if E,, E, is replaced at p by F,,, F,,,
another basis of T,(M).

8. Verify that Example 2.7 is a local isometry as claimed.

3 Basic Properties of the Riemann Curvature Tensor

We have previously (Section VII.4) defined the curvature tensor
R(X, Y, Z, W) of a Riemannian manifold M. Recall that it is a covariant
tensor field of order 4 whose value at any point pe M is determined as
follows: Let X, Y, Z, W be vector fields whose values at p are given, say
X,.Y,,Z,, W, Then

RIX,,Y,,Z,,W,)=(Vx,VyZ —Vy VxZ — Vi y,Z, W,).
We have shown that this is independent of the vector fields chosen and
defines a C* covariant tensor field.

In the same way the vector fields X, Y define at each pe M a linear
operator, the curvature operator, R(X,, Y,) on T,(M) by the prescription

R(Xp, Yp) ¢ Zp = prVyZ - VypVxZ b V[X. y]pr,

which is—like the curvature tensor—linear in X, Y, Z in the sense of a
C*(M) module, that is, if fe C*(M), then

R(X,Y)'Z=R(SX,Y)'Z=R(X,fY)-Z=R(X,Y) JZ
Obviously these objects are related by the equality
RX,Y,Z, W)= (R(X,Y) Z, W)
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As we now prove, the curvature tensor satisfies a number of important
symmetry relations.

(3.1) Theorem The following symmetry relations hold for the curvature
tensor and curvature operator at each point, and hence for all vector fields.

(i) R(X,Y)-Z+ R(Y,.X) - Z

(i) R(X, Y)-Z + R(Y.Z) X + R(Z. X)- Y = 0

(i)  (R(X,Y)-Z W)+ (R(X,Y) W,Z)=0,

(iv) (R(X, Y)- Z, W) = (R(Z, W) X, Y).

Proof Relation (i) follows immediately from the formula above which
defines the operator R(X, Y). The fact that R(X, Y, Z, W) is a tensor, in
particular, the linearity with respect to C™ functions, has the following
important consequence: It suffices to prove any of these statements for the
vectors of a field of coordinate frames, say E, ..., E,. However, for these
vector fields the Lie products [E;, E;] = 0; so if X, Y, Z are chosen from
among E,, ..., E,, then proving (ii) reduces to showing that

Vx(VyZ) — Vy(VxZ) + Vy (V2 X) = Vz(Vy X) + Vo (Vx Y) — Vx(V,Y) = 0.

By definition of Riemannian connection, Vy Y — V, X = [X, Y] = 0. Using
this, we find that the terms on the left cancel two by two; this proves (ii). To
prove (iii) we may show that the equivalent statement, (R(X, Y)- Z, Z) =0
forall X, Y, Z, is true. Again it is enough to do so for X, Y, Z chosen from
among the vectors of the coordinate frames so that [X, Y] = 0. Applying the
definitions, we see that

(R(X. Y) Z,Z) = (Vx(Vy Z) — V4(VxZ), Z) = O

if and only if (Vyx(Vy Z), Z) is symmetric in X, Y. Now differentiating the
inner product (Z, Z) with respect to X and Y, we find that

Y(X(Z,2)) =2Y(VxZ,2) = 2(Vy(Vy 2Z), Z)+2(VyZ,Vy 2),
from which it follows that
(VY(VXZ)’ Z)=3YX(Z,Z) - (VxZ,Vy 2).

Since [X, Y] =0, (XY — YX)f =0 for any function f, and in particular,
taking f = (Z, Z) we see that the right side is symmetric in X, Y and so also
the left.

Property (iv) is derived from the first three as follows. By (ii)

(R(X.Y) Z, W) + (R(Y,Z)- X, W) + (R(Z, X)" Y, W) = 0.
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Then, using (i)-(iii) we obtain the further relations
(R(X, Y)- Z, W) + (R(Y, W)- Z,X) + (R(X, W) - Y, Z) = 0,
(R(Y,Z)- X, W) + (R(Y, W) Z,X) + (R(Z, W) - X, Y) = 0,
(R(Z, W) X, Y) + (R(Z,X) Y, W) + (R(X, W) Y,Z) = 0.

For example, (ii) combined with (i) and (iii), gives the first of these last three
equations, the others are obtained similarly. Now adding the first two of our
four equations and subtracting the last two gives (iv). |

In any coordinate neighborhood U, ¢ we have coordinate frames
E,, ..., E, and we may introduce (as in Remark VII.4.5) n* functions of the
coordinates R/,,, 1 < i, j, k, I < n by the equations

R(E,,E) E; = Z RijklEj'
J
Similarly we may define the components R, of the Riemannian curvature
tensor by the equations
Rijkl = (R(Ek , E))E;, Ej) = Z Rihklghj s
h
where of course g;; = (E;, E;) are the components of the Riemannian metric.
By linearity both R(X, Y)- Z and (R(X, Y) - Z, W) are determined on U by

these locally defined functions. The preceding theorem may be written in
terms of components as follows.

(3.2) Corollary Forall 1 <i,j, k, 1 < n we have

(i) Ry + Rw =0,
(i) Ry + Réy+ R'u=0,
(iii) Ry + Ry =0,
(iv) R = Ry,

(v) Rig+ Rugj + Ry = 0.

We remark that (v) is an immediate consequence of R;;, = ), R/ gu;»
the symmetry of g;; and (ii) and (iii).

The Riemann curvature tensor (R(X, Y): Z, W) is used to define the
sectional curvature, which plays an important role in the geometry of
Riemannian manifolds. At any pe M we denote by n a plane section, that is,
a two-dimensional subspace of T,(M). Such a section is determined by any
pair of mutually orthogonal unit vectors X, Y at p.

(3.3) Definition The sectional curvature K(mn) of the section m with
orthonormal basis X, Y is defined as

K(n)= —R(X,Y, X, Y)= —(R(X, Y)" X, Y).
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From the symmetry and linearity properties it is easy to see that replac-
ing X,Y by any pair of vectors X', Y, where X =aX'+ Y’ and
Y = yX’ + 8Y’ gives the relation

(JA?)(R(X, Y')- X', Y') = (R(X, Y) - X, Y),

where A = ad — By, the determinant of coefficients. If X', Y’ is also an
orthonormal pair, then A = + 1 so that the definition of K(=) is independent
of the pair used. If it is just any arbitrary linearly independent pair, then
using A? = (X', X')(Y', Y') — (X', Y')% we have

__(RX'Y)-X'Y)

(X,, X’)(Y’, Y/) _ (XI, Y/)Z *
In local coordinates, using (E;, E;) = g;; and the notation above,
ki o TRl

Z (gikgjl - g,.,gj,()a'ﬁ’a"ﬂ’
where summation is over i, j, k, land X' = Y, «'E;, Y' = ) ; 'E;.
Although it is not obvious, the symmetry properties of the Riemann
curvature tensor imply that both (R(X, Y) - Z, W)and R(X, Y) : Z are com-
pletely determined for arbitrary X, Y,Z, W if K(r) is known for all
sections 7.

(34) K(m) =

(3.5) Theorem Ifdim M > 3 and the sectional curvature is known on all
sections of T,(M), then the Riemann curvature tensor is uniquely determined
at p.

Proof Let R(X,Y,Z,W)and R(X, Y, Z, W) be two tensors with the
symmetry properties of Theorem 3.1 and let A(X, Y, Z, W) be their differ-
ence. It will also be a tensor with these symmetry properties. Our assump-
tion is that for all X, Y, R(X, Y, X, Y)= R(X, Y, X, Y), or equivalently,
A(X, Y, X, Y) = 0. We must show that this implies that A(X, Y, Z, W) =0
forall X, Y, Z, W, thatis,that A = 0. Letpe Mand F,, ..., F, be a frame or
basis of T,(M). We denote by A, the components of 4 and by o, B the
components of vectors X, Y relative to this basis. Then by hypothesis, for
any «',...,¢" and B, ..., p"

Y Ajuadifatpl = 0.
iojok, !

We shall make special choices of the o' and f'. Let d;; denote the Kron-
ecker 6, that is, + 1 ifi = jand 0 if i # j. When o' = §, ;and §/ = 4, ;, the
equation above gives A4, ; ;. ; = Oforall I < iy, jo < n.Ifweleta’ = §,;and
po = f¥o = 1and B/ = O for all other j, then by property (iv) of Corollary 3.2

we have A4, ; .. = 0. Finally letting both «' and ' vanish except at two
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values of i and two of j at which it has the value 1, and using property (ii) and
the results just established, we obtain

0= Ajjy + A + Aigj + Awij = 245 + 24505 = —244; -

Thus A4;, = 0 for all 1 < i, j, k, | < m, which proves the theorem. |

This theorem does much to establish the importance of the sectional
curvature in the study of Riemannian geometry. We can also use sectional
curvature to give a geometric interpretation of curvature in terms of the
Gaussian curvature K of surfaces. However, to do this we will first need to
complete our treatment of the equations of structure, which will be done in a
later section.

We shall say that a Riemannian manifold M is isotropic at a point pe M
if the curvature is the same constant K, on every section at p and isotropic if
it is isotropic at every point. Of course a two-dimensional Riemannian
manifold is (trivially) isotropic.

(3.6) Corollary If p is an isotropic point of M and U, ¢ is a coordinate
neighborhood with coordinate frames E,, ..., E, and Riemannian metric
g,'j = (E,', Ej)’ then

R = —K,(gugj — 9ugi) at p.

Proof 1t is easy to check that the right side defines a tensor of order 4
on T, (M) with the same symmetry properties as R(X, Y, Z, W) and with
constant value on all sections. The corollary then follows from the unique-
ness theorem (Theorem 3.5). |

(3.7) Definition An isotropic Riemannian manifold is called a manifold of
constant curvature if K, is the same at every point.

An example is Euclidean space where K, = 0. This concept will be dis-
cussed more fully in a later section.

We saw in Chapter V that there exist algebraic operations on tensors on
a vector space V which yield new tensors on V. Addition and multiplication
of tensors as well as the operators .« and .# are examples. The systematic
study of these operations is a branch of linear (or multilinear) algebra. It is
important to differential geometry because each such operation has an im-
mediate counterpart in tensor fields on a manifold. This is treated system-
atically in many of the references, at the very beginning, for example, in the
books of Sternberg [1] and Kobayashi and Nomizu [1]. We will content
ourselves with examples showing how the curvature tensor yields other
related tensors.
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Let R(X, Y, Z, W) denote the curvature tensor on a Riemannian mani-
fold M. We shall use this curvature tensor to define a (covariant) tensor field
S(X, Y) of order 2 and a (scalar) function on M. Let pe M and let
Fi,,..., F,, be an orthonormal basis at p. Then it is left as an exercise to
verify that

SP(XIH YP) = Z:IR(Fip’Xp’ YpaFip) = -ZI(R(FW’XP). YP,F,',,)

is independent of the choice of orthonormal basis and defines a symmetric,
C*®, covariant tensor field S on M.

(3.8) Definition The tensor field S(X, Y) is called the Ricci curvature of
M. If there is a constant ¢ such that

S(X, Y) = ¢(X, Y),

that is, S(X, Y) is a constant multiple of the Riemannian metric on M, then
M is called an Einstein manifold. The function r on M, defined by

r(p): ZIR(FW’F}I”F}F’FW): ZS(Fjp’Fjp)’
ij= j=1

is called the scalar curvature of M.

Spaces of constant curvature are examples of Einstein manifolds
(Exercise 6). A further example is given by the corollary to the following
theorem.

(3.9) Theorem On a compact Lie group G with a bi-invariant Riemannian
metric, the sectional curvatures at e (hence everywhere) are given by the
Jormula

K(r)= —R(X,, Y.. X,. ¥.) = +3(X, Y] [X, Y]),

where X, Y are an orthonormal pair of left-invariant vector fields spanning the
section m, at e. The curvature operator is similarly given at e, hence at all
points by

R(X,Y) Z=—§[[Xx. Y] Z]
with X, Y, Z left-invariant vector fields.

Proof We proved in Theorem VIL8.12, that for left-invariant vector
fields X, Y, the connection of a bi-invariant metric on G given by
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Vx Y = §[X, Y]. Applying first the definition and then the Jacobi identity,
we obtain

R(X,Y) Z =VxVy2) - Vi(VxZ) - Vix.nZ
= 4[X. [, Z]] - 4[Y. [X, Z]] - 4[[X. Y] Z]
= 4[Z.[X. Y]] = —4[IX, Y}, Z}

We also know that for left-invariant vector fields U, V, W on G the follow-
ing identity holds, according to Lemma VI.8.12,

([(U, V], W) = (U, [V, W]).

Thus, if X, Y are left-invariant and are an orthonormal basis at e of n, a
plane section, the sectional curvature is

K(r)= —R(X,Y,X,Y) = %([[X, YLX1Y)= (X, Yl [x, Y] 1

If g is a Lie algebra and X € g, then ad(X) denotes the linear mapping of
g defined by ad X(Y) = [X, Y]. By Exercise VI.8.8, ad X = 0 if and only if
X € ¢, the center of g. We shall say that a compact Lie group G is semisimple
if the center of its Lie algebra is {0} or, equivalently (Exercise 5), if the center
of G is discrete.

(3.10) Corollary Let G be as above and X, Y, Z be left-invariant vector
fields. Then the Ricci tensor S(X, Y) is given by the formula

S(X,Y)= —%tr(ad X cad Y)

and is positive semi-definite and bi-invariant on G. Each compact semisimple G
is an Einstein manifold relative to any bi-invariant Riemannian metric.

Proof Using the formula above we see that the linear operator
Z > R(Z,Y) X on G is defined at e for the left-invariant vector field by

R(Z,Y) X = —4(ad X)(ad Y)- Z.

According to Exercise 3, an alternative definition of S(X, Y) is that it is the
trace of the linear mapping Z — R(Z, X) - Y on the tangent space at each
point. Then, since S(X, Y) = S(Y, X), the formula of the theorem holds. On
the other hand, if Fy, ..., F, is an orthonormal basis of left-invariant vector
fields, then the formula

@d X -F,,F)=([X,F]. Fj)=(Fi,[X,F}])= (F,,ad X - F))

shows that the matrix (a;;) of ad X, relative to this basis, is skew symmetric.
Hence

trad Xad X =} a;a;,= — Y aj.
ilj i’j
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It follows that S(X, X) = —trad X ad X = Y a? > 0 with equality holding
only when ad X =0. Hence S(X, Y) is positive semidefinite. Moreover,
if G is semisimple, it is positive definite. It is clearly left-invariant: when
X, Y, Z are left-invariant so is R(Z, Y) - X and S(X, Y), its trace. This means
that S(X, Y) is a bi-invariant Riemannian metric on a semisimple G. How-
ever two bi-invariant metrics can differ only by a scalar multiple. It follows
that with a bi-invariant metric, G is Einstein. Note that this corresponds,
except for a constant factor, to the metric on SO(n) of Example VIL.8.6. [

Exercises

1. Prove that expression (3.4) depends only on the plane = determined by
the vectors X', Y'.

2. Show that for any orthonormal basis F, ..., F, at pe M, the values of
S(X,.Y,)=Y7-, R(F,. X,,, Y,, F,) is independent of the choice of
the orthonormal basis and that this formula defines a C*-tensor field
S(X, Y) as claimed in Definition 3.8. Verify that S(X, Y) = S(Y, X).

3. Show that S(X,, Y,) is the trace of the linear operator taking Z ,€ T,(M)
toR(Z,. X,)- Y,e R, (M) and use this to show that S(X, Y)is C°° for all
C*-vector ﬁelds X, Y.

4. Show that on a compact Lie group G with a bi-invariant Riemannian
metric, the curvature is identically zero if and only if G is Abelian.

5. Show that if g is the Lie algebra of a Lie group G (compact or not), then
the center of G is discrete if and only if the center of g,
¢c={Xeg|[X,Y]=0VYegq},is {0}

6. Show that a Riemannian manifold of constant curvature is Einstein.

4 The Curvature Forms and the Equations of Structure

We now return to the viewpoint of Section VIL.4. Let U be a neighbor-
hood on the Riemannian manifold M such that on U is defined a C* family
of coframes 0', ..., 0" and thus, automatically, a dual C* family of frames
E,,....E,. They may or may not be coordinate frames of a coordinate
neighborhood U, ¢. The components of the Riemann metric on U are still
denoted by g,; = (E;, E;) however, and according to Theorem VII.4.6, there
exist uniquely detcrmmed one-forms 6 on U satisfying

(i) d0'=Y,;0'n0}, 1<ix<n,
(i) dg;; = Zk ()lgkj + Y g 055, I<ij<n
We remark that by deﬁning 0;; = Y, 0%g,;, the equations (ii) assume the
) J

simpler form dg;; = 0;; + 6;;.] In the special case where the frames are

orthonormal, that is, g, ;= 5, ;» we will use ', ] instead of 6" °/. Then (ii)

becomes 0 = @/ + 0}, 1 <i,j<n.



386 VIl CURVATURE

The forms 6 determine, and are determined by the Riemannian connec-
tion. Thus if Vg E;=Y,TH{E, then 6{=7Y,T{,6* equivalently,
Vi Ej =Y, 0 X)E,. The one-forms 6%, | < j, k < n, are called the connec-
tion forms. (A word of caution: I'fj=T% only if E,,...,E, satisfy
[E;, E;] = 0,as is the case for coordinate frames. This symmetry was derived
from Vg, E; — Vg, E; = [E,, E;], which we have made part of the definition of
Riemannian connection; it is equivalent to (i) above.)

Now suppose that R/, 1 < i, j, k, I < n are the components of the
curvature (as an endomorphism) relative to the given frames, that is,
R(E,,E) E; =Y ; R/ E;. Then we define n? two-forms Qf, 1 < i, j < nby

Q‘l—i = Z Rijklek/\ 6’ = % Z R,'jklek/\ 01-
k 1=1

1<k<ls<n

It follows that

Z Q{(Ek s EI)Ej = RijklEj = R(Eka El) - E;
=1

j=1 J

and by linearity this extends to any vector fields X, Y so that

R(X,Y) E; =Y QiX, Y)E;
i

thus (Q{(X, Y)) is the matrix of the curvature operator relative to the basis
E,, ..., E,. Note that the properties of R(X, Y) - Z imply that Q{(X, Y)at p
depend only on the values of X and Y at p, not on the vector fields; ob-
viously Q/(X, Y) = —Q{(Y, X). These n? forms Q/ on U; are called the
curvature forms; they depend on the Riemannian metric and on the particu-
lar frame-field we use on U. The following result shows the relation between
these forms and the connection forms.

(4.1) Theorem Using the notation above, the forms Q on U are defined by
the equations

(42) Q=dbl —Yr-,0n6, 1<ij<n

Proof It is sufficient to verify that on any vector fields X, Y on U the
value of the two-forms on each side of the equation is the same. This is
equivalent to showing that

R(X,Y) E;=Y ((dO{ - ;0{-‘/\9{)(& Y))E,., i=1,...,n

J

By definition,
R(X, Y) “E;= Vx(VyEi) - VY(Vin) - V[x. Y]Ei’
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which may be rewritten

R(X.Y) E = vx( ) o{(Y)E,) - vy(z 9{(X)Ej) - T Ol(X. YDE,.

J

Since 0/(Y) and 04(X) are functions, the right-hand side is equal to
S (X)) - Y(Bi(X) — 0i(X. Y]E,
J

+ 2 O(Y)OH(X)Ex — 3 61(X)05(Y)E, .
ik ik
Applying Lemma V.84, this becomes

)

i

X, V) = X [O5XNY) = OV LE;.
which shows that, as claimed,
RIX,Y)-E=) ((10{ — ;0{-‘/\ 0{)(X, Y) E;.
j
This completes the proof. ]

(43) Remark In summary, we have the following facts. Let U be any
open subset of a Riemannian manifold M on which is defined a field of
coframes 0,...,0" Let E,,..., E, denote the uniquely determined dual
frame-field and let g;; = (E;, E;) on U. Then there exist n® uniquely
determined one-forms & on U satisfying conditions (i) and (ii) of the first
paragraph of this section. They determine the two-forms Q/, and hence the
curvature on U, by (4.2). Equations (i), (ii), and (4.2) are known as the
equations of structure; they are due to Elie Cartan, who made extensive use
of them. As noted above, it is often convenient to write §;; = Y 63g,; so that
(ii) takes a simpler form. We may define, similarly, Q;; = 3, Qig,;; then
Q;=3Y, Rjuu0*A0" since we have previously seen that
Rij =D, 9jsR’u, where Ry = R(Fy, F,, F;, F;) by Definition VIL4.5.
The symmetry properties of Corollary 3.2 imply that Q;; = —Q;;.

In the event that the frame-field is orthonormal, that is, consists of vec-
tors E,, ..., E, with (E;, E;) = §,;, then as noted above, (i) and (ii) simplify;
moreover, Q;; = Q, R;;,, = R/, and w! = w;;. Recapitulating the remarks
above we have the following corollary.

(4.4) Corollary The forms ', ..., " dual to a field of orthonormal frames
determine uniquely a set of one-forms wi, 1 < i, j < n, satisfying

(i) do' =) wiret
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and
(i) ol+wi=0
and we have
(iii) dof — Y, ofrw] =Y Riyo*ro' =Q = Q.

Relative to these frames the matrix (Q;(X, Y)) of the curvature operator
R(X,Y) is a skew-symmetric matrix.

(4.5) Corollary Let T'}; denote the coefficients of the connection forms rela-
tive to coordinate frames E 1s ++-» E, of a coordinate neighborhood U, ¢, that is,
=Y, I0' with0',..., 0" being dual to E,, ..., E,. Then T}, = T'% and

. ory ar, .
Rijkl a kl a k Z (F Fhl Frlr",ll)'

Proof According to the theorem
=doi - Y 0" n6j;
h
hence
=Y (dTn6 + T do") — Y Y ThTy,6cA 0.
i k.l h

Now Tf; = I'}; since [E;, E;] = 0 for coordinate frames, and it follows that
do' = ZJ 0’/\0’ Y iTi0A0" =0 (since 6/A0' = —0'Ab). Therefore
the second equatlon above may be written as

| LA ory,  ary,
2“2;‘1&1“0!(/\01 Z (axl al;)ek AD

— z S (T4, — TATL,)0 A 0"

k1 h

Since we have made the coefficients on both left and right skew-symmetric in
the indices k, I, these equations imply equality of coefficients. We use the

symmetry of I'}; in i, j, the fact that 6* A 6' = —6" A 6% and change of index of
summation where necessary to obtain the (standard) formula of the corol-
lary. |

Consider the special case in which dim M = 2 and assume, moreover,
that only orthonormal frames are used.

(4.6) Corollary Ifdim M = 2, then dw? = Q} = + Kw' Aw?, where K is
the Gaussian curvature of M.
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Proof In proving Gauss’s Theorema Egregium we saw that if E,, E, are
orthonormal unit vectors, then

K= _R(Eh E,,E, Ez) = _(R(Els Ez) " Ey, Ez) = —Ry32.
On the other hand, since g;; = (E;, E;) = J;; we have

Q% = le = _R1212w1 /\w2.
Since w! + wi =0, w] =0 =w3. Thus Y 7. 0} Awf =0 and dwi = QI by
Corollary 4.4. This completes the proof. |

Note that these equations are independent of the particular orthonormal
frame field on U = M. We shall now use this to give a geometric interpreta-
tion of sectional curvature. Let # be a plane section at a point p of M, a
Riemannian manifold, and let N, be an open, two-dimensional submanifold
of M consisting of geodesic arcs through p and tangent at p to the section 7.

(4.7) Theorem Ifwe use on N, the Riemannian metric induced by that of M,
then the sectional curvature K(n) is equal to the Gaussian curvature of N, at p.

Proof Let U = exp, B, be a normal neighborhood of p, that is, we
choose & > 0 such that B, = {X € T,(M)| | X,|| < &} is mapped diffeomor-
phically onto an open set U « M. The plane section n corresponds to a
two-dimensional subspace V, = T,(M) and we may suppose that N, is the
image of V, n B,. Since U is a normal neighborhood, it is covered simply by
the geodesics of length e issuing from p; they are given by exp,tX,,
0 <t <¢, for each X, with | X | = 1. Now choose an orthonormal basis
E,,.....E,, of T,(M ), with E,,, E,, a basis of V.. Then (x',..., x") —
exp, (3 x'E;,) establishes a system of normal coordinates on U, the coordi-
nate map ¢ being the inverse of the above. Thus N, is described by
x*=-=x"=0,and Un N,, ¢ is a coordinate system on N, with x!, x*
as coordinates. Let E, ..., E, denote the coordinate frames; they agree at p
with the given frame and E,, E, are tangent to N, everywhere on N,. We
denote the dual coframes by 6°,..., 60" with ¢ =), T;6 as connection
forms. Note that T'}(0) = 0, that is, 0 =0 at pe U. Thls was proved in
Remark VII.6.8.

From those frames, by the Gram-Schmidt process we obtain a family of
orthonormal frames F,, ..., F, in U with the property that F,, F, are a
linear combination of E,, E, and thus tangent to N, at each of its points. We
denote by w', ..., " the dual coframes to F,, ..., F, and by ! the corre-
sponding connection forms; they satisfy the equations w} + w} =0 and
do' =Y, wi A w*. We shall see that for j > 2, w] = w} = 0 at p. First recall
that at p, Vy E; =Y, 0{(X,)E; =0 and Vy, F; =) wi(X,)F;. Now for
i=1,2,F, —aE1+a2E2andso

Vi, Fi= (X,a})E, + (X,a})E; + alVy E, + aiVyx,E; .
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Since I“{-‘j(O) = 0, the last two terms vanish so that for i = 1,2, Vy F;is a
linear combination of E, and E,, and hence of F, and F,. Thus
Vy,Fi = ol (X,)F, + 0}(X,)F,fori=1,2and wi(X,) = 0fori = 1,2and
j > 2 as claimed.

Now we denote by I:N,— M the imbedding and let &' = I*w),
@! = I*w!. Since I* is a homomorphism of /\(M) - /\(N,) and commutes
with d, we know that di' = ¥, & A @ and @/ + @ = 0. Moreover,® = 0
for i > 2, since F,, F, spans the tangent space to N, and &'(F;) = (I*w')(F))
=w'(l,F)=0'(F)=0if j=1or j=2 and i>j. Thus &', &* are
dual to F,, F, restricted to N, and together with @} = @ satisfy equations
(i) and (ii) (of Remark 4.3), which determine the connection forms uniquely.
It follows from Corollary 4.6 that d? = K®' A @2, On the other hand, we
have on M

do? =Y o rwf + Y Ruotro!
k k<l

and applying I* to both sides and evaluating at p yields the equality (at p):
d@? = R y,,0' A%

It follows that the sectional curvature K(n) = —R,;,, = K, the Gaussian
curvature at p of the surface N,. This completes the proof. |

(4.8) Corollary Let M be an n-sphere of radius a in R**" with the Rieman-
nian metric induced from R"*'. Then M has constant sectional curvature 1/a®.

Proof 1f p is a point of M, then the geodesics through p tangent to a
plane 7 in T,(M) are great circles and form a 2-sphere of radius a. We have
seen that the Gaussian curvature of such a 2-sphere is 1/a? so the corollary
follows from the theorem. |

We have made a distinction between isotropic manifolds and manifolds
of constant curvature. A theorem of Schur [1] shows that this distinction is
artificial.

(4.9) Theorem If M is a connected, isotropic Riemannian manifold and
dim M > 3, then M has constant curvature.

Proof Ifwe let K, be the value of the sectional curvature at p—the same
on all sections by hypothesis—then we must show that this function on M is
constant, that is, dK = 0. Let U be a neighborhood of p € M with an ortho-
normal frame field and let w!, ..., w" be the dual coframe field. Using the
expression for R;;, in Corollary 3.6, which now becomes
Ry = K(0u 65 — 040), we have Qf=Q;=Ko'Aw, in which K
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depends only on p, not on the (orthonormal) frames used. Taking the exte-
rior derivative of the structure equation

dol =Y ofrof + Q,
we obtain
0 =) ([dof A wf — wfrdw)) + dK Ao Aw! + K do' A — Koo' A do,
Substituting for dw!, dw', and so on, from Corollary 4.4 and simplifying gives
dK A A =0,

which holds for every i,j=1,...,n. Since dK = K,w' + .- + K, 0", a
linear combination of @', ..., w", and since w! Aw' A @’ # 0 if I, i, j are dis-
tinct, this can only hold if 4K = 0 on U, a neighborhood of p. Because p is
arbitrary, dK = 0 and K is constant. |

According to Corollary 4.8, the sphere of radius a with the Riemannian
metric induced by the Euclidean space with contains it has constant positive
curvature. Euclidean space itself with its standard Riemannian metric has
curvature identically zero, since with the usual coordinates I'y; = 0 and
Riju = 0. It remains to give an example of a manifold of constant negative
curvature of arbitrary dimension. This will be done in Section 6, which is
devoted to spaces of constant curvature. In the meantime, the reader should
try Exercise 1.

Exercises

1. Show that the two-dimensional manifold M = {(x, y}|y > 0}, the upper
half-plane, with Riemannian metric in the xy-coordinates which cover
M given by g,; = 1/y* = g,, and g,, = 0 = g,,, has Gaussian curva-
ture K = — L.

2. Let 0',...,0" be n linearly independent one-forms defined on an open
subset U = R" and let (g;(x)) be a symmetric positive definite matrix
whose entries are C* functions on U. Show by direct computation that
there exist uniquely determined functions I';;, 1 < i, j, k < nsuch that
the n® forms 0, = >7_, I';; 6' satisfy the two systems of equations:

(i) do*=Y,,00n0;,4", and

5 Differentiation of Covariant Tensor Fields

Until this point we have used covariant differentiation D/dt on Rieman-
nian manifolds and the associated Riemannian connection V only to differ-
entiate vector fields—either along curves or in various directions X, at a
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point p of the manifold M. However, once this has been done, it is a rela-
tively simple matter to extend the procedure to tensor fields; for the basic
difficulty—lack of a method to compare vectors, tensors, and so on, on
tangent spaces at nearby points g to a given pe M—has somehow been
surmounted. In Euclidean space, of course, we compare T,(M) and T,(M) by
parallel translation; we have also used the local one-parameter group of
transformations generated by a vector field X to define the Lie derivative
Ly . Neither procedure is available in the general case; but we do have
parallel transport along a curve from p to g and that is what we now apply.
For convenience, and since it is all that we need, we restrict our considera-
tion to covariant tensor fields. Just as in our earlier treatment of differentia-
tion of vector fields on a Riemannian manifold, we first differentiate a
covariant tensor field along a curve and then, later, determine its derivative
in various directions X, at a point p of the manifold.

We consider, then, a covariant tensor field ® of order r on the Rieman-
nian manifold M, ® € 7 "(M), and we suppose given a curve p(t),a <t < b,
on M of differentiability class C' at least. Let ®,,, denote the restriction of ®
to p(t). Then @, € T'(T,,(M)), that is, @, is a tensor field along p(r).
Using Theorem VI1.3.12 and Remark VIL3.13, we denote by 1, parallel
translation along p(t) from a fixed point p(t,) of the curve:

LT Tp(!o)(M) - Tp(l)(M)‘

This is an isomorphism of these tangent spaces and is uniquely determined
by the curve p(t) and the Riemannian structure. It is exactly what is needed
to define the derivative of @ at p(t,).

(5.1) Definition With the preceding notation, the derivative D®/dt of the
tensor @ along the curve is defined at the point p(z,) by

D® 1
22V =m0, - 0,0)
( dt )m ,ilzt ~ 1o (TP )

As thus defined (D®/dt), is a covariant tensor of order r on the vector
space Ty,,(M). In fact, given any set of r vectors X 1), ..., X0 € Tyuo)(M)s
then D®/dt at p(t,) is the limit. as t — t, of the expression

1 r
{1 (TP (X pro)s -+ Xtto)) = Pottol Xpito)s -+ -+ X))

which for each value of ¢ near 1, is a multiple [by 1/(t — t,)] of the difference
of two tensors 7}®,, and ®,, on T,,,(M). Since both are covariant r
tensors on the same vector space, it follows that the limit is also such a
tensor. Repeating this procedure at each t, on the interval (a, b) gives a
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covariant tensor field D®/dt along p(t), provided that suitable differentiabil-
ity condg’tions are satisfied. We mean by this that for any C * family of vector
fields X} = X4, i = 1,..., r, defined along the C* curve p(¢), the value of

D®/dt on them,

ﬁ?(X,‘,...,X,’), a<t<b,

should be a function of class C*~! (C® when k = o) of the variable t. In
particular, this should be true in the most frequent situation: X!, ..., X" are
C>-vector fields on M and X!, ..., X! are their restrictions to the curve p(t).
In order to see that this is indeed a consequence of our definition and to
derive computational formulas, we prove the following lemma. For
convenience—and since it is the most important case—we suppose ® is C®.

(52) Lemma Let ® be a C*-covariant tensor field of order r on M and let
p(t), a <t < b, be a curve of class C*, k > 1, on M. If X/, ..., X[ € T,,(M)
are vector fields of class C* along the curve, then for each t, on the interval
(a, b) we have

(5.3) —

t=1to

DO d
(—‘) (Xllos (R X:o) = (dt [(DP(I)(Xlls ey X:)])

C DX!
= 2 Py | Xig oo s X0).
i=1 at J,

Proof Before beginning the proof we note that it will indeed establish
the fact that D®/dt evaluated on C*-vector fields along the curve is differen-
tiable of class C*~ ! at least. If k = oo, as will often be the case, then D®/dt
will be a C™*-tensor field along the curve, that is, its value on C*-vector fields
will be a C™ function of t. Although ® itself has been assumed C%, in fact it is
sometimes convenient to consider curves of lower differentiability class,
which in turn lowers the class of D®/dt. The assertion of the lemma is easy to
prove. By definition we have

Do . 1 r
( g ) “lim (@KL XT) = DKt XT))
t 1o [ and {1} tO

. | . .
= lim o (DT X o) s TlXT)) — @K io s -0 X3o))-
0

Then for each i = 1, ..., r in turn we subtract and add

Q. (XL XE . X (XN, (X))
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Rearranging and collecting terms and using both linearity at p(t) and the
continuity of the tensor @, we may rewrite the defining equation

D(D 4 : 1 i i r
(E) _ chp(,,(x:,..., fm | () - X)X ,...,‘r,(X,o))
to

i=1 t=tgt T

+ lim — ((I)p(,,(X,,.. X7) = Qo)X oy XT0)):

t—to

We now use the fact that for any C*-vector field X, along p(t),
- AX)-X DX DX,
lim " Xw) = X0 _ —limr,(T'(-')» _fo) = _TO( ') (‘)
B ) (1o t—t, at J,, dt

Therefore passing to the limit in the expression for (D®/dt),, completes the
proof of formula (5.3) of the lemma. |

We can verify from the formula itself that (D®/dt), depends R-linearly on
the values of the vector fields X, ..., X7 at p(t,) so that the formula does
define an R-linear function, that is, a covariant tensor of order r on the
vector space T,,(M). This is made even clearer, however, by the following
corollary—which uses the notation above.

(54) Corollary Let X3, ..., X' T,,(M) be given and suppose that
X/,..., X] are the uniquely determined parallel vector fields along p(t),
a <t < b, which take these values at p(t,). Then formula (5.3) becomes

( ) (X1, ... X)) = (jtcb,,(,,(x,',.'..,X;))’zw.

Proof This follows from (5.3) since by definition of X! we have
DXjdt=0,i=1,...,r |

This corollary makes it clear that (D®/dt),, depends only on the tensor
field ® and on the curve p(t), a < t < b. In fact, it is easy to verify from the
formulas above that it depends on the tangent vector Y, = p(to) to the
curve, but not on the curve itself, more precisely, two curves through p(t,)
with the same tangent vector at that point will define the same element
(D®/dt),, of T"(T,u,(M)). We shall state this in the form of a lemma.

(5.5) Lemma Let @ be as above and let pe M. We suppose that X', ..., X"
are C™-vector fields on some neighborhood U of p and let X, ..., X', denote
their value at p. Let F(t), —¢ < t < g,and G(s), =8 < s < 8, be two C' curves
on M such that F(0) = p = G(0) and F(0) = Y, = G(0) is their common tan-
gent vector at p. Then

(%) b= (32) 053 3,
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that is. the two tensors on T,(M) defined by differentiating ® along each of the
curres is the same.

Proof Suppose that fis a C’ Tunction on U. Then /(1 (1)) is its restric-
tion to the curve F(r) and

(/) =)= s

Similarly restricting fto G(s), differentiating with respect to s, and evaluating
at s = 0 gives Y, /. Applying this to the function

flg) = O,(X)..... X;)
we see that in formula (5.3) the first term in case of either curve (and
derivative of ®) is the same, namely Y, (®(X', ..., X")). On the other hand,
by our original definition of Vy X for a vector field X in Chapter VII we
have Vy X = (D/d{(X}))o = (D/(I.\'(Xj,(s,))o: hence the other terms in
formula (5.3) agree also, which establishes the lemma. |

We denote the covariant tensor of order r on T,(M) which we have thus
defined from differentiation of ® along curves through p with Y, as tangent
at p by V, ®.

(5.6) Definition The covariant r tensor on T,(M) just defined,
Vy,®e .7'(T,(M)), is called the covariant derivative of ® at p in the
direction Y,.

According to the facts in the proof above, the covariant derivative is
given by the formula

(5.7) Vy, ®(X' ..o XT) = Y (D(X',.... X")
— Y DXLy XL X)),
i=1

where X' ..., X" are vector fields on a neighborhood of p. Only their values
at p affect the value of Vi, ® on T, (M).

(5.8) Theorem Given ®e .7 (M) as abore, then we may define on M a
C” -corvariant tensor field ¥ of order r + 1 by the formula

WXL N Y) = (Y, O)(XL, LX),

Proof In view of all that has been shown above it is only necessary to
prove two more facts: first that for each pe M, W, is linear in the last
variable - with the others fixed. Second, that for any C”-vector fields
X' ... X" Y. the formula above defines a C* function of p.
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The first fact is a consequence of the linearity in Y, of each term of (5.7)
as areal-valued function on T,(M). Thus, if we fix the vector fields X Lo X,
then the mapping T,(M) — R defined by (5.7)

Y, - (Vy @)X}, ..., X;)

is linear. On the other hand, it is clear that for C * -vector fields X!, ..., X";
Ythe function W(X!,..., X, Y)= (\y®)( X, ..., X,)is C™. |

It is not difficult to give formulas in terms of the components of @ in local
coordinates for the components of W. We shall give the formulas and leave
their verification as an exercise. We suppose that U, ¢ is a local coordinate
system with local coordinates x', ..., x", coordinate frames E, ..., E,, and
with Vg, E; = Y, T\, E,. Let @ be as above and let ®; ..., = ®(E;,, ..., E;)
be its components.

(5.9) Corollary With the notation above, the components

Vi g =Y(E;, ... E;. )
of ¥ on U are given by the formulas
0
\Pn....‘j”l:b; : Zr,,ﬂ,, kg k=1....n

Jret
i=1,.
(5.10) Definition A tensor field ®e 7 "(M) is said to be parallel alonq a
curve p(t) if D®/dt = 0 along the curve. It is said to be parallel if D®/dt =
along every curve on M.

We remark thatif Vy ® = 0 forevery X ,e T,(M)and all pe M, then it is
parallel; so in fact if it is parallel along geodesics, for example, then it will be
parallel. This follows from Lemma 5.5 and the fact that there is a geodesic
tangent to any given vector X ,.

We also note that if p(t), a < ¢ < b, is a curve of class C!, say, then ® is
parallel along p(t) if and only if it satisfies

d
Ht(d)(X,l, . X,’)) =0
for every set X}, ..., X/ of parallel vector fields along the curve p(t).

(5.11) Example Let M be a Riemannian manifold of constant curvature
K. Then, by definition, for any orthonormal pair of vectors X, Y, the
sectional curvature R(X,,Y,, X,,Y,) = —K. Suppose p(t) is any curve
through p with, say, p(0) = p. Let X, Y, be the uniquely determined

parallel fields such that X, = X, and Y, = Y,q,. Then X, Y,, is
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orthonormal at each p(t) and R(X ), Vo> X > Yon) = —K, a constant
independent of . It follows that for any parallel vector fields along p(¢) say
Xi,i=1234, that

I
;; R(X1, X2, X3 X#) = 0.

Indeed the values of all of the sectional curvatures uniquely determine the
curvature; thus the curvature is parallel if it is constant on parallel sections
n, along any curve p(t).

We might think that this is the only case in which the curvature tensor
R(X,Y.Z, W)is parallel, but in fact this is not the case as we shall now see.

(5.12) Theorem (Cartan) If M is a Riemannian symmetric space, then the
curvature tensor is parallel.

Proof We know that any isometry of a Riemannian manifold preserves
parallelism; it carries parallel vector fields, sections, and so on, along a curve
to parallel vector fields, sections, and so on, along the image. Moreover
isometries preserve the curvature,

R(X,, Y. Z,, W) = Rp (X » Yeipy s Zripy » Wrin)-

Finally isometries carry geodesics to geodesics. This is because each of these:
parallelism, curvature, and geodesics is defined in terms of the Riemannian
metric. Now to show that the curvature is parallel, it is enough to show that
it is constant on parallel vector fields along geodesics. However, if p(t) is a
geodesic, then the vectors X ), Yy, Z ), Wy of the parallel vector field
determined by X o). Yp0). .- are given by isometries t. of M according to
Theorem VIIL.8.7. Therefore the curvature is constant on parallel fields along

the geodesic p(t), which proves the result. |

It is important to realize that this is more general than constant curva-
ture. We have seen an example of a symmetric space—a compact semisimple
Lie group G with bi-invariant metric—in which the curvatures on various
sections n, at the identity vary between O (if there is an Abelian subgroup of
dimension two) and a positive maximum value (see Theorem 3.9). Thus G is
not isotropic, hence not of constant curvature in this metric, but it does have
parallel curvature. This raises the interesting question of how those Rieman-
nian manifolds with parallel curvature may be otherwise characterized or
described. The answer to this is given by the following two theorems which
will not be proved in this text but are quoted for use in the next section and
for their general interest. Proofs are given by Wolf [1, pp. 30, 42].
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(5.13) Theorem (Cartan) Let M be a Riemannian manifold with parallel
curvature. Then M is locally symmetric, that is, each point pe M has a neigh-
borhood U such that there is an involutive isometry a,: U — U with p as its
only fixed point.

Of course, a manifold may be locally symmetric without being globally
symmetric, that is, symmetric in the sense of our original definition of sym-
metric space. For example, Euclidean space or a sphere—with its usual
Riemannian metric—is no longer a symmetric space if a single point is
removed, since we have seen that a symmetric space is necessarily complete;
but it is still locally symmetric. Even if completeness is assumed, together
with parallel curvature, we still cannot be quite sure that the space is
symmetric—some restrictions on the fundamental group may be involved.
However, il the Riemannian manifold is complete and has parallel curva-
ture, then we may be sure that its universal covering (with the naturally
induced Riemannian metric) is a symmetric space. This is a consequence of
the theorem which follows. A proof of a more general version due to Hicks is
given by Wolf [1].

(5.14) Theorem (Cartan-Ambrose) Let M and N be complete, connected
Riemannian manifolds of the same dimension, each with parallel curvature, and
suppose further that M is simply connected. If pe M and ge N and
@: T(M) = T(N) is any linear mapping which preserves the inner product
and the curvature; ie., for arbitrary X » Yoo Z,, W,e T(M), we have
(o(X,), (), = (X, Y,), and
R(0(X,). 0(Y,) 0(Z,). 0(W,) = R(X,,Y,,Z,, W,)),

then there is a unique C* mapping F: M — N which has the properties:
(i) F(p) = g, (ii) F,: T,(M)— T(N) is the same as ¢, and (iii) F is a Rieman-
nian covering (that is, it is a covering such that F, is an isometry on each
tangent space—thus a local isometry).

Exercises

1. Verify the formula of Corollary 5.9.

2. Let ®(X, Y) be the Riemannian metric on M. Prove that V, ® = 0 for
every vector Z, at every point pe M.

3. Let o be a field of linear operators on M, that is, an element of 7 {(M),
so that at each p, o,: T,(M) — T,(M) is a linear mapping. Suppose for
any X € ¥(M) that o(X) e ¥(M) also. Define a derivative Vy o for o ata
poiznt p in the direction ¥,. Show that it will define a tensor field of type
T (M)

4. Using Exercise 2 and the special expression in local coordinates which
was given in Corollary 3.6 for R;;; on a manifold of constant curvature
K, show that the curvature tensor is parallel on any such manifold.
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5. Show that if an alternating covariant tensor @ is parallel, then the exte-
rior differential form to which it corresponds is closed. Is the converse
true?

6. Let X bea C™-vector field on a Riemannian manifold and ® be a tensor;
for definiteness let @ be the Riemannian metric tensor. Make a suitable
definition of the Lie derivative Ly ® and interpret L, ® = 0.

6 Manifolds of Constant Curvature

The manifolds of constant curvature, which we have introduced briefly in
previous sections, are on the one hand the simplest Riemannian manifolds
and yet on the other hand are sufficiently complicated to present a fascinat-
ing object of study. Classically they are the oldest known examples in the
sense that they include Euclidean space, the non-Euclidean spaces dis-
covered by Bolyai and Lobachevskii, and the spherical and elliptic spaces,
whose geometry was studied by Riemann (as examples of spaces in which no
parallel geodesics existed). In fact locally, the geometry of any space of
constant curvature is equivalent to one of these classical geometries as we
shall see. What makes these spaces particularly intriguing is that questions
about them can often be reduced to purely algebraic problems of an inter-
esting nature. In the short scope of this paragraph we can only give an
indication of the special flavor of this subject, but the books of Kobayashi
and Nomizu [1] and Wolf[1] contain many details for the reader who
wishes to go further.

We recall that a Riemannian manifold M is said to have constant curva-
ture if all sectional curvatures at all points have the same constant value K.
This implies that the curvature tensor is parallel and hence that the manifold
is locally symmetric according to Theorem 5.13, but the converse does not
hold since there are many symmetric spaces, for example any non-Abelian
compact Lie group with the bi-invariant metric, which are not spaces of
constant curvature. According to Corollary 3.6 and to Theorem 4.9, or at
least to its proof, it should be possible to give a characterization of Rieman-
nian manifolds of constant curvature in terms of differential forms. To this
end we suppose M to be a Riemannian manifold and let o', 1 < i< n,
denote the field of coframes dual to an orthonormal frame field E, ..., E, on
an open set U = M, with !, | < i,j < n, denoting the corresponding con-
nection forms. We then state the following lemma, whose proof is contained
in Theorem 4.9 and Exercise 1.

(6.1) Lemma If M has constant curvature K, then the curvature forms
Qf = dof + Y, 0t A are given by

Q= Ko Ao,
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Conversely, if on a neighborhood U of each point of M there is an orthonormal
frame field E,, ..., E, for which the uniquely determined w', w! satisfy this
equation, then M has constant curvature K.

We shall use this presently to give an example of a manifold of constant
negative curvature. Before doing so we recall that Euclidean space with its
standard Riemannian metric is a space of zero curvature and that the n-
sphere of radius a in R"*! with the induced Riemannian metric has constant
curvature K = 1/4%. Thus for every nonnegative real number K, we have
already found an example of Riemannian manifold of arbitrary dimension n
with constant curvature K. We shall next give an example of an n-
dimensional Riemannian manifold of constant curvature K = —1. A slight
variation (Exercise 2) will produce an example for any K < 0.

(6.2) Example (Hyperbolic space) Let M be the open upper half-space
of R" defined by M = {x e R"| x" > 0} with the Riemannian metric given by
the line element (see Section V.3)
is? = (d),c‘)? + 0+ (dX")
(x7)*

More precisely, we note that, as a manifold, M is covered by a single coor-
dinate system with local coordinates x',..., x" and coordinate frames
0/dx*, ..., 8/6x". This is because, as a manifold, M corresponds to an open
subset of R". In these local coordinates, the components of the Riemannian
metric ® are given by

gij(x) = ‘D(éxpa?j) = R

We use Lemma 6.1 to see that this manifold has constant curvature K = —1
as claimed. (When n =2, this is the Riemannian manifold of
Example VIL9.5.)

Let E; = x"(0/0x'), i = 1, ..., n; these define an orthonormal frame field
on all of M. We denote by w!, ..., w" the dual coframes which are given by

w' = (1/x")dx’, i=1,...,n. It is easy to verify that the forms
w! = 6,;0" — &, «’ satisfy the equations

n
do' = Y w'Awi and o + 0i=0;
i=1
hence they must be the connection forms since these are uniquely
determined by these conditions. Finally, taking the exterior derivative of w!
we obtain

o i
Ql =do] - Y vtrw] = —o'r
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Then from Lemma 6.1 it follows that M has constant curvature K = —1.
We call this hyperbolic space and denote it by H" (for its underlying space,
the “half-plane™).

Thus we have examples of spaces of positive, zero, and negative constant
curvature. Note that all three examples are simply connected: when K > 0,
our example was the compact manifold S" and, when K = Oor K = — 1, the
corresponding manifolds E" and H" are diffeomorphic to R". For conve-
nience, in what follows we suppose that $” has radius + 1 and hence K = + 1.
Since S$" is compact, it is complete; we also know E" to be a complete
Riemannian manifold; and we shall prove later that H" is complete. The
importance of these facts stem from the following theorem (which goes back
to much earlier work of Killing and Hopf).

(6.3) Theorem Every complete, simply connected Riemannian manifold M
of constant curvature K = +1,0, or —1 is isometric to one of the three
examples above, in fact to S" if K = + L,to E'if K = 0,andto H" ifK = — 1.
More precisely, given pe M, and q in either S", E*, or H" according to whether
K= +1.0, or —1, and given a prescribed linear map of T,(M) onto the
tangent space at q which preserves the inner product, then there is exactly one
isometry F of M to the corresponding space of constant curvature taking p to q
and such that F, corresponds to the given linear mapping on T,(M).

This is an immediate consequence of Theorem 5.14 once we know that
H" is complete—which is proved later. We remark that using Exercise 2 and
spheres S" of arbitrary radius, we may extend this theorem without difficulty
to spaces of any constant curvature. Although Theorem 5.14 is not proved in
this text, this consequence of it will be used. We have the following obvious
corollary of Theorem 6.3.

(6.4) Corollary Let M be S", E", or H" and let E,,, ..., E,,, E\,, ..., E,
be orthonormal frames at two arbitrary points p, q of M. Then there is a unique
isometry of M taking ptoqand E,to E,;,i=1,...,n

This shows that the group of isometries is transitive on M and makes it
plausible that in each of these cases it is a Lie group. We already know this
however for §", whose group of isometries is O(n + 1) and for E", whose
group of isometries consists of rotations and translations and their products
(Example IIL.7.6). The group of all isometries of H" will be studied only in
the special case n = 2, although some indication will be given of the general
situation.

In order to carry our study of these spaces somewhat further we make
some comments concerning covering spaces. If M is a Riemannian manifold
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and M a covering manifold with covering mapping F: M — M, then there is
a unique Riemannian metric on M such that F is a local isometry. When M
has this metric, the covering will be called a Riemannian covering. The fol-
lowing facts are quite easily verified from the definitions: (i) F carries
geodesics to geodesics and each geodesic on M is covered by a unique
geodesic on M; (ii) If M is complete, then M is also complete (convergence
of Cauchy sequences is a local phenomenon); and (iii) the covering transfor-
mations are isometries of M. With the aid of these facts one may reduce the
determination of manifolds of constant curvature to a group theoretic
problem—or at least make the first step in that direction.

(6.5) Theorem Let M be a complete manifold of constant curvature
K = +1,0,0r —1. Then the universal covering manifold M is isometric to 5",
E", or H", respectwely, and M is the orbit space of a subgroup I of the group of
isometries of M which acts freely and properly discontinuously on M.

The theorem follows from the fact that M is complete, simply connected,
and (since the covering mapping is a local isometry) has the same constant
curvature as M. We know from the theory of covering spaces that M = M/T’
and that the covering transformations I' act freely and properly discontin-
uously (as a group of isometries). We give some indication of how this may
be used by considering some examples.

Spaces of Positive Curvature

In order to find Riemannian manifolds of constant positive curvature
K = +1, it is necessary to find subgroups I' of the group of isometries of ",
the unit sphere, which act freely and properly discontinuously on S". The
isometries of S” are contained in O(n + 1) which acts in the usual way on the
unit sphere in R"*!, hence I' = O(n + 1). The assumption that I acts freely
means that no element of I', except the identity, leaves a point of S" fixed.
Thus if AeIl’ and A # I, A cannot have +1 as a characteristic value.
Moreover, I' must be a group of finite order, since otherwise there must be
an x € $" such that I'x = {Ax | 4 € '} has a limit point, which would contra-
dict the proper discontinuity. Thus we must find finite subgroups of
O(n + 1) no element of which (except the identity) leaves a vector x fixed.
This is clearly a necessary condition for I, it is also sufficient (Exercise 3).

The simplest example of a subgroup I' of O(n + 1) of the type described
is the group consisting of two elements, I' = {+ I}. The orbit space S"/T is
the collection of all antipodal pairs of points on S" and is, as we have
mentioned earlier, just the projective space P*(R) (Example I11.2.5 and
Exercise 111.2.3). Thus for every n we have at least two inequivalent spaces of
constant curvature—real projective space and its universal (Riemannian)
covering space S". When n is even, we have the following fact.
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(6.6) If n is even, then S" and P"(R) are the only complete manifolds of
constant curvature K = — 1.

Proof This is seen as follows. Let I' be a properly discontinuous group
of isometries acting freely on S". Then I’ « O(n + 1) and each 4T is an
(n + 1) x (n + 1) orthogonal matrix. Therefore A must have a real charac-
teristic value since the degree of its characteristic polynomial is an odd
number n + 1. Since the characteristic values of an orthogonal matrix are of
absolute value one, A has +1 as a characteristic value. We have seen that
only the identity on I can have + 1 as a characteristic value, hence —1is a
characteristic value of A. This implies that A2 has + | as characteristic value,
so A2 = I. This means that each of the characteristic values of 4 is either + 1

or —1, and hence, cither all are +1and A = I,orallare —land 4 = —1I.
This completes the proof when combined with the example mentioned
above. ]

(6.7) Example When nis odd, other possibilities can occur. As an indica-
tion we will show that in the case of S* there exist many examples of finite
subgroup I' = O(4) which act freely on S* and thus give manifolds S*/T" of
constant positive curvature. The examples are based on the algebra K of
quaternions, that is, on the real linear combinations

q=x+ yi+ zj + vk

of the four symbols 1, i, j, k with the usual rules of multiplication and with
componentwise addition (see Chevalley [1]). We denote by g, the conjugate
of q,

q=x—yi—zj —wk

and by |/q|| the usual norm ||q|| = (qq)"’>. Then K is in obvious one-to-one
linear correspondence with R* and this corresponds to the standard norm in
R*. Hence K, = {q| |/q|| = 1}, the quaternions of norm one, correspond to
S* < R* As usual we identify K and R* as vector spaces and as manifolds
and we identify K, and S* as manifolds. The important thing for us is that K,
is a group with respect to quaternion multiplication, since |g,q,| =
lg:llllgz]l- Thus, if ¢ K,, then left translation L,: K — K defined by
Ly(x) = gx is an R-linear mapping of K onto K and preserves the norm of x,
that is, ||Ly(x)|| = ||x||. This means that as a linear transformation of
K = R*, L, is an orthogonal transformation. In brief, $* = K, is a group
space and left translations are orthogonal transformations, in fact isome-
tries, of S* with its usual Riemannian structure. Since no left translation
except the identity can have a fixed point, we need only find examples of
finite subgroups I' of K,—each such example determines a three-
dimensional manifold of constant positive curvature and they are all
determined this way.
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To find finite subgroups of K, one uses the following fact (Exercise 4).
There is a natural homorphism n: K, — SO(3) which is onto and has kernel
+1 (+1 is the unit quaternion). This homomorphism is given as follows:
Let R® be identified with the subspace of K of all quaternions of the form
q = yi + zj + wk, with real part x = 0. Then to each q' € K, we let corre-
spond the rotation n(q’) of R* given by q — q'q(q’)”'. Now given any finite
subgroup I'; = SO(3), then I' = z~ (') is a finite subgroup of K. Such
subgroups of SO(3) are easy to find—the group of symmetries of any regular
solid (omitting those of determinant — 1) give examples. The problem of
classifying all complete spaces of constant positive curvature has recently
been completed by Wolf [1]; classification of the finite subgroups of K| and
of SO(3) is carried out as an example on p. 83fT of his book.

Spaces of Zero Curvature

Now consider the Riemannian manifolds which have Euclidean space of
the same dimension as their universal Riemannian covering space; they are
the (complete) spaces of zero curvature. Thus they are of the form
M = E"[T, the orbit space of a subgroup I of the group of isometries (rigid
motions) of E". If we identify E” with R" and use vector space notation, then
each isometry is of the form x — Ax + b, where 4e0(n) and
b = (b',..., "), and determine, respectively, a rotation and translation of
the space (Examples I11.7.6 and 1V .9.4). Since, locally at least, the geometry
of any such M is just that of Euclidean space, these spaces might seem to
lack interest. This is not the case however; in particular, the global behavior
of geodesics is very different from that of geodesics in E". We have already
noted this in the case of two examples: the cylinder, which is just E2/T" with
F={x—>x+nee =(1, 0), neZ), and the torus T? obtained as the
orbit space of the group of translations {x — x + ne, + me, |n,me Z,
e, = (1,0), e; = (0, 1)}

Historically the study of these spaces is closely linked to that of the study
of crystal structures on the plane E? and in Euclidean space E>, that is, to
uniform coverings of the plane by congruent polygons and of E* by congru-
ent polyhedra. It is fairly easy to convince ourselves that the symmetries of
such crystalline structures—rigid motions carrying the structures onto
themselves—form a subgroup I' of the group of rigid motions which acts
properly discontinuously (Fig. VIIL9). Elements of such groups may well
have fixed points however, so these groups are somewhat more general than
those which generate examples of manifolds of zero curvature. It was proved
in the 19th century by several mathematicians independently (by
classification of all possibilities) that there were only a finite number of
crystal structures on E*. This gave rise to the question posed by Hilbert [2]
in his famous address of 1900 as to whether the number of possible isomor-
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Figure VIIL9

phism classes of properly discontinuous groups of motions I" of E* for which
the orbit space E™/I" is compact is finite for every n. These are called crystal-
lographic groups, and Hilbert’s question was answered affirmatively by
Bieberbach [1]in 1911. This implies, in particular, that for every dimension n
there exist at most a finite number of compact Riemannian manifolds of
curvature zero. Among these, of course, is the torus T", and it is a con-
sequence of Bieberbach’s work that every such manifold has the torus as
covering space. The proof of these theorems involves very interesting group
theoretic arguments; it may be found in the books of Kobayashi and
Nomizu [1] and Wolf [1]. In the latter book a complete classification of the
manifolds of zero curvature in dimensions 2 and 3 is given; no general
classification for all n is known.

Spaces of Constant Negative Curvature

First we consider H? as given in Example 6.2, except that we shall write
(x, y) for (x', x?) and identify H? with the upper half-plane of the complex
numbers C by the correspondence (x, y) < z = x + iy. Then H? is the open
subset of C, consisting of all complex numbers z with positive imaginary part
Imz > 0. We may then write the Riemannian metric, or line element
ds* = Y7 -, gi;dx" dx/, in the complex or real form
, dzdz  dx* + dy?
ds* = — |, = , -
(Im z) y

We have already considered this Riemannian manifold and its isometries
(Example VIL.9.5). The reason for passing to complex coordinates is that it
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makes it much simpler to define and work with the group of isometries. Of
course, other representations of H? and its group of isometries are often
used-—some of which extend to H" for all n, but the technical difficulties
would be greater for us at this stage (see Wolf [1, Section 2.4]). Recall that
mappings on C of the form z+— w = (az + b)/(cz + d), a,b,c,de C such
that ad — bc # 0, are isometries of H?; in analytic function theory they are
called linear fractional transformations (see Ahlfors [1] for example). The
following theorem restates Example VI1.9.5 and adds a little to it.

(6.8) Theorem The group G of linear fractional transformations such that
a, b, ¢, d are real numbers and ad — bc = + 1 is exactly the group of isome-
tries of H? identified with the upper half-plane of C. The mapping
F:SI(2, R) > G defined by letting the matrix (°%) correspond to the linear
fractional transformation zv w = (az + b)/(cz + d) is a homomorphism of
SI(2, R) onto G with kernel +1.

Proof Except for the assertion that this group contains all of the isome-
tries, these statements were all proved, or given as problems, in
Example VIL.9.5. To review briefly the arguments, which the reader should
check in detail, we note that the last statement is verified by a straightfor-
ward computation. Whereas to see that the first statement is correct, we note
that if w is the image of ze H? by a transformation of G, then

Imz >
lez + df?
so that the upper half-plane maps onto itself. If we compute dw, we find that
dz

(cz + d)?

Imw= 0

from which it follows that

dwdw _ dzdz
(Imw)?> ~ (Im z)?

so that ds? is preserved—a shorthand way of seeing that the components of
g;; transform as they should for an isometry. [Of course, this mapping could
be given in terms of real and imaginary parts, that is, the functions, u(x, y)
and o(x, y), such that w = u(x, y) + iv(x, y) could be computed and the
mapping written without use of complex variables; but the computations
become much more difficult.] In order to see that this group G contains all
isometries, we recall first that it acts transitively on the upper half-plane and
second that it is transitive on directions. Indeed, in the example cited it was
shown that the orbit of i = ./ —1 is all of H?, which implies transitivity and
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that the isotropy subgroup of i consists of elements of G corresponding to
matrices in SI(2, R) of the form

cos @ sinf
—sinf cos ()

This subgroup of G is transitive on directions at i; in fact it acts as SO(2) on
the tangent space to H? at i. These facts together with Corollary 6.4 prove
the assertion. |

We note that angles on H? in terms of the given Riemannian metric are
the same as angles on R2, moreover—as is well known—linear fractional
transformations are analytic mappings on the complex plane and as such are
conformal, that is, they preserve angles between curves. We will also use
from complex function theory the fact that linear fractional transformations
carry circles and straight lines of C into circles and straight lines (see
Ahlfors [1]). Thus any circle which is orthogonal to the real axis will be
carried by any element of G into a circle orthogonal to the real axis or a
vertical straight line. We have left it as an exercise to prove that vertical
straight lines are geodesics of H2. Then it follows rather easily that any circle
orthogonal to the real axis is also a geodesic. In fact a little simple Euclidean
geometry (Fig. VIIL.10) shows that through a given z, € H? there is exactly

Y

o]

Figure VI1IL1O

one circle (or vertical line) tangent to each direction at z, and orthogonal to
the real axis. Since isometries take geodesics to geodesics, this gives every
geodesic through z,. One important consequence is that every geodesic can
be extended to infinite length so that H? is seen to be a complete metric
space. It is sufficient to check this for just one geodesic, namely,x =0,y = ¢,
0 < t < co. The length of this geodesic from t = ato t = b is |5 dt/t so it is
unbounded in both directions, that is as a — 0 or b — oo, which shows it is
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indefinitely extendable. We also saw in Section VIL.9 that H? is an example
of a symmetric space, which means that it must be complete
(Theorem VII.8.4). We have previously noted that H? is the space of non-
Euclidean geometry and that it is easy to see from this description of
geodesics that Euclid’s postulate of parallels is not satisfied (although all the
other postulates of Euclid are!). This is illustrated in Fig. VII.15. This behav-
ior of geodesics should be contrasted with that on $? and P*(R), spaces of
constant positive curvature on which every pair of geodesics intersect—twice
on §? and once P?(R).

We turn now to consideration of H", n > 2 as described in Example 6.2
and use this information to verify that H" is complete. First we note that any
translation of H" in a direction parallel to the plane x” = 0 is an isometry.
The same holds for a rotation of the underlying R" which leaves x” fixed, in
other words, a linear transformation of the variables x!,..., x""! with
orthogonal matrix is an isometry. Thus any 2-plane determined by a point
xe€ H" and unit vector X, at x can be carried to the submanifold
H? = {xeH"|x'" =---x""! = 0} by an isometry of H". If we then verify
that geodesics of H? are geodesics of H" (Exercise 10), it will follow from the
above facts concerning H? and known properties of geodesics that every
geodesic of H" can be extended to infinite length. This means that H" is
complete; it also means that the geodesics of H" are exactly the semicircles
whose center lies on the (n — 1)-plane x” = 0 and whose plane is perpendic-
ular to it.

The geometry of H? is extremely useful in analytic function theory and
the subgroups I' of G which operate properly discontinuously on H? are
extensively studied in automorphic function theory (see Lehner [1] and
Siegel [1]). In fact automorphic functions are precisely those complex analyt-
ic functions on H? whose value is the same at each point of the orbit of some
such I". Thus they define functions on H?/T, the space of orbits. This is
analogous to doubly periodic functions on C which take the same value at
each point of the orbit of a group I of the form I' = {z = z + mw, + nw,}
for (independent) w;, w, € C and thus define functions on C/T' = T2 The
best known automorphic function is the one associated with the subgroup of
G for which a, b, ¢, d are integers in each linear fractional transformation,
that is, the image of SI(2, Z) = SI(2, R) under the homomorphism of
Theorem 6.8. This group is known as the elliptic modular group. It acts
discontinuously on H? but some elements have fixed points; however, it
contains subgroups which act freely and thus determine a manifold H?/T" of
curvature K = — 1. Using analytic function theory or the geometry of H?, it
is possible to show that there exist subgroups I' of G acting freely and
properly discontinuously so that H2/T" is a compact manifold; in fact every
surface of genus g > 1 can be obtained in this manner and hence every such
surface has a Riemannian metric for which the Gaussian curvature is con-
stant and equal to — 1. For n > 2, it is much more difficult to find subgroups
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I' of the group of isometries of H" such that H*/I" is a compact manifold; in
fact this is an area of active research at present and has many interesting
unsolved problems.

1.

12.

Exercises

Prove Lemma 6.1 in detail, using the known facts about curvature
forms and equations of structure.

Let a be any positive real number and let M be the subspace of R" such
that x" > 0. Then the Riemannian metric on M given by g,(x) =
(a?/(x")?) 8,; has constant curvature K = —1/a%.

Show that if I" is a finite subgroup of O(n + 1), which has the property
that no A eI except I, the identity, has + 1 as a characteristic value,
then I' acts freely and properly discontinuously on S".

Show that a discontinuous group of isometries of a Riemannian mani-
fold is necessarily properly discontinuous.

Show that the homomorphism n: K; — SO(3) of Example 6.7 is indeed
a homomorphism onto SO(3) with kernel + 1 as claimed.

Let G be a connected Lie group and K a compact subgroup, and
suppose that G acts on G/K by left translation (in the usual way). Show
that a subgroup I' of G acts properly discontinuously on G/K if and
only if it is discrete. Show that if I" has no elements of finite order, then
it acts freely. Apply this to G, the group of motions of E" [with
K = 0(n)].

Does a rigid motion x — Ax + b, Ac O(3) and b = (b!, b%, b*), of the
space E? identified with R have a fixed point?

Show that the subgroup I' of rigid motions of R? generated by transla-
tions x — me,; + ne, + pe;, m,n,pe Z and e,, e,, ey, the standard
basis, together with the motion x — Ax + de,, where A(e,) = e,,
A(e,) = —e,, and A(e;) = —e;, acts freely and properly discontin-
uously on R* and that R*/T is compact.

Show that vertical lines x = constant on the space H* are geodesics.

Compute T'%; for H" [using the natural coordinates (x', ..., x")] and
show that a geodesic of the submanifold H* = {er"|
x! == x""2 =0} is a geodesic of H".

Show that the group I of linear fractional transformations of the form
w = (az + b)/(cz + d), a, b, ¢, d, integers such that ad — bc = 1, acts
properly discontinuously on H? but that it does not act freely.

Let K be a real number and let p = 1 + (K/4) Y7, (x')%. Prove that if
a Riemannian metric is given on a coordinate neighborhood U, ¢ of an
n-dimensional manifold M, ¢(U) = B(0), (for some ¢ > 0) by

1
gij(x) = p’i 5;’1 s

then on U this metric has constant sectional curvature K.
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Notes

The ideas touched upon in this chapter and the previous one span the entire history of
differential geometry, from the early work of Gauss[1] and Riemann [1] through that of
Cartan [1] right down to the present. Given the scope of the subject, its treatment here was
necessarily both selective and brief. However, for readers who wish to go further into some of
the topics we have touched upon in Chapters VII and VIII, there are many excellent books
available, of which we shall mention several. For surface theory both Stoker [1] and O’Neill [1]
are very helpful. Both of these books are geometric and intuitive in approach yet lead directly
toward the current work in manifolds of arbitrary dimension, whereas many other books on
“classical” differential geometry do not. For the reader who wishes to delve more deeply into
the subject of spaces of constant curvature, the book by Wolf[1] is an excellent source,
especially for the zero and positive curvature cases. It also contains a very complete bibliog-
raphy. A good introduction to the sort of problems one will encounter in spaces of negative
curvature may be found in such books as those by Lehner [1] and Siegel [1], which deal
exhaustively with the two dimensional case and its relations to Riemann surfaces and automor-
phic function theory. For Riemannian Geometry in general, the encyclopedic two volume work
of Kobayashi and Nomizu [1] contains a wealth of information and a very complete bibliog-
raphy. For questions concerning symmetric spaces, the reader is referred to Helgason [1],
which also has an extensive bibliography. These, together with Milnor [1] will give some idea of
the current thrust of the theory and of its richness and diversity.

Most of the current interest in Riemannian geometry is in what are known as global
problems, which in very many cases are concerned with the relation of (often purely local)
properties of the curvature of the Riemannian metric of the manifold to its global geometric
structure, for example, to its topology, Euler characteristic, and so on. As an epilogue to this
chapter we shall mention several famous results along these lines which we did not have the
time or space to take up although they are easily accessible to the reader at this point. There are
a number of results which draw conclusions about the manifold from the assumption that it has
a Riemannian metric whose sectional curvatures are all of the same sign—but not necessarily
constant. For example, if they are all greater than a positive constant ¢, then the manifold is
compact. Since its universal Riemannian covering manifold necessarily has the same property,
it must also be compact, from which we can conclude that the fundamental group of the original
manifold is finite. On the other hand, it has been shown that if the sectional curvatures of a
Riemannian manifold are all negative, then the universal covering manifold must be diffeomor-
phic to R", a fact which has strong implications for the deRham groups of the manifold. Many
beautiful results of this type may be found in Milnor’s book [1], which is highly recommended
for further reading. It is not evident from the two examples cited, but it is a fact that the
influence of the curvature on the structure of the geodesics is crucial to many such results. In
addition to Milnor's book, the reader will find many interesting results of this sort—and with
less emph‘asis on topology—given by Bishop and Crittenden [1].

As a final example we mention the famous classical theorem of Gauss and Bonnet which
gives the following relation between the Gaussian curvature K and Euler characteristic x of a
compact orientable surface M:

2ny = J. K dA (dA = area element on M).
M

This has many interesting consequences. For example, if M has a Riemannian metric such that
K > 0 everywhere, then it is homeomorphic to S, and if the metric is such that K < 0 every-
where, then it must have genus g > 1, that is, it must be homeomorphic to a sphere with two or
more handles attached. A proof of this theorem is given in both of the books on surface theory
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referred to above. The generalization of the theorem to higher dimensions is not easy and
requires some use of algebraic topology. In fact, this theorem resisted generalization for many
decades and its extension to higher dimensional Riemannian manifolds by Allendoerfer-Weil
and by Chern [3, 4]—especially Chern’s method of proof—led to many new problems in differ-
ential geometry and to the discovery of further important relations between the Riemannian
geometry and the topology of manifolds.
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A

&, alternating mapping, 202
A*, transpose conjugate of complex
matrix, 353
A’, ' A, transpose of matrix, 84, 148, 182,
353
Acceleration of moving particle, 300
Action of group on manifold, 90-96, 122,
164
effective, 90
free, 94
(properly) discontinuous, 96
transitive, 92-93, 164-171
Ad g, adjoint homomorphism, 242
Adjoint representation of Lie group, 243
Admissible neighborhood of covering, 101
Almost continuous function, 227
Alternating tensor, 201
Antipodal map of $"~!, 280
Approximation theorems, 195, 285-6
Weierstrass, 195

Arc length, 185-6
as parameter, 297
Asymptotic direction on surface, 370
Automorphisms
of Lie algebras, 242
of Lie groups, 242
Autonomous system of differential
equations, 130

BY(M), exact forms, 271
B(x), B/(c), open ball of R", 2
Basis
canonical (natural), 2
dual, 175
of vector space, 1-3
of covariant tensors J"(¥), 198-9
oriented, 213
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Bilinear form, 181-5

induced mapping of, 183

skew symmetric, 182

symmetric, positive definite, 182
Binormal to space curve, 299
Brouwer fixed point theorem, 278
Bundle, see Tangent bundle

C

C*, multiplicative group of complex
numbers, 82
C’, C* differentiability class, 21-22, 66
C*-compatibility, 52
C® function, 22, 66
C® mapping, 66
C*=(a), C(p), germs of C*-functions at
a, p, etc., 32, 107
C*, real analytic functions, 24
C'(U), C*(U), C*(M) differentiable
functions on U or M, 22, 106
C%(x), C/x), open cube of R", 2
¢(A), Jordan content of a set, 227
Canonical basis of R", 2
Center of a Lie algebra, 286, 384
Chain rule, 23
for mappings, 27
Change of variables in integration, 230
Characteristic function of a set, 228
x(M), Euler characteristic, 14, 410
Closed differential form, 271
Coframes, 177
Complete integrability, 157
Complete vector field, 140
Components
of a bilinear form, 182
of a covector, 176
Connected sum of manifolds, 255
Connection, 313-315
connection forms, 324, 386
restriction of, 315
Riemannian,314
Constant curvature, manifold of, 382,
399-409
Constant vector field, 319
Content zero
in R", 227
on a manifold, 232
Contractible space, 267
Contracting mapping theorem, 43
Coordinate coframes, 177

INDEX

Coordinate frames, 109
Coordinate neighborhoods, 52-56
open balls and cubes, 55
Coordinates
local, 10
oriented, 215
Coordinate function, 52
Coset space, 94
group action on, 164
Covariant derivative, see Differentiation of
vector fields
Covariant tensor field, 199-203
induced mapping of, 200
Covector, tangent, 175-176
field, 176
Covering
locally finite, 11, 191
refinement of, 11, 191
regular, by spherical (cubical)
neighborhoods, 192
Covering manifolds, 100, 286-292
isomorphism of , 289
Covering map, 101
Covering transformation, 102
Cube, on a manifold, 234
Curvature
of plane curve, 301
Riemannian, 321-325
forms, 386
sectional curvature, 380, 389
symmetries of, 379
of space curve, 298
of surface, 18, 370
Curve
differentiable (C"), 22
Cutting and pasting of manifolds, 11-14, 255

D

¥, connection on a manifold, 313

V'Y, restriction of a connection, 315

Vx Y, covariant derivative, 310-312

oH", oM, boundary of H", M, 249-250

af, ..., ™ie(x', ..., x"), Jacobian
matrix, 26

a/ox*, natural frames of R", 36

i), interior of D, 228

D(a), 2(U), algebra of derivations, 33, 40.
107

DF, DF(x), Jacobian matrix, 27
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d, d, exterior derivative, 218
dp/dt, tangent vector to curve p(r), 125
(D/dr) (dp/dt) = 0, equation of geodesic,
326-327
DX/dt, DY/dt, covariant derivative, 305
dZdr, derivative of vector field, 296
d(p, ) metric on Riemannian manifold,
187
ds?, metric tensor, 186
df, differential of function, 178
dx!, coordinate coframes, 180
Deck transformation, 102
Dependent functions, 50
A, distribution, 158
81, Kronecker delta, 175
de Rham group, 271
de Rham’s Theorem, 272
Derivation(s)
on C*(u), 39
into R, 33
Derivative
exterior, 217-221
properties of, 218
of vector field, 311
Diffeomorphism, 67
on open sets of R", 41
Differentiable functions
in weak sense, 21
on Euclidean space, 21-25
on manifolds, 65-66
Differentiable manifold, see Manifolds
Differentiable mappings
composition of, 28, 67
on Euclidean space, 25-28
on manifolds, 65-67
Differentiable mapping, weak sense, 26, 67
Differentiable submanifold, see
Submanifold
Differentiable structure, 53
Differential equations, systems of, 131-137
existence theorem, proof, 172
Differential forms, 207-212
closed, 224, 271
exact, 224, 271
exterior, 211
Differential of function, 177
Differential of mapping, 108
Differentiation of vector fields
along curves in R", 294
covariant differentiation, 305, 310-312
Lie derivative, 152
on submanifolds of R", 303-313

Directional derivative as tangent vector,
32
Discrete group, action of, 95-100
Distribution, on a manifold, 158
involutive, 158, 222
local basis of, 158
Divergence theorem, 259
Domain of integration
in R", 227
on a manifold, 232
Double of manifold with boundary, 252
Dual basis, 175
Dual vector space, 175
Dynamics of moving particle, 300

E

E, F, G coefficients of first fundamental
form, 239
E,, E,,, E, coordinate frames, 30, 109,
117
E", Euclidean space, 4
e'X, one-parameter group of matrices, 147
e*, exponential of a matrix, 146
Effective action of a group, 90
Einstein manifold, 383
Equivalence relation, open, 60
Equations of structure, 387
Euclidean space, 4-6
Euclidean vector space, 2
Euler characteristic, 14, 410
Euler’s formula for surfaces, 367
Exact differential form, 271
Exponential of matrix, 146
Exponential mapping
on Lie groups, 148
on Riemannian manifolds, 333
Exp X,, exponential mapping, 333
Exterior algebra, 209
induced mapping of, 211
Exterior differential form, 211
Exterior differentiation, 217-221

F

F(1), tangent vector to curve, 125

F,, F*, linear mappings induced by F,
107, 119, 179, 182, 200

F, (d/dt), tangent vector to curve, 111

/. fexpressed in local coordinates, 65



420 INDEX

£, g, lift of a mapping, 286
f g, product of paths, 265
F(k, n), k-frames in V" 63
Fixed point
of group action, 92
of mapping, 278
Flags, space of, 171
Forms
bilinear, 181-185
connection, 324, 386
curvature, 386
exterior differential, 207-212
Flow, 126
Frames
coordinate, 117
field of, 38
orthonormal, 95, 325
parallel, 295, 319
space of, 93
Free action of group, 94
Frenet-Serret formulas, 297
Frobenius' theorem, 159, 221-224
Fundamental forms of a surface, 366
Fundamental group, 266

G

G/H, homogeneous space, coset space, 94,
164
G(k, n), Grassmann manifold of k-planes
in R", 63, 167, 358
Gl(n, R), general linear group, 56
4.5, coefficients of metric tensor, 186, 316
T, discrete group, 95-96
'Y, Ty, Christoffel symbols, 309,
317-318
Gauss~Bonnet theorem, 410
Gaussian curvature, 18, 370
Geodesics, 189, 308, 326-331
as one-parameter subgroups, 351
minimal, 342
Geodesic sphere, 340
Germs of C* functions
in R", 36
on manifold, 114
G-invariance, 123
Grassman algebra, see Exterior algebra
Grassman manifolds, 63, 167, 358
Green’s theorem, 258
Groups, see Action of group on manifold;
discrete groups; Lie groups

H

H, mean curvature of surface, 370
H?, half-plane as hyperbolic space, 166,
357, 405

HYM), H*(M), de Rham groups, 271
HA*M), invariant de Rham groups, 282
Hl

half space of R", 11, 249

hyperbolic space, 400
Homogeneous space, 164-171
Homomorphism, see Lie group
Homotopy, 263-264

of mapping, 263

of paths and loops, 265-266
relative, 264
Homotopy operator, 274
Hopf-Rinow theorem, 343
Hyperbolic space, 166, 400

I

J, homotopy operator on A(I x A), 274
I,, inner automorphism, 242
I(p), 133
Iy, I, 130
iy, 224
Ideal, of an exterior algebra, 224
Imbedding, of manifolds, 69-74
in R"
compact case, 194
general case, 195
Immersion of manifolds, 69-74
Infinitesimal generator, see One-parameter
group action
Initial conditions for differential equations,
130
Inner product, seealso Riemannian manifold
on vector space, 2, 182
Integrable functions, 228, 233
Integrable n-form, 233
Integral curve, 125
Integral manifold of distribution, 158
maximal, 162
Integral of function on Riemannian
manifold, 237
Integral of n-form on manifold, 235-236
on R* 236
Integration on manifolds
Lie groups, 241-247
manifolds with boundary, 248-256
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Riemannian manifolds, 237

surfaces, 238
Int M, 250
Invariance of domain (Brouwer), 10, 28
Invariant forms on Lie groups, 243, 282
Invariant metric on Lie group, 244, 349
Invariant vector field, 119

G-invariant, 123
Inverse function theorem, 41-46
Irreducible representation, 247
Isometric surfaces, 374
Isometries, group of, 349

of Euclidean space (rigid motions), 92

166, 404

of H?, 357-358, 406

of $", 402
Isometry of Euclidean vector spaces, 2
Isometry of Riemannian manifolds, 189,

323

local isometry, 398
Isotropic Riemannian manifold, 382
Isotropy subgroup, 94
Iterated integral theorem, 229

J

Jacobi identity of Lie algebras, 150
Jacobian of a mapping, 25-26
Jordan content, 227

K

K, Gaussian curvature of surface, 371
K, quaternions, 403

Io(, interior of X, 191

K(m), sectional curvature, 380

ki, k1, principal curvatures to surface, 366
k ., characteristic function of A4, 228

k(s), curvature of space curve, 299

k(s), curvature of plane curve, 301
k-frame of R", 63

Klein bottle, 13

L

L,, R,, L,, left and right translations on
Lie group, 84, 120

Ly on A(M), 224

Ly Y, Lie derivative of vector field, 152

1, m, n, coefficients of second fundamental
form, 365-366
A(M), algebra of differential forms on M,
212
A(M), invariant forms on M, 282
A(V), exterior algebra of V¥, 209
A(V), r-forms on ¥, 201
Lattice, integral, 85, 99
Leibniz rule, 33
Length of curve, see Arc length
Lie algebra, 150
homomorphism of, 154
group of automorphisms of, 242
of Lie group, 154
of subgroup, 155
of vector fields on manifold, 149-156
Lie derivative, 152, 224
Lie group, 81-89
compact
bi-invariant metric, 244
bi-invariant volume, 244
integration on, 241-247
de Rham groups of, 282
homomorphism of, 85
left invariant metric, 244
representation of, 243
subgroup of, 87-88, 142
Lift of mapping, 286
Line integral, 261
independence of path, 268
Linear fractional transformations, 406
Linear mapping, dual of, 175
Linear transformations, field of, 204
Local one-parameter group action, 126
Loops, product of, 265

M

M o(R), n X n real matrices, 56, 59
M ..(R), m x n real matrices, 56, 59
M, covering manifold of M, 100, 286-292
m(A), Lebesgue measure of set, 227
Manifold with boundary, 11, 250
double of, 252
Manifolds
abstract, 14
differentiable, 52-59
imbedding in R", 194-195
orientable, 13, 213-217
topological, 6-11
two-dimensional, classification of, 14
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Mappings
of Class C*, 26, 65
differentiable (C*) on manifolds, 65
on R", 25
smooth, 26, 66
Mean value theorem, 23
for mappings, 26
Measure zero, set of, in R", 227
on a manifold, 232
Metric, Riemannian, 184
Minimal surface, 372
Mobius band, 13
Monkey saddle, 372
Motions, rigid
(isometries) on hyperbolic plane, 406
(isometries) on R", 92, 166, 404

N

N, unit normal to surface, 362
Natural basis of T,(R"), 2, 30
Natural isomorphism, tangent spaces to
R, 29
Neighborhood, see also Coordinate
neighborhoods
admissible neighborhood, 101
Norm, of vector, 3
Normal coordinates, 335
Normal section of surface, 367
Normal space to submanifold, 304
Normal vector to curve, 299
Normal vector to surface, 362
O(n), orthogonal group, 84

o

3, volume element, 213-214
Q,, curvature forms, 386
w', coframes, dual basis, 175
w!, w!, connection forms, 325, 387-388
One-parameter group action
basic theorem, 135
examples of, 138-145
global, 127, 135
infinitesimal generator of, 122
local, 126
One parameter subgroups of Lie groups,
145-149, 352
Orbit of group action, 92
of one-parameter group, 124, 127

INDEX

Orbit space of group action, 93

Order of differentiation, interchange of,
24, 321

Ordinary differential equations, 130-137,
172-173

Orientation of manifold, 214

of vector space, 213
Oriented basis, 213

P

P"(R), real projective space, 15, 61
Paracompact space, 11, 191,
Parallel curvature tensor, 397
Parallel displacement of vector field, 319
Parallelizable manifold, 118
Parametrization
of manifolds, 68
of submanifold, 308
of surface, 112
Partial derivatives, 21
differentiability and, 21-22
independence of order, 24
Partition of unity, 191-197
applications of, 193-195
Path, 265
D7, 202
m(M, b), fundamental group, 266
Planar point, 367
Poincaré half-plane, 357-358, 405
Positive curvature, spaces of, 402
Principal curvatures, of surface, 366-368
Principal directions, 368
Projective space, real, 15, 61
Proper mapping, 81
Properly discontinuous action of a group,
96, 104

Q

Quaternions, 403
Quotient space, 60
Quotient topology, 60

R

R, real numbers, 1

R, real numbers as additive group, 122

R*, multiplicative group of real numbers,
63, 82
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R, n-tuples of real numbers, 1-3
R(X, Y), R(X, ¥) -2, curvature operator,
323
R(X, Y, Z, W), curvature tensor, 323
Rlxis Ripu, coefficients of curvature tensor,
323, 380
Rank of differentiable mapping, 47, 69, 110
Rank of linear transformation, 47
Rank of matrix, 46
Rank theorem, 47-49
Reai analytic function, 24
Regular covering, by spherical (cubical)
neighborhoods, 192
Regular domain, 25i
Relatively compact set, 231
Representation, of Lie group, 246-247
orthogonal, 246
semisimple, 247
Restriction of a differential form, 257
of covector, 180
Riemann integral, properties of, 228
Riemannian geometry, fundamental
theorem of, 314
Riemannian manifold, 184-185
as metric space, 187
differentiation on, 3i3-319
volume element of, 217
Riemannian metric, existence of, 193
Rigid motions, group of, 89, 92
see alse lsometries

S

&, symmetrizing mapping, 202
S$1, 82, 8" circle, 2-sphere, n-sphere, 7, 57,
80
SI(2, R), acting on H?, 357
Si(n, R), special linear group, 84
SO(m), special orthogonal group, 349
S(X,), shape operator, 363-364
Section
of tangent bundle, 337
on coset space, 165
Sectional curvature, 380-381
geometric interpretation, 389
Semisimple Lie group, 384
sgn o, sign of a permutation, 201
Shape operator, 364
o-compact space, 191
a,, involutive isometry, 347
Simple connectedness, 265

423

Slice
of coordinate neighborhood, 158
of cubical neighborhood, 74
Smooth structure, 53
Sphere as manifold, 57, 80
Starlike set, 23
Stokes's theorem, 257
Subgroup
discrete, 98
isotropy, 94, 165
Subgroup of Lie group, 87-88
closed, 88
one-parameter, i42
Submanifold, 73-77
imbedded, 73
immersed, 70
open, 56
regular, 77
Submanifold property, 75
Support of function, 192
Surface in Euclidean space, 14
geometry of, 362370
Symmetric Riemannian manifold, 347-352
examples of, 353-359
Symmetries of curvature tensor, 378-380
System of differential equations, 130-137
autonomous, 130
existence of solutions, 130, 172-173
general case, 136
with parameters, 136

T

FTUV), T(V), T(M), 198, 200, 206
T2, 17, torus, 7, 57, 80, 82
T(M), T(S?), T(R™, 16, 115-116, 331-332
T, (M), T,(R"), tangent space at point, 8,
29, 32, 106
T, N, B, tangent, normal, binormal, 299
Tangent bundle, 16, 115-116, 331-332
sphere bundle, 18
Tangent covectors, 175-181
Tangent space
as derivations into R, 35
at point of M, 106
at point of R", 29, 32
to surface, 113
Tangent vector
to curve, 111
to manifold, 106-115
to R", 29-36
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7., translation along geodesic, 350
7(s), torsion of space curve, 299
Tensors, 197-204
alternating mapping, 202
alternating (skew symmetric), 201
components of, 198
exterior product of alternating, 207-213
linear space of, 198
multiplication of, 205-206
symmetric, 200
symmetrizing mapping, 201
Tensor algebra, 206
Tensor field, 199-200
covariant derivative of, 391-396
invariant, 243
parallel, 396
Theorema Egregium (Gauss), 18, 373
Tietze-Urysohn extension theorem, 285
@', 8{ connection forms, 324
a(t, p), 0.(p), 8,(1), action of R on M, 122
Topological manifold, 6-10
Toral group, 82
Torsion, of space curve, 299
Torus, 7, 57, 80, 92
Transitive action of group, 92-93, 166
Triangulable manifold, 240

U

U, ¢, coordinate neighborhood, 10, 52
Umbilical point of surface, 367
Universal covering space, 292

V*, dual space, 175
V", vector space of n-tuples, 2
Vector, 1-2

norm of, 3

tangent to manifold, 106

INDEX

Vector fields, 115-120
along submanifold, 303
complete, 140
constant, 307
F-related, 119, 120
invariant, 119
left invariant on Lie group, 141, 154
Lie algebra of, 149
on submanifold, 304
restriction to submanifold, 121
singular points of, 139
on subsets of R*®, 37-39
Velocity vector of moving particle, 111, 3
Vol D, volume of D, domain of
integration, 229
Volume element, 217
Volume, Riemannian, 237

w

Wedge product, 207-213
Weierstrass approximation theorem, 195
Whitney imbedding theorem, 195

X

X(U), X(M), C* vector fields on U or M,
40, 121, 149

X ¥, directional derivative, 32

[X, Y], (Lie) bracket of vector fields, 150

X, Y, Z, vector fields, 115-120

z

Z4M), closed forms, 271
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